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attempt of the edges and corners to shrink the surface
layer.

(3) We may include third and further neighbor
interactions. The algebra then becomes tedious: The
order of the di6erence equation for 6& „rises with
each further interaction. Only the limiting case of
Coulomb interactions is of importance. This case
has been treated by Lennard-Jones and Dent" and

others. '4 "They have included polarization sects, and
interesting surface clustering tendencies have been
found. '4 Our one-dimensional calculation should also
be corrected for polarization eR'ects.
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Following up an earlier communication, wave functions are constructed in Sec. 2 of this paper which
are valid if a charge moves in a superposition of a periodic electric potential and a uniform magnetic Geld.
The wave functions are not themselves solutions of the Schroedinger equation, but yield the traditional
effective Hamiltonian for this problem. Contrary to the electric Geld case the mainfold of states linked by
the "band index" does not form a Bloch band; the reason is that the cellular transforms of the Bloch-like
functions are modified by the Peierls phase. At present, the derivation of these results is in closed form, but
justifiable only "to all powers of the magnetic Geld. "This was also the case for the previous electric deriva-
tion. The limitation may not be genuine. The third section of the paper does in fact prove directly the
existence of closed Bloch bands in the presence of a homogeneous electric Geld; the case of free electrons is
given as an example. One expects from this that the new results for the magnetic Geld are at least in part
also independent of the power series method used for their justification. The fourth section extends the
procedure to crossed electric and magnetic Gelds.

l. INTRODUCTION

' 'N a previous communication having a similar title, '
~ ~ one of us has put forward the notion that homo-
geneous fields must have a very special relationship to
the energy bands of a Sloch particle. The basis for this
idea is that energy bands arise from the translational
symmetry of the crystalline 6eld and that this symmetry
is not removed physically by the presence of the applied
Geld. Commonly employed formalisms do not seem to
support this viewpoint. The notion is, however, followed

up in I for the case of a homogeneous electric field. It
is shown that one can modify the Bloch functions in
powers of the 6eld in such a way that there is no inter-
band coupling and the particle is con6ned to one band
only. Kithin this band the particle moves according
to the law

The procedure yields, simultaneously with the wave
functions, an eGective one-band Hamiltonian BC, for the
particle. This Hamiltonian reads

X,= We(k) —eE.r.

Here W, (k) is the (modiled) energy band function for
the band of index q, and r is -the lattice vector operator,
an operator conjugate to k within the band If.

In the present paper the notions of reference 1 will be
pushed further in two directions. First of all the analo-
gous procedure is carried out in Sec. 2 for the case of
a homogeneous magnetic 6eld. It is seen that because
of the presence of the Peierls phase' the ensemble of
states linked together by the band index q ceases to be
a band. Instead of this, it becomes a manifold of just
a structure that its effective Hamiltonian takes the form

k=ks+eEt/h.
*This work was supported in part by the OfEce of Naval Re-

search and the Air Force OfBce of Scientific Research.' Gregory H. Wannier, Phys. Rev. 117, 432, (1960). In the
following referred to as I. There is an error in the Eqs. (36)—{40)
of that paper where x should be replaced by g throughout. This
error was pointed out to us by K. Blount.

where P is given by

X=W, (P/l't),

P= p —(e/c) A.

~ R. Peierls, Z. Physik SG, 763 (1933).

(3a)

(3b)
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2. RESULTS FOR THE. MAGNETIC CASE

In this section results will be derived for the magnetic
case from an a,ssumed starting equation. Our hamil-
tonian reads

3.=-', (p—-,'HXx)s+ V(x),
with

where

V(x+p) = V(x),

p=la+mb+Nc,

(5b)

(5c)

I, m, and e are integers. (5d)

The units used here are the same as in I: m, 5, and c
equal unity, and e is absorbed in the electric field E and
magnetic field H.

As in the previous case, there is a starting equation
defining a set of Bloch type functions. As in that case,
a heuristic argument for its structure can be given, but
is not necessary for a logical presentation. The import-
ant feature is a derivation of its properties; in the course
of this derivation some of the heuristic elements will

' W. Kohn, Phys. Rev. 115, 1460 (1959l.

Here p is the momentum, A the vector potential and
W~(k) an energy band function of k periodic in the
reciprocal lattice. The result (3) has been postulated
many times and is effectively proved in the article of
Kohn. ' The present work. goes beyond the work of
Kohn in giving in closed form the law of formation of
W, (k) and exhibiting explicitly the base in which (3)
is true. In other words, it treats the magnetic case in a
manner equivalent to the electric case. This method can
be generalized to the case of crossed electric and mag-
netic fields as is shown in Sec. 4.

That this type of procedure is not yet the final form
for the theory of homogeneous fields is suggested in
Sec. 3 in which the results of I are partly liberated from
the need of proceeding in powers of the field. The
operator

O(t) =exp( —iXt/fi)

controls the development of a wave function in time.
For this operator a time T can be found such that O(T)
becomes periodic in x. This operator must then have
Bloch functions as solutions

exp( —i3!T/5)b, (x; k) =e '4'~b, (x; k). (4)

For these wave functions the motion becomes strictly
periodic in time. They define therefore the Bloch bands
closed in time discussed in I. The modifying phrase
"to all powers of the 6eld" can thus be removed for the
theorems in I concerning the wave functions. The situa-
tion is less favorable with respect to the eGective
Hamiltonian. The new derivation in fact encompasses
the case of free electrons for which no effective Hamil-
tonian of the type (2) can exist. It thus foreshadows a
more complicated situation than the one envisaged in
reference 1.

appear. %e therefore simply state the following defining
equation:

(s $p ——',HX (x+i8/Bk) )'+ V(x)}b,(x; k)

=P& w, (p) exp(ik p)(exp( —isiHXp x)

Xb, (x; k+-,'HXp) }. (6a)

The fact that this equation defines a Bloch type function
is more easily visualized if one makes the conventional
split-up

b, (x; k) =e'~'u (x; k),

and writes out the analogous equation for the function
I,. A cancellation of exponentials occurs then on the
right and one gets

(-,'(p+k ——',iHXB/Bk)s+ V(x) }N,(x; k)

=P& w, (p) exp(ik p)N, (x; k+-', HXp). (6b)

For H= 0 the equation (6b) is just the defining equation
for the periodic part of the unperturbed Bloch functions
of the crystal. This starting point has the usual hazards
arising from overlapping and degenerate bands; these
hazards can only be taken care of by generalizing (6) to
a set of simultaneous equations. %e shall ignore this

difhculty in the following and assume that the variables
in (6b) exist in the limit H=O. We may then collect
linear terms in B, substitute in these terms the zero
order solution and get a first order correction for I, and
m, . Proceeding in this fashion we get a power series
expansion for these quantities in power of H. At each
stage the perturbation is periodic and thus yields a
periodic u, in the next following stage. In detail the
procedure is very much like the procedure followed in
I, except that it is more cumbersome. For the equation
(I,2) the justification of these steps was carefully out-
lined in a series of theorems. Rather than repeat such a
treatment we shall take these results for granted, except
for orthogonality. The structure of (6) throws some
doubt on the orthogonality of the functions b„and we
shall in fact avoid making use of this postula, te. Linear
independence will, on the other hand, be valid at least
for a certain range of II since it is valid for H=O. As a
result we are thus in possession of a set of Bloch func-
tions b, (x; It) and an "energy band function" W, (k)
which is given by

W, (k) =Pp w, (p) exp(ik. p).

Both these quantities are given to us as power series in
H, and solve equation (6b) in powers of H. They are
related to the band index through the zero order term
of this expansion. Equation (6) is similar to, but differ-
ent from the equation proposed by one of us in 19554;
the left-hand side is the same, but the right has a more
involved structure; only when the energy band function
reduces to a constant is the older form justified.

4 Gregory H. Wannier, Phys. Rev. 100, 1227 (1955).
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As the next step we consider the following function

B,(»; k) =b, (x; k——',HXx). (8)

Functions of this type were 6rst introduced by Harper. '
They bring us back to the Hamiltonian (Sa) because
they satisfy the following identity

{p —-,'HXx)B, (x; k)
=L(p—HX(x+iB/Bk)}b, (x; k))k g (HE„. (9)

On the right hand side of (6) this same substitution
k~k —srHXx just removes one of the exponentials,
yielding with (5)

3!B,(x; k) =Py m, (y) exp(ik y)B,(x; k+-,'HXy). (10)

Equation (10) achieves the essential goal of 6nding a
set of functions which the Hamiltonian couples only to
other functions of the same "band index" q. In the pur-
suit of this goal the functions have admittedly lost their
Sloch character. This loss had to occur because it is
implied in the old observation of Peierls' concerning the
phase factor bearing his name. To bring this out we

pass over to a Wannier representation. Define a Wannier
type function by the obvious transformation of the
solutions of (6)'

a, (x—y)= Q exp( —ik y)b, (x; k).

The sum here is really an integral but it is written in the
Born-vonKarman fashion for convenience. If we apply
the same unitary transformation to the functions (8)
and delne A, (x; y) by the equation

where the B's are defined by (6) and (8). We can then
ask for the equations obeyed by the amplitude function
f(k). Applying (10) to (15) we get

KP(x) =Pq, y f(k) exp(ik y)res(y)B, (x; k+srHXy),

or with a shift in the summation index k

5('4 (x)=Z. ,y ~,(y)

Xexp(ik y) f(k —srHXy)B, (x; k). (16)

The f's will define an eigenfunction of X if (16) differs
from (15) by an energy multiplier 8 only. Since the B's
are linearly independent in the same sense as the b's we
can factor out their coefhcients in the resultant expan-
sion and write

Py w, (y) exp(ik y)f(k —srHXy)= hf(k). (17a)

The displaced argument of f is advantageously given
the form

f(k—sHXy) =exp( —sHXy 8/r)k) f(k),

so that (17a) takes the form

Py w, (y) exp(ik y) exp( ——,'HXy ci/dk) f(k) = hf(k).

The two exponentials combine into a single one because
the derivative is always taken with respect to a com-
ponent of k at right angles to y. The eigenvalue equation
therefore takes the form

W, (K)f(k) = bf(k), (17b)

where W(k) is given by (7) and the operator K by

K=k ,'iHX—r)—/r)k. (18)

A, (x; y) =

we get with (8)

P exp( —ik y)B,(x; k), (12)
The operator iB/r)k occurring in (18) is a coordinate

type variable conjugate to k The vector K thus obeys
the commutation relation

KX K=iH.

A, (x; y)=exp( ——,'iH «Xy)a, (x—y). (13)

In other words, the functions (8) are not quite Bloch
functions because their cellular transforms are not quite
Wannier functions, but differ from each other by the
Peierls phase factor. In order to get the cellular form
of Eq. (10) we multiply with (E i) exp( —ik y) and sum
over k. The result is

s P. J. Harper, Proc. Phys. Soc. (London) A68, 879 (1955).
Gregory H. Wannier, E/ensents of Solid State Theory (Cam-

bridge University Press, New York, 1959), Eqs. (6.15) and (6.16).

~A (»'y)=Zy" A (x'y )tt' (y —
y )

Xexp( ——,'iH y"Xy). (14)

The form of the magnetic Hamiltonian postulated in
the past results from (10) in the following way. Suppose
we write an eigenfunction of the Hamiltonian (5a) in
the form

This is also the commutation relation obeyed by the
vector P defined in (3b). The diagonalization of W, (K)
will therefore proceed in exactly the same fashion as the
diagonalization of (3a). In addition to confirming this
traditional guess the present derivation also provides
through Eqs. (6)—(8) the basis in which this form is
realized and an explicit recipe for the construction of
W, (k).

3. SUPPLEMENTARY RESULTS FOR THE
ELECTRIC CASE

In reference 1 results similar to the preceding are
worked out for a homogeneous electric field. Proofs are
carried through in rather greater detail than here, and
the result is that the theory as presented is clearly
justified only if proceeding in powers of the field, even
though the formulas are in closed form. This opens up
the possibility that the results might be only correct in
an asymptotic sense, and that a remainder term with
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T= 2s (a*/E). (21)

It follows that the unitary operator exp( —iXT) pre-
serves the reduced wave vector, and its eigenfunctions
must be Bloch functions. This conclusion can be verified
directly on the Hamiltonian (I,1). We find with (21)

exp( —iXT) = exp( —iTP~p'+ V(x)]—2sia* x). (22)

This operator has the lattice period in x because the
square bracket has that period and the factor of x in
the last term is just such as to increase it by a multiple
of 2~ whenever x is increased by a lattice vector.

It follows that we can define a set of Bloch functions
with the help of the operator (22), writing

exp( —iXT)B,(x; k) =e '4'~B, (x; k). (23)

If we now start out at the time t=O with one of these.
wave functions B,(x; ks) then the wave function

P(x; t) = exp (—iXt)B,(x; ks)

will vary periodically in time because it returns to its
original form (apart from a phase factor) after a time T.
A very obvious assignment of the band index and phase
will then create a band closed in time with wave func-
tions periodic in reciprocal space. The assignment is

B,(x; ks+ Et) =exp( —iXt)B,(x; ks) exp(+, t/T), (24)

and the time dependent wave function may be given
the form

P(x; t) =exp( —+,t/T)B, (x; ks+ Et). (25)

Finally, one can derive from (24) the starting equation
of reference 1 by differentiation with respect to time.
One finds, using Eq. (1)

E 8Bs/Bk —sXB,+i Q jT)B,. (26)

If one substitutes (I,1) for X Eq. (26) is seen to be
identical with (I,2), as indicated.

7 See reference 6, pp. 191—192 for a physical interpretation of
this periodicity.

entirely diGerent properties might exist The work of
this section excludes this possibility in the electric
Geld case, as far as the modified Bloch functions are
concerned.

Suppose we take an arbitrary initial wave function

$(x,O) at the time t=O. We then know that

lt (x,t) =exp( —iXt)f(x,0) (20)

is a solution of the Schroedinger equation in time. Now
if X is the hamiltonian (I,1) and if P(x,0) happens to
be a Bloch function of reduced wave vector ks, then it
follows from (1) that P(x, t) is a Bloch function of wave
vector ks+Et. If now the electric field is in a reciprocal
lattice direction and if the period of the reciprocal lattice
in that direction is a* then the original wave vector will

have been restored after a time'

Once one is in possession of Bloch functions obeying

Eq. (I,2) and conforming to Theorems I,4 and I,5
without reference to power series expansion one might
think that direct derivation of the remainder of that
paper would be a mere formality. This idea is not correct.
The effective Hamiltonian in I cannot be derived by the
new method. In fact the Hamiltonian does not always
exist. An easy way to show this is by the counterexample
method. The counterexample is the case of free elec-

trons; it is sufhcient to treat this example in one
dimension.

In the case of free electrons the introduction of a
period d is of course artificial. Nevertheless, a Stark
ladder with spacing Ed and arbitrary 6rst member can
be picked out of the continuum of states, and the wave

functions thereof superimposed according to (I,42).
Denote by A (x) the function

A (—x) = (2x&/3)E1(2x&/3&), (27)

with the proper analytic continuation for positive x.
Then we get from (I,42)

+" . t'
B (x k)= P e '""'A (6E-)&l x+—+vd l, (28)

z i '

where 8 is the energy of some member of the chosen
Stark ladder. The summation can be carried out by the
Poisson summation formula' and yields with a change
of factor

The formal divergence of the series need not bother us

since the accelerated oscillation in phase for large v will

produce absolute convergence if we just assume a small

range of error in k.
It is to be observed that the wave functions (29)

obey all criteria laid down for the band eigenfunctions.
Each term of it obeys separately Eq. (26) with

y, =2~(b/m). (30)

Hence a time dependent solution of the Schroedinger
equation can be constructed by formula (25). The
periodicity requirement in reciprocal space is taken care
of by the succession of terms. 8 acts as the band. index
as is seen from (30) All possible bands are reached if
b varies through the interval (O,Zd). Thus, the Bloch
bands exist, and are closed in time. Yet the Hamiltonian

(I,16) cannot be constructed because the power series
method is clearly inapplicable and direct construction
of the square bracket in (I,28) yields divergent results.

R. Courant and D. Hilbert, Methoden der Muthematischen
Physth (Verlag Julius Springer, Berlin, 1931),Vol. I, p. 65.

+ f' 23v) ( 8i
B,(x;&)= 2 exps I u+ ll x+—

I

d it Zi

1 2s.v '-
I

&+ I (29)
6Z& d i
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In fact, a divergence for the expectation value of p has
to occur because only through it can we reconcile the
existence of closed bands with the indefinite increase of

p with time which we know to be present for a free
particle in a uniform field.

It is clear for physical reasons that the divergences
just found for free electrons must still be present when
the crystalline field is everywhere weaker than the
applied field. Whether they are also present in the weak
field limit cannot be decided at this time. In any case,
the existence of closed Bloch bands is neatly illustrated
by this example.

4. RESULTS FOR CROSSED FIELDS

It is implicit in the philosophy of the present work
that we should be capable of handling simultaneous
electric and magnetic fields iri a solid. In discussing such
a possibility we may assume the two 6elds perpendicular
because the eGects of an electric Geld parallel to a
magnetic Geld are kinematically separable. I,et us there-
fore assume an E field along the z direction and an H
field along the s direction.

At the present time we can only generalize the power
series method because the magnetic equivalent of the
operator (22) is not yet known. Once this restriction is
made, generalization is rather easy because the proce-
dures for the electric and magnetic case can be superim-
posed without mutual interference. The Bloch function
for the crossed fields results therefore from superposition
of (6a) and (I,2)

(-,'Ly ——,'HX (x+ia/ak)]'+ V(x) —Z(x+i8/ak. )}
Xb, (x; k) =Py w, (p) exp(ik y).

X(exp( ——',iHXp x)b, (x; k+2HXy)}. (31)

It is seen from previous work that superQuous magnetic
terms are removed. by a phase correction, while the
superfIuous electric term is simply subtracted. These
procedures again do not interfere with each other so
that we end with the following generalization of (10)

KB~(x; k) =P w, (y) exp(ik y)B,(x; k+~~HXy)
p

BB,(x; k)
+iE . (32)

~e now write an energy eigenfunction in the form (15).
If we recognize that the summation indicated there is
actually an integration, and that both f(k) and B,(x; k)
are periodic in k, then we see that the operation 8/Bk
can be transferred to f(k) with a change in sign. The
reduction of the Grst term on the right proceeds as
before to the form (17). The generalization of (1'7)
thus reads

(Wq(k ~2iHX8/&k) —iM/&k, }f(k)—Bf(k). (33)

We see that we are dealing here also with a generaliza-
tion of Eq. (2). Further simplification of the problem

can proceed by operator methods as in I. We may
thus write

K,gg= W, (K)—Zr, . (34)

Here K is defined by (18). r is the x component of the
lattice vector operator and obeys the relations

E.—r.=i,

rjC„E'„r,—=0,

r.r,-E;,r.=o.

(35a)

(35b)

(35c)

The commutation relations (19),on the other hand read

E~„E„E,=—i H,

E„E,—E,E„=O,

E,E, EJC,=—0. '

(36a)

(36b)

(36c)

It follows from these two sets of equations that E„+Hr
commutes with all variables of the system and thus is a
constant of the motion

Ey+Hr, =C. (37)

Substituting (37) into (34) we get, apart from a constant

X,gg= W, (K)+ E„. —(38)

This is a correct substitution. However, the new ex-

pression is the correct Hamiltonian only for motion in
K space. For motion in r space one must return to
equation (34).

5. CONCLUSIONS

This paper, together with reference 1, shows that the
wave functions arising. from the superposition of a
periodic potential and a homogeneous Geld have indeed
special properties. In the case of a homogeneous electric
Geld bands filling the Grst Brillouin zone exist which
are closed in time (even for free electrons). The existence
of an effective Hamiltonian is not as well assured. There
are in fact certainly cases in which there is no Hamil-

tonian, and the evidence for it remains linked to the
power series method. On the other hand, it exists in a
practical sense in many cases.

In the case of a homogeneous magnetic field the
manifold linked by a "band index" does not form a
band. When one looks at the Bloch type functions their
modification appears obscure, but in the cellular repre-
sentation its meaning becomes clear; we deal with
Wannier- functions modified by the Peierls phase. This
manifold is just such as to allow the conventional treat-
ment (3) for the band in the presence of a magnetic
field. In fact, for free electrons Eq. (6b) has the trivial
solution N, (x; k) = 1 which yields in turn W(k) = 2k', so

that (17) is, in this case, just the usual magnetic
Schroedinger equation in the momentum representation.
The success of the magnetic Geld formalism inde-



B LOCH BAN DS IN HOMOGEN EOUS F I EL DS 1915

pendently of the presence of a crystal field, unlike the
situation for the electric field formalism, where the
effective Hamiltonian idea fails without a sufficiently
strong crystal field, is understandable on simple physical
grounds, and suggests that the magnetic Geld formalism
should, if anything, be better founded than. the electric
field formalism. Nevertheless, all our magnetic field
results must be qualified, in this paper, as being true
"to all powers in the field, " and we have been unable,
so far, to do anything for .the magnetic field problem
analogous to Sec. 3. The difficulty here is, perhaps, re-
lated to the greater richness of phenomena produced by
a magnetic field in a solid, compared to the basic sim-

plicity of most electric field effects. It would, however,
be very desirable to be free of the power series limita-
tion, since the recent work of Cohen and Falicov' on
"magnetic breakdown" suggests that there might be
specific difficulties with the band index q as the Geld is
varied, and the power series might only be an asymptotic
representation of electron behavior.

ACKNOWLEDGMENTS

We wish to express our thanks to Dr. E. Blount and
Professor J. L. Powell for helpful discussions.

' M. H. Cohen and L. M. Falicov (unpublished).

P H YSI CAL REVIEW VOLUME 125, NUM B ER 6 MARCH 15, 1962

Microwave Losses in Strontium Titanate above the Phase Transition*
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The microwave losses in both pure and doped SrTi03 have been investigated as a function of frequency
and temperature. It is found that the loss tangent is proportional to frequency in the range 3—36 kMc/sec.
Above the phase transition at 112'K, the temperature dependence of the loss tangent is well represented by
tanb= (T T,) '(n+PT—+yT'), where the Curie temperature, T,=37'K. The parameter n is shown to be
determined by lattice imperfections and vanishes for pure single-crystalline material. The parameters P and
y, which are related to third- and fourth-order anharmonic terms in the interionic potential, are shown to
be intrinsic properties of the perfect lattice and are unaffected by imperfections.

INTRODUCTION
'
ICROWAVE losses in ferroelectric materials have

~ been the subject of many studies in the past
years. Powles and Jackson' and others' have measured
the losses of barium and strontium titanate mixtures as
a function of temperature and composition. At 3
kMc/sec, Davis and Rubin' have investigated the
loss tangent of certain mixtures of Ba,Sr& Ti03 above
and below the Curie temperature. Work on single
crystals of BaTi03 has been published by Benedict and
Durand. ' In all these cases the microwave losses were
relatively high even above the Curie temperature,
obviously the main reason why such attractive proper-
ties like the nonlinearity of the dielectric constant have
not yet been utilized in such materials to any appre-
ciable extent. Recently we have shown that the micro-

*Work supported in part by the Electronics Research Directo-
rate of the Air Force Cambridge Research Center, Air Research
and Development Command, under contract, and by the U. S.
Army Signal Research and Development Laboratory under
contract.

' J.G. Powles and W. Jackson, Proc. Inst. Elec. Engrs. (London)
96, 383 (1949).

s A. von Hippel, Revs. Modern Phys. 22, 221 (1950); A. Lurio
and E. Stern, J.Appl. Phys. 31, 1805 (1960);Phys. Rev. 123, 117
(1961).' L. Davis and L. Rubin, J. Appl. Phys. 24, 1194 (1953).' T. S. Benedict and J.L. Durand, Phys. Rev. 109, 1091 (1958).

wave losses in single crystalline strontium titanate are
surprisingly low above the Curie temperature, and that
SrTi03 is potentially a good substance to study the loss
mechanism in dielectric materials. '

SrTi03 is commercially available in relatively high
purity as single crystals. ' In the low-frequency range at
room temperature Linz~ has reported a loss tangent of
2.5)&10—4 which is independent of frequency in the range
between 10 and 10 cps.

It is the purpose of this paper to report in some detail
on the functional dependence of the loss tangent at
microwave frequency on parameters such as tempera-
ture, frequency, and lattice imperfections, and hereby
strive for an answer to the question: Are the observed
microwave losses intrinsically connected with the
property of ferroelectricity and therefore unavoidable,
or are they in part due to lattice imperfections and
other disturbing factors' Many of the following experi-
ments described below were carried out on single-
crystalline SrTi03. The data presented have been taken
above the Curie temperature and will be evaluated in

5 R. O. Bell and G. Rupprecht, Bull. Am. Phys. Soc. 6, 12
(1961).

6 The single-crystal SrTi03 was obtained from the National
Lead Company.

r A. Linz, Phys. Rev. 91, 753 (1953).


