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Magnetic Studies of Some Orthoferrites
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This paper describes a method to distinguish between two mechanisms that may cause weak ferromag-
netism in the orthoferrites, i.e., antisymmetric exchange and single-ion magnetocrystalline anisotropy. The
free energy of a magnetic crystal is expressed as a series in the applied Geld. The condition of invariance of
the energy with respect to the magnetic point group of the crystal, determines the coeScients of the energy
series that are needed to describe the magnetic properties of the crystal. Magnetization and static torque
measurements make possible the evaluation of these coefficients, including those of the terms cubic in the
applied Geld. These coeScients are also calculated for the antisymmetric exchange and the single-ion mag-
netocrystalline anisotropy interactions. The comparison between the measured and calculated coefticients
shows that in the orthoferrites the antisymmetric exchange mechanism is predominant. The method de-

scribed is quite general and should be applicable to a variety of other materials.

1. INTRODUCTION

''T has been found by various investigators' that
~ ~ many materials with the composition MFe03,
where M stands for yttrium or a rare earth, exhibit
weak ferromagnetism. The structure of these ortho-
ferrites was solved by Geller. ' These compounds belong
to the space group D2y,"—Pbnm with four distorted
perovskite units in the true crystallographic unit cell.

In all the compounds of this group studied by
neutron diffraction, ' it was found that at room tem-
perature the iron lattice is approximately antiferro-
magnetic, each ion having six antiferromagnetic nearest
neighbors.

The repeatability of the results of measurements of
the weak ferromagnetism by various groups, ' suggests
that it is an intrinsic property of these compounds.
Dzyaloshinsky4 has shown that weak ferromagnetism,
caused by canting of the spins in an essentially anti-
ferromagnetic crystal, is in some cases compatible with
the symmetry of the antiferromagnetic state,

Moriyas studied the physical interactions that could
be responsible for the canting of the spins. He found
two such interactions:

i. Single-ion magnetocrystalline anisotropy. In this
mechanism the magnetocrystalline easy direction of
magnetization is di6erent for the nonequivalent mag-
netic ions, energetically favoring spin canting.

2. Antisymmetric exchange interaction. This inter-
action has the form D,; S,XSt, which tends to align
the two interacting spins S; and $; perpendicular to
each other, and perpendicular to the constant vector

Different magnetic properties are associated with
these two mechanisms, so that by performing magnetic
measurements one may hope to 6nd which of the two
interactions is responsible for weak ferromagnetism in
a particular case. Kith this purpose in mind, static
torque measurements were carried out on single crystals
of V, La, and Lu orthoferrites. These nonmagnetic ions
were chosen so as to avoid possible contributions to the
torque of the anisotropic paramagnetic susceptibility
of the rare earth ions.

The torque as a function of the applied field in the
various crystallographic planes is calculated for each
mechanism of interaction. Comparison of these calcu-
lated values with experimental results indicates that
in these materials antisymmetric exchange is the pre-
dominant interaction responsible for weak ferro-
magnetism.

2. SPIN STRUCTURES OF THE ORTHOFERRITES

The point group D2~ of these materials has the
symmetry elements G=E, C2„C2y, Cgg, o.„oy, o.„I.
The possible magnetic point groups derived from this
group can be found in reference 6. These groups con-
tain the original elements of G and their combination
with R, where E. is the time-reversal element. ' The
symmetry element R reverses magnetic moments and
magnetic 6elds, and otherwise leaves the crystal
invariant. In the orthoferrites, the center of inversion
is thxough a magnetic ion, and therefore the element
M cannot exist for a magnetic state, leaving only the
magnetic point groups containing I. Furthermore, if
the magnetic cell is equal to the x-ray one, (as demon-
strated by neutron diffraction' for LaFeOs) the element

*On leave of absence from the Weizmann Institute of Science,
Rehovoth, Israel.

t R. Pauthenet and P. Blum, Compt. rend. 239, 33 (1954);
H. Forestier snd G. Guiot-Guillain, ibid. 230, 1844 (1950);M. A.
Gilleo, J. Chem. Phys. 24, 1239 (1956); R. M. Bozorth, V.
Kramer, and J. P. Remeika, Phys. Rev. Letters 1, 3 (1958);
R. C. Sherwood, J. P. Remeika, and H. J. Williams, J. Appl.
Phys. 30, 217 (1959); H. Watanabe, J. Phys. Soc. Japan 14, 511
(1959); C. Kuroda, T. Miyadsi, A. Nsemura, N. Niizeki, snd
H. Takats, Phys. Rev. 122, 446 (1961); G. H. Jonker, Physics
22, 707 (1956).

s S. Geller and E.A. Wood, Acta Cryst. 9, 563 (1956);S. Geller,
J. Chem. Phys. 24, 1236 (1956).' W. C. Koehler snd E. O. Wollan, J. Phys. Chem. Solids 2, 100
(1957);W. C. Koehler, E. Q. Wollan and M. K. Wilkinson, Phy
Rev. 118, 58 (1960).' I. Dzysloshinsky, J. Phys. Chem. Solids 4, 241 (1958).

s T. Moriya, Phys. Rev. 120, 91 {1960).

s. e B. A. Tavger and V. M. Zaitsev, Soviet Phys. —JETP 3, 430
(1956).

L. D. Landau and E. M. Lifshitz, Statistical Physics (Per-
gamon Press, New York, 1958), p. 427.
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I-o, o,o

FIG. 1. Location of the Pe'+ ions in the unit cell
of the orthoferrites.
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' A. J. Heeger, 0. Beckman and A. M. Portis, Phys. Rev. 123,
1652 (I96i}.

I permutes only equivalent magnetic ions and is there-
fore equivalent to the identity operator with respect
to the magnetic structure. In this case it is sufhcient
to consider only the magnetic point groups associated
with the group' D2 E C2~ C2y Cgz, These groups Me
Gg=E) C2g) C2„, C2z, G2, 3,4 —E C2;, RC», RC», where

i, j, k, stand for permutations of x, y, s. The rotation
axes are all screw axes and there are four of each kind
in the crystallographic unit cell, with coordinates

C2.(y=-,'b; ,'b; s=0; —,'—c),

C „(s=ga; ga; s= gc; gc),

C2, (x=0; —',a; y=0; —,'b).

The four nonequivalent magnetic ions are located at the
points Si(0,~~b,0); S,(0,—,'b 2c); S3(~a,0,—,'c); S4(2a,0,0)
in the unit cell, as shown in Fig. 1. The element C~

permutes site 2 and 3 and 1 with 4, C2y permutes 1 with
3 and 2 with 4 and C2, permutes 1 with 2 and 3 with 4.
The magnetic moments transform like vectors under
rotations and are reversed by R. Writing down the
condition for the invariance of the magnetic crystal
under the diferent symmetry operations, one 6nds
that the above groups yield the following magnetic
structures:

where S„, are the respective components of the nth
ion.

These are all the possible magnetic structures for
a magnetic unit cell that is equal to the x-ray one. The
con6gurations described by Bozorth' can be derived
from these by further assuming the existence of only
two sublattices. This additional restriction does not
add to the symmetry of the magnetic structures which
anyhow have the maximum symmetry possible, which
is that of the crystal. In these crystals, a two-sublattice
system is favored by the isotropic superexchange
interaction.

With the exception of Sm, ' all the rare-earth and
yttrium orthoferrites have at room temperature a
ferromagnetic component in the s directions. They,
therefore, belong to the magnetic point group E,RC2,
RC2y) Cgz) RO ~)Ro y) 0 z)I

S. TORQUE MEASUREMENTS AND SYMMETRY

The properties of a magnetic material at low static
fields can be described by the coeS.cients of the series
expansion of the free energy F in a power series in the
applied field H.

F=Co++0,(0)H,+-', Q&,;H,H+QC gI,H,H;Hg+

where i, j, k stand for the coordinate axes. As shown
below, one can use torque measurements, supplemented
by susceptibility measurements, in order to evaluate
experimentally the coefficients of the series expansion
of F. The first term is irrelevant. The coeKcients 0;(0)
of the second term give the permanent magnetic
moment of the crystal, the &;; are the terms of the
usual susceptibility tensor, and can be collected into
six constants. The C;;I, tensor will add detailed in-
formation on the mechanism that produces the spin
con6guration. These 27 terms can be bunched into 10
terms prior to any symmetry consideration.

The fact that the free energy must be invariant with
respect to all the symmetry operations of the magnetic
point group of the crystal, will further reduce the
number of coeScients. The operator RC2 leaves H„
and H, unchanged, and reverses H so that only even
powers in H can remain in the free energy expression.
Similarly, RC2y eliminates odd powers of Hy. As previ-
ously described, the inversion operator leaves the
energy expression unchanged, and therefore does not
introduce any restriction on it. All the other symmetry
operators are redundant because they are generated
by those mentioned above. It follows that the X;; tensor
contains only the three te'rms X..." and the only non-
vanishing C;;~ are the three terms C „C»„C„,. The

' R. M. Bozorth, Phys. Rev. Letters 1, 362 (1958).
'0 The x;; tensor is in general symmetric; therefore it can be

always represented by three numbers only. The symmetry
operations add only the information that its principal axes
coincide with the crystallographic ones. From here on the double
indexing x;; will be dropped and the susceptibilities written xz,
~g) Xt~
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TABLE I. Coefficients of the energy series expansion evaluated from torque measurements.

From magnetization measurements From torque measurements
o'z (0) 106Xz 106Xy 106Xz 106(Xy —Xg) 106(X» —Xz) 10 (Xz Xy)

Units (emu/g) (emu/g oe) (emu/g oe) (emu/g oe) (emu/g oe) (emu/g oe) (emu/g oe)
Czzz X1012 C7jyz X10 2 Czzz )(10&2

(emu/g oe~) (emu/g oe') (emu/g oe')

Mo-
lecular

Tx freight
('K) (g)

YFe03 1.2 18 12 12 ~ 5
LaFe03 1.0 7.5 9 10'.5
LuFe03 1.0 ~ ~ ~ ~ ~ ~ ~ ~ ~

—7 —: -10 -7 —: —8 &0.1
1.8 1.3 &0.1

0.8 —: 1.9 1.3 &0.1

-20 —: —25
12.5
9

&1-1.2 —: -1.7
&0.2

&1—7.5
&2

648 193
738 243
~ ~ ~ 279

o =X,H,+2C„,H,H„

ou —XwHw.+—2cwwuHuHz,

(2a)

(2b)

o,=~.(0)+X,H,+C„,H,'+Cuw, Hw'+3C„, H, '. (2c)

If one considers only fields parallel to the magnetization
and in the principal directions, one gets

0'~= XgH~ ) 0 y
=xyHy j

o,=o,(0)+X,H,+3C,„H,'.
(3)

The torque components are given by T;=H,~I,—Hko-;,

or explicitly:

T.=H„t ~,(0)+X,H.y3C„,H,s+C.„H.syC„„,H„sj
—H.9wHu+2cwu. HwH*3, (4)

Tw = H*kxeH*+2C»*H*H*)
H (o(0)+X H +3'C H s+Cuw Hws j (5)

Te =H*PuHw+2cww*HuHe'j

Hw PN.+2C—**.H.H,). (6)

4. EXPERIMENTAL

The torquemeter built" for these measurements was
a high sensitivity automatic recording torque mag-
netometer similar to that described by Croft et at. ,"
with a sensitivity of about 10 ' dyne cm. The magnetic
field was continuously measured with a Rawson ro-
tating coil gaussemeter, and curves of torque vs fieM

plotted on an x-y recorder.
The linear part of the torque in the X and I" planes

was several orders of magnitude larger than the con-
tributions of the nonlinear terms and masked those
completely. Therefore, the following technique was
used: The crystals were mounted with the ferromag-
netic z axis parallel to the axis of a coil rigidly connected
to the lower end of the magnetometer. For the meas-

"L.D. Landau and E. M. Lifshitz, Electrodynamics of Con-
tuareorss MeCha (Pergamon Press, New York, 1960), p. 147.

'~ The author wishes to thank W. D. Doyle and P. J. Flanders
from the Franklin Institute for making available technical details
concerning the magnetometer."G. T. Croft, F. J. Donahoe, and W. F. Love, Rev. Sci. Instr.
26' 360 (1955).

free energy now takes the form

F=o,(0)H,+,' QX;-HP+C„,H, 'H, +Cww, Hw'H,

+C„,H,'+ . (I)
The component o; of the total magnetization o(H) are
given by" o;=BF/BH;, yielding

urement of the nonlinear terms the ferromagnetic
component was bucked out by the current in the coil.
This current was adjusted so that the sl.ope of the
torque curve as a function of 6eld was zero at B=O.
As the s axis of the crystal could not be perfectly
aligned parallel to the axis of the coil, the current had
to be slightly readjusted for different angles.

The single crystals were carefuBy selected, and only
untwinned ones measured. They weighed between 5
and 100 mg. These crystals were grown by Remeika
with the Aux method. '4 Tests on crystals of YFe03
of diRerent degrees of purity showed that the magnetic
properties studied varied only very slightly.

For reasons to be described below, the crystals were
also selected for high coercive force, which was found
to vary considerably from crystal to crystal, in general
increasing with decreasing size. All the torque measure-
ments were performed with the applied 6eM normal to
the torque, so that in the expression for T;, the com-
ponent H, =O.

The constant 0-0, is evaluated either by a magneti-
zation measurement in the s direction and extrapolating
to H, =O following (3), or by torque measurements, by
taking the slope of 7, as a function of H„ for low fields.
It is seen from (4) that in this case T, is not a function
of the susceptibility, and only the third-order co-
efticient C», appears. This coefficient is so small that
the torque curve appears as a straight line up to fields
of 20 koe. The susceptibility measurements were per-
formed by %illiams and Sherwood in a magnetometer
described elsewhere. "

The sensitivity of the magnetometer is of the order
of 10 ' emu, so that the accuracy of the susceptibility
measurements is quite low. Therefore, one cannot use
these values in order to evaluate the anisotropy of the
susceptibility. On the other hand, the high sensitivity
of the torquemeter, and the fact that torques are pro-
portional to the difference in the susceptibility, yield a
high sensitivity in the estimation of X;—X.;. The pre-
cision here is probably determined by the accuracy of
the geometrical alignment.

All the results are summarized in Table I. The
constant C„, was evaluated from the torque com-
ponent T„as a function of H„see (5). The field was
applied in this direction in order to exclude a contri-
bution to the torque from the quadratic terms. How-

"J.P. Remeika, J. Am. Chem. Soc. 78, 4259 (1956)."R. M. Bozorth, H. J.Williams, and D. E. Walsh, Phys. Rev.
103' 572 (1956).
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FIG. 2. Torque curves measured on an O.i g LaFe03 single
crystal. The torque T„is given as a function of field, for different
orientations of the Geld in the I' plane. The angles shown are
measured from the x axis. The absolute accuracy of the alignment
is &2'. The relative accuracy is within 0.25'.
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ever, because X,—X,»HC„, for all practical fields,
great accuracy was required in aligning the field parallel
to the x axis.

Torque curves were therefore taken at di6erent
angles in the neighborhood of the x direction, with the
field taking both positive and negative values. Exactly
in the x direction one should get a curve antisymmetric
in H. Deviating from x, one gets a mixing-in of the
symmetric curve due to the H,H, (X, X,) term. —
This behavior is clearly demonstrated in the actual
curves for LaFe03, as shown in Figs. 2 and 3. When
the H, component exceeds the coercive force in the
negative direction, the ferromagnetic component re-
verses irreversibly. One therefore needs crystals with
a high coercive force, in order to allow negative ex-
cursions of the field large enough to enable an accurate
determination of the symmetry of the torque curve.

From the curve which is nearest to antisymmetric,
one finds the C, .coeKcient. In the example shown in
Fig. 2 this would be the curve denoted 1'. This curve
fits remarkably well a cubic curve (as shown in Fig. 5).

The nonlinear terms in the torque are taken as
positive if they have the same sign as the linear one.

The C», constant is evaluated from T, with H=H„,
see (4). The torque curve for LaFe03 is shown in Fig.

4. The signal to noise ratio is rather low, however one
can still see that the power dependence of the torque
on H is higher than cubic. This is shown in Fig. 5, where
the torque is drawn as a function of H' for T„(H=H,)
and T,(H=H„). Approximating the curve of Fig. 4 by
a cubic curve, one can roughly evaluate C», . This is
the value given in Table I. It is interesting to note that
the linear term bucked out in this experiment is about
10' larger than the torques measured in Fig. 4.

Figure 6 shows T for LaFe03 as a function of field
for different angles e, (tanH=H„/H, ). The torques are
very low, and only very rough estimates of (x,—x„)
and C„,could be made using (4). From measurements
of T„one can evaluate (x„—x,) using (6).

The results for LuFe03 were very similar in every
respect to those of LaFe03, and are given in Table I.

Measurements were done also on YFe03 which has
the same crystal structure, and also has a ferromagnetic
component in the s direction. The results of torque
measurement, as shown in the table, di6er from the

7
dyA QN

gr
78--

5.2--

H 0 H MAX l5500oe

FIG. 4. Torque T as a function of field applied in the y
direction, for the same crystal of Figs. 2 and 3.

other two materials in that C, is here negative, and
(x.—x,) = (x.—x„)&0.

In principle C„,can be found also from measurements
of the nonlinear component of 0., as a function of H„
as seen in (2). Magnetization measurements could in
addition isolate the fourth-order terms D;;;;. Un-
fortunately the lack of such a precision instrument
prevented these measurements.

Within experimental error the extraneous constants
C „and C„„were found to be zero for the three crystals
studied. The others were not evaluated.

IO

40--

20--

=H
H MAX I5500Oe

Fj:G. 3. Sce caption for Fig. 1.

5. CALCULATION OF THE COEFFICIENTS

In Sec. 3 symmetry considerations alone were used
to find what independent constants were needed to
describe the macroscopic magnetic properties of the
crystals studied. The method of measuring these
constants, and their actual measurements were de-
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scribed in Sec. 4. No reference was made to the physical
interactions, existing in these crystals, that are actually
responsible for their spin configuration. In the intro-
duction, two types of interactions that might be
responsible for a canted spin structure were mentioned.

In this section the implications of these two diferent
interaction mechanisms will be studied, and the mag-
netic tensors calculated for each of them.

As discussed in Sec. 2 a two-sublattice system is a
reasonable approximation to the system studied. For
simplicity in the mathematical analysis such a system
will be assumed in all the following calculations. The
molecular Geld approximation wiB be used throughout,
and the magnitude of the spins will be assumed Geld
independent.

The coefficients o, (0), X;, C„., C»., C„„ for the
two models, are calculated by expanding the com-
ponents of the total magnetization in a series in the
applied field, with the latter in the principal directions.
Thus, using (2) one gets the following relations:

~~—do'~/&H~i C»z —g& oI/&Hv, '

C,.= ,'d'~. /-dH. ', C„,= ',d ~,/ZH„-

with the derivatives calculated at H=O. In all these
cases, although there are two sublattices, the total free
energy is a function of at most two independent
geometrical parameters. The energy is minimized with
respect to these parameters yielding the equilibrium
equations. The magnetization components are ex-
pressed as a function of the two independent parame-
ters, and therefore the derivatives (7) will be a function
of the independent parameters and their derivatives
with respect to H, calculated at H=O. These in turn
are found from the equilibrium equations.

In the single ion magnetocrystalline anisotropy mode1
the following interactions are assumed:

1. Isotropic superexchange with energy, E,=)e~ e2,
where ) is a positive molecular Geld constant and e~,
e2 the magnetization vectors of the two sublattices.
e=ey eg .

2. Energy of interaction with the applied fieM,
E~= —H (ei+e2), where H is the applied field.

3. Magnetocrystalline anisotropy energy,

Eg= E(sin 8 +Sill 8g)

Here E is the magnetocrystaBine anisotropy constant
and 5 is the angle between the magnetization and the
preferred crystallographic direction of magnetization
of the appropriate sublattice. The symmetry of the
crystal requires the value of the constant E to be equal
for the two sublattices, and the preferred directions to
be in symmetrical positions in the Fplane. Furthermore
the fact that the ferromagnetic component at zero
applied GeM is in the z direction, restricts the angle Ot.

between the preferred directions and the x axis to
n(s/4.

Fro. 5. Curve 1'of
Fig. 2, (T„),aud the
curve of Fig. 4, (T,)
plotted as a function
of LP.

In the antisymmetric exchange interaction model
the following interactions are assumed:

1. Isotropic superexchange.
2. Interaction with the applied Geld.
These two have the same form as previously

described.
3. Magnetocrystalline anisotropy energy, with easy

direction of magnetization equal for both sublattices
and parallel to the x axis.

4. Antisymmetric exchange interaction with energy'
Ed,= —D eix e2, where D is a constant vector parallel
to the y axis.

The coeScients are calculated in the appendix. All
the results are collected in Table II. In the table,
Ho=2E/rro where oo= )vari( = (o'2( ~ H )io'0 Hd Doe
and H t, =2E~/oe where Xq is the anisotropy constant in
the antisymmetric exchange model. yo is the canting
angle at H =0. For po(&i it is given by

ye =H, (sin2a)/4H, .

80'

70'

CP

C

tO

0

450

50

20

Hi0 H MAX lll00 OO

FIG. 6. Torque T, as a function of Geld applied in different
directions in the X plane. The angles are measured from the y
axis.
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TAsLE II. Calculated values of the coe%cients of the energy series expansion according to the two models studied.
The expressions are correct within the approximation pp« i.

p, (0)
Xx

X'g

Xz

Cyyz

C„z

Single-ion anisotropy model

p pH sin2n/2H,
ppH sin'2n/8H, P cos2(n —yp)

o p/H,
a p/II,

o.
p sin2nLcos(2n —yp) —H~ sinP2n/16H. g

4H, ' cos'2 (pp —yp)

op Ho s—in2n/16HP
—p p sin2n/8HP

Antisymmetric exchange model

o pHd/H.
p pHaP/2HpH '

o p/H.
o.p/H,

a pHd (1 Hps/4H p—H, )/2H pH, P

opHd/8H—,'
opH p/8H, P—

0. CALCULATED VS EXPERIMENTAL RESULTS,
DISCUSSION AND CONCLUSION

In this section an attempt will be made to establish
which of the two mechanisms studied is predominant
in causing weak ferromagnetism in the orthoferrites.
This will be done by comparing the measured coeK-
cients with those calculated according to the two
models. From this comparison, the parameters involved
in the two models will also be evaluated.

In reality both mechanisms considered will usually
exist simultaneously, and therefore a quantitative
comparison between experimental values and those
calculated according to the distinct models is of
doubtful value. One must look for qualitative difference
in the behavior of the calculated coeScients to decide
with any degree of con6dence which interaction is
predominant.

Consider 6rst the calculated coefficients X„~, X„",
X,s, X,". (The added superscript k or d stands here and
in the following discussion for the value calculated
according to the single ion anisotropy or antisymmetric
exchange model respectively, according to Table II.
Coefficients without an added superscript are reserved
for the experimental values as given in Table I.) These
four coeificients are equal within sings or about 1%
and will be denoted simply X,. The value of (X„—X.)/X„
as measured by torque measurements (which measure
the difference directly), was below the noise level, the
upper limit being of the order of 1% which is in agree-
ment with the calculated value. The constant X& is
equal to the transverse susceptibility A.

' of a regular
antiferromagnet, which is temperature independent
below the Neel temperature. "

On the other hand, consider the susceptibility in the
x direction. If the canting angle of the spins is small,
in addition to the terms X ~ or X "there is a comparable
paramagnetic contribution, X &, which increases with
temperature more strongly than linearily, reaching X&

at the Neel temperature. "As the Neel temperatures of

' T. Nagamiya, K. Yosida, and R. Kubo, Advancesin Physics,
edited by N. F. Mott (Taylor and Francis Ltd. , London, 1955),
Vol. 4, p. 1.

R. M. Bozorth, Ferromagnetism (D. Van Nostrand Company
Inc. , Princeton, New Jersey, 1959), p. 472.

Hg') 4H,H g. (12)

This basic difference in the behavior of the two
models distinguishes between the two mechanisms
without resorting to precise quantitative considerations.

Comparison of (11) and (12) shows that the condi-
tions for obtaining X "&XL and C,"(.0 are very
similar, both requiring a low anisotropy in the I' plane.

The diferent behavior of the two mechanisms can
be easily understood from the following arguments:
"M. A. Gilleo, Phys. Rev. 109, 77'I (1958)."W. Roth, Pittsburg Diffraction Conference, 1954 (un-

published).

YFeOp and LaFeOs are 3'IS'C and 465'C, respec-
tively ' ""the contribution X,& to X, will be less than
~X& at room temperature.

The calculated ratio X,s/X„ taken from Table II, is

X,s/X, =H, sin'2n/8H, cos2(n yp)— . (9)

As previously mentioned, n(pr/4, so that using (8),
one finds from (9)

X,s/X, (H, sin'2n/8H, sin2yp=4t. (10)

As X &/X~& ts at room temperature, one expects,
according to the single ion anisotropy model, a meas-
ured value of X,/X&1, where X denotes the measured
value of X&. On the other hand

X,"/X,=Hg'/2H, H s,

and this ratio will be greater than unity if

Bg'& 2H,H g.

Now consider C „.The question is, can this constant
attain negative values? As seen from Table II, the sign
of C „~is determined by the sign of the term 5

S=cos (2n —yp) —H, sin'(2n/16H, ).
Using (8) one gets

S=cos(2n —yp) —sings sin2n/4,

and as n& pr/4, one finds S&0. Therefore, according to
the single-ion anisotropy model, C„, is always positive.
On the other hand, Table II shows that C„," will be
negative for
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In the antisymmetric exchange model the weak ferro-
magnetism is the result of Hq alone, and this inter-
action is isotropic in the plane normal to the D vector.
The anisotropy in this plane is represented by H&. As
the weak ferromagnetic component is independent of
Hq, in the limit of low anisotropy the canted spin
system may be regarded as rigidly rotating in the F
plane, under the action of an applied field in the x
direction. In this case it is obvious that C„,is negative,
and X, proportional to H~ ' "

In the single ion anisotropy model, the anisotropy
is responsible for both the ferromagnetic component
and the anisotropy in the I plane. It is this inter-
dependence that limits X. to values smaller than X& and,
C, to positive values.

From Table I it is seen that for YFe03, C„, is
negative and X &X showing that the predominant
mechanism is in fact the antisymmetric exchange
interaction.

The interaction fields will now be calculated for
YFe03 from the measured coeKcients.
From

H, sin2a=2o, (0)/x=2X10s oe. (16)

and from the relation singe=o, (0)/2oo, with ao=57
emu one gets

that X,(X; one is therefore forced to accept for Hs
the high value of 6500 oe.

Because H, and Hq are almost identical for YFe03
and LaFe03, and both crystals have high Weel tem-
peratures, the predominant mechanism is most likely
the same in both materials. "

The high value of H~ in LaFe03 as compared to that
of YFeO3 is surprising. The iron lattice in YFe03 is
much more distorted than in LaFeO3, but the magneto-
crystalline anisotropy is probably caused by the dis-
tortion of the oxygen octahedra surrounding the iron
ions, "so that it appears that although the iron lattice
in LaFe03 is less distorted than in YFe03, the oxygen
octahedra are more distorted. A refined x-ray study of
these materials could probably clarify this question.

In view of this difhculty in LaFe03 it is interesting
to analyze the experimental results on this material,
in terms of the single-ion anisotropy model.

One finds, using Table II,

(17)yp=0.009.one finds H~ ——10' oe. Substituting this value in

C„,/o, (0)= (1 Hg'/4H, H—s)/2H, H s,

one gets 2H, H~ ——0.45)&10" oe'. As a check for con-
sistency, the values of H~ and H,H~ are substituted in
the expression

o, (0)/X "=4H, cos2(a —yo)/sin2a&4H, sin2yo. (18)

Using (8) and (16), (18) becomes(15)X,~/X, =Hd'/2H, H s,

(14) Consider now the following relation obtained from
Table II

yielding X,"/X,=2.2, as compared to a measured ratio
of between 1 and 1.5 depending on the paramagnetic
contribution to X,. Taking into account the low pre-
cision of the measurements, this is good agreement.

In order to evaluate H, and B~ one needs the sub-
lattice saturation magnetization rp. Assuming a moment
of 5p~ per Fe+++ ion one gets o o——72 emu/g.

From x= o o/H, one finds H, =6X10o oe, Ho 3'70 oe. ——
The calculated coeScients C»," and C„,~. are of the
order of 10 " oersted ' emu/g ', definitely below the
experimental upper limit.

The results of the measurements on LaFe03 are
similarly treated: One gets

os=57 emu/g, H, =6X10o oe, Hz= 10s oe

Because C... is positive for LaFeos, (14) yields two
results:

(2HeHo)a=O 53X10'o oe' (2H~Hs)s=7. 7X10'o oe'

which in turn, using (15), yield the values

(x "/x,),=1.9, (Hs)r ——450 oe,

(X "/X,)s ——0.13, (H o) s
——6500 oe.

Both torque and susceptibility measurements show

'0 This explanation has been pointed out by F. Keffer.

o.,(0)/X, '&2H, sin2a=4X10' oe.

This equation serves as a check for the model. Ac-
cording to it, one expects

X s(a.(0)/2HN=2. 5X10 ', (20)

where the equality holds for a= s./4. From Table I one
finds the total susceptibility in the x direction to be,
at room temperature 7.4X10 '. Even allowing for the
paramagnetic contribution, one finds a susceptibility
that exceeds the upper limit allowed by (20). Still,
let this upper limit be assigned to (X,—X,„);this means
a=m/4 and from (16) one gets H, =2X1 Oose. Sub-
stituting these values in the expression for the other
coeKcients, one gets:

Cggz 9)&10 ' C»z = 0 3&( 10
C„,~= —0.2)& 10—".

These results can be summarized as follows: Ac-
cording to the single ion crystal anisotropy model, one
finds H =2)C10' oe, which is equivalent to an ani-
sotropy constant

2' The experimental values of C», and C„,cannot be accounted
for in LaFe03. However it must be remembered that their evalu-
ation is very rough, as the torques are very low."J.J. Pearson, Phys. Rev. 121, 695 (1961).
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E;= tsogP, =6&(10' erg/g=43&(10 'o erg/ion
=25 CGl i

This value seems very large for a trivalent iron ion."
The fact that n=s/4 suggests that it should be

possible to Qip the ferromagnetic component in the x
direction with relative ease, at least with a suitable
heat treatment. However, all attempts in this direction
gave negative results.

The measured value of X was found to be above
the upper limit set by the model, and the agreement of
the measured constants C», and C„,with these calcu-
lated according to the single-ion anisotropy model is
not any better than in the antisymmetric exchange
model.

One can therefore conclude that both in YFe03 and
LaFe03 the predominant mechanism responsible for
weak ferromagnetism is the antisymmetric exchange
interaction. The results of LuFe03 are so similar to
these of LaFe03 that the same conclusions can be
drawn for both.

Additional evidence as to the predominant mecha-
nism can be obtained by magnetic resonance experi-
ments, however the interpretation of these is not as
straightforward as the torque measurements, especially
in view of the fact that the zero field resonance lies in
the submillimeter region, and one has to apply external
Gelds of the order of24 150koe in order to reduce the
resonance frequency to practical values.
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APPENDIX: CALCULATION OF THE COEFFICIENTS

The various interactions assumed for the two models
studied, and the approximations used, are discussed in
Sec. 5. Here only the mathematical derivation of the
coefficients will be given.

A. Single Ion Magnetocrystalline
Anisotroyy Model

l. Fieldie the F Plane

In this case, at equilibrium, the two magnetization
vectors lie in the F plane. The various directions and

"For Mn~, which has the same electronic configuration,
Pearson (see reference 22) gets an anisotropy of the order of 10 "
erg, while even for Ni~, for which one would ex ect a higher
anisotropy, Moriya (Phys. Rev. 117, 635 (1960) estimates in
¹iF2a value of only 2.5)&10 '6 erg.

~4The author is indebted to S. Foner for carrying out pre-
liminary resonance experiments on YFe03.

X

6-O~ ' g

Fro. 7. Schematic diagram of the equilibrium state for fields
. applied in the F plane. The anisotropy easy directions are in the

F plane.

h=8/& &o=2&/op~ op= I &t I
=

I &sI ~

g=H, /H„H, =) o p. (23)

The angle of canting, po, at k=0 is found by sub-
stituting h=P=O in (22) yielding

tan27p ——sin2n/(2g+ cos2n).

As the exchange Geld in these materials is of the order
of 10'—10~ oe, as shown by the high Neel temperature,
one can safely assume g&&1 and therefore

go = sin2n/4g =H, sin2ot/4P, . (24)

In the three crystals measured it was found that yo is
of the order of 10 ' so that (24) is fully justified. In
the following the symbol = will mean that (24) was
used.

u. Field ie the g direction. In this case 8=0, and one
can eliminate P from (21) and (22) getting

h s= cos'2(n —y) I 2g sin2y —sin2(rr —y) j/
I sin2n —sin2 (n —y) g. (25)

"The equilibrium state described in Eqs. (21) and (22) and
schematically shown in Fig. 7 may stop being stable at high
fields. The field at which this actually occurs depends on the
angle a, but is in general of the order of magnitude of (Z,ff, )&;
however, for all values of IIused experimentally in the evaluation
of the coeKcients this equilibrium is the only stable one.

angles used in the following, are shown in Fig. 7.
Expressing the energy as a function of P, the angle
between (ot—es), and the x axis, y the angle betweeri
ot and (o~—os), and 8, the angle between H and the
x axis, and minimizing it with respect to the two vari-
ables P, p, one gets the equilibrium equations":

2h sing cos(8+P) —sin2P cos2(n —y) =0, (21)

2h cosy sin(8+P)+cos2P sin2(n —y)
—2g sin2y =0, (22)

where
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The total magnetization component o' in the x direction
1S

a =2a.p siny sinP,

and substituting sinP from (21) with 8=0, one gets

a =2aph, sin'y/cos2(a —y). (26)

The magnetization is now expanded in a series in h
at h =0.

a,= a.,(0)+a,'h, +-,'a,"h,'+
where the primes denote, here and in all the subsequent
equations, derivatives with respect to the component
of the reduced field h considered, at h;=0.

From (26) one finds

FIG. 8. Schematic
diagram of the equi-
librium state for
6elds applied in the
y direction. The ani-
sotropy easy direc-
tions are in the F
plane.

D, H, y

Ki

Zo~ o~
xg—

o'pH sin'20!

dH, H, SII,'cos2(n —yp)

Similarly

a.,'= 2ap sin'yp/cos2(g —yp),

and from (7), (27), and (24)

(27)

(28)

case is schematically shown in I'ig. 8, where b is the
angle between (a 1+op) and the z axis.

The reduced energy e is now

e=E/2K= —
g cos2y —2h„siny sinb

—(cosy cosn+siny sinu cosh)'. (34)

a,=2a p siny cosP
=2a'p siny(1 —(h, siny/cos2(g —y))'7&, (29)

with
a' (0) =2a'p sinyp=apH s1112g/2H,

and using (7), (25), (29), and (24) one finds

Minimizing e with respect to 8 and y, one gets the
equilibrium equations,

g sin2y —h cosy sin5
—siny cosy(cos'8 sin'n —cos'n)

—sinn cosn cos5 cos2y= 0, (35)

op sin2o!
C „= cos(2a—yp)—4' cos'2(n —y)

H~ sin 2o',

16H,

h cosh —sinn sinb

X(cosy cosn+siny sina cos5) =0. (36)

The magnetization in the s direction is given by

b. Field in the z direction. Here 8=m/2, P=O. Sub-
stituting these values in (22), one gets

o'z= 2op slny cos5.

Using the fact that at h„=0
(37)

h, =(2g sin2y —sin2(g —y)]/2 cosy.

The magnetization in the s direction is

(30)

one finds from (37)

5=0, y'=0, (38)

and with (30)
oz 2op sin

a,"/2ap= (cosyp)y" —(sinyp)b". (39)

a, '=2ap cos'yp/$2g cos2yp+cos2(n —yp) g.

Using (7) and (24) one gets

X,=a',/H. =op/H, .

From (30) and (31) one finds

a,"=—3ap sin2yp cosyp/

$2g cos2yp+cos2(a —yp)g, (33)

and with (7) and (24)

C„,=cr,"/6 H'= —ap sin2n/SHP.

Z. Field in the y Direction

The last coeKcients that remain to be calculated are
X„and C», . These will be calculated by applying the
field in the y direction. The equilibrium state for this

Taking the derivative of (36) with respect to h and
using (38), one finds

5'= [sinn cos(n yp)g ',— (40)

and taking the second derivative of (35), using (40),
one gets

y"= sinn cosn/sin'a cos'(n —yp)

&&$2g cos2yp+cos2(n —yp) j. (41)

Substituting (40) and (41) in (39) and using (24), one
gets

as —a'p sln2a/Sg',
and from (7)

C„„,=a,"/2H, '= apH, sin2n/16H. ,'. —
In order to And X„one writes

o'&= 2o'p siny sinb.



D. TREVES

Using (28) and (40) in (43), one finds

o„'=2o.p sinypLsinu cos(0,—7p)$ ',

and from (7) and (24)

(44)

Z. APPlied Field Parallel lo y Axis

The angles defining the equilibrium state in this case
are shown in Fig. 8. Using the same notation as in the
preceding paragraphs, one Gnds:

X„=op/H, .

B. Antisymmetric Exchange Mode1

1. Field Parallel to the x Axis

Using the same notation as in the previous para-
graph, the free energy is

e=E/2Kp —
g
——cos2y dsi—n2y —2h sing sinP

—ipcos2P cos2y, (45)
where

g=H, /H p, H p=2Kp/e p, h=H/H p,

d =He/H p, He —Da p,
— (46)

and K& is the anisotropy constant. (The easy direction
is parallel to the x axis.) Minimizing e with respect to
P and p one gets the two equilibrium equations. Here
also the equilibrium is stable for all practical values of
applied Geld. From one equation one finds

sinP =h sing/cos2y, (47)

where

One also Gnds
tan p= —d/g.

tan2yp ——d/(g+-', ). (49)

In this model too, one can safely assume p&(1 so that,
with the assumption g))1

and by eliminating P from the other one gets

h '=cos'(2y)$1+2(d'+g')'*sin(2y+p)(sin2y) 'j, (48)

cos8= h„ f(p);
f(y) = $d sin2yp+ (2g+1) cos'ypj '. (54)

Substituting (54) in

0„=20p Cosg,

one gets, using (50) and (7),

X„=o „'/H p =op/II, . .

In order to find C», we write, using (53) and (54),

a, =2op sin8 cosy=2pp sinypL1 —h„'f'(yp) j~, (55)

Ee= op—He cosh sin2y; E,= H,—o p cos2y;

EI,= —2Eq cos'y,

and in terms of the magnetization coordinates (8,y),
(neglecting constant terms) one gets the following
expressions:

E~= —H~0 p sin'8 sin2q,

E,=—2H, o-p sin'8 sin'y,

E~= —2E~ sin'8 sin'y,

E~= —280 p cos8.

The reduced free energy is therefore

e=E/2Kp= —2h cos8 —d sin'8 sin2y
—(2g+ 1) sin'8 sin'y. (52)

From the equilibrium equations obtained by mini-
mizing e with respect to q, and 0 one finds

sing =const= cosyp,

yp=d/2g=H p/2H' (50) which in turn yields

The constants o.,(0) and C„, are found by writing
fusing (47)j
o,= 2o p sing cosP= 2a p sing

)(L1—(h, sing/cos2y)'$&. (51)
With (50) one gets

o.,"= —2o-p sinyp f'(yp).

Using (7) and (50) one gets from (56)

C„„,=o,"/2H pP = apHe/8H, '. —

3. Field in the z Direction

(56)

o..(0)= 20p sinyp=o. pHe/H. ,

C,= ,'o,"/H pP=(r pHeg1 —HP/4H, -H pj/2H, 'H p. e= —d sin2y —2h sing —(2g+1) cos'y.

Minimizing e with respect to p yields

h= L(g+-,') sin2y —d cos2yg/cosy.

The coe%cients X, and C„,are found from 0-,

Using (47) one gets

p, =2o p sing sinP =2o ph, sinPy/cos2y, (58)

and with (7) and (50)

In this case 8= pr/2 and EII= —2Hopcosy, and'
and from (51), (48), (50), and (7) C„, is found to be using the relation siny=cosy one gets for the free

energy

X,=o,'/Hp=o pHd'/2HQHp. 0'~= 20p cosp= 20p sing.
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Taking the derivatives of (59) using (5S) with (7) and
(50) one gets

X,=o,'/Hs=o p/H„

C„,=o,"/6H ps = opH
—e/SH, s.

It can be easily verified that for both models, all the
third-order coefficients apart from these calculated here,

are actually zero, as required by the symmetry of the
crystal.

With the same technique one can also calculate the
coefficients of the higher-power terms in the energy
expansion. However, there is no point in doing this
inasmuch as the experimental technique is not refined
enough to measure these constants.
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Paramagnetic Resonance of Ni'+ and Ni'+ in TiO, t'

HENDRIK J. GERRITSEN AND EDWARD S. SABISKY
ECA Laboratories, Princeton, Env Jersey
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Electron spin resonance was observed in nickel-doped rutile. The majority of the nickel is in the divalent
state, and probably occupies an interstitial position. The parameters describing the Nil+ spectra are: 5=1;
g[z]=2.20; g[y]=g[z]=2.10; D= —8.3 cm '; and

~
E~ =0.137 cm ' at 4.2'K. Some of the nickel, also

probably occupying an interstitial position, is in the trivalent state, as was veri6ed by oxidation-reduction
tests. The parameters are: S= se and g[z]=2.254; g[c]=2.085; g[z]=2.084. A third spectrum due to nickel
in an unknown valence state appears after the sample is illuminated. It represents nickel in a substitutional
site with S=-', and g[110]=2.272; g[c]=2.237; g[110]=2.050.

I. INTRODUCTION

HE paramagnetic resonance of rutile, Ti02, con-
taining 0.01%nickel grown at RCA Laboratories

by M. Kestigian and E. Aleshin, was investigated.
Three distinctly diRerent spectra were observed,

which will be discussed separately Afterwards data on
the interrelationship and explanation of these spectra
as also a comparison with copper- and cobalt-doped
rutile will be given.

II. EXPERIMENTAL METHODS

A crystal of TiOs containing 0.01% nickel was used
as its own dielectric cavity. ' The rutile dielectric reso-
nator has the advantage of possessing many resonances
with large Q's. The loaded Q's (Qr,) were around 15 000
at 77'K and about 50 000 at 4.2 K.

The quality factor of the material (Qsr) can be ob-
tained from measurements of the loaded cavity Q by
using the relationship:

LR LO M )

where Qr, tr and Qr, p are the measured cavity Q's on re-
spectively, oR paramagnetic resonance. The magnetic
Q is a quality factor representing the absorption losses
of the material and is defined by'.

hhv
Qsr =

Sn. (rts —ni)
~
ttsi

~

zF

t Partially supported by the U. S. Army Signal Corps.
*Now at Chalmers University of Technology, Gothenburg,

Sweden.
' (a) H. J. Gerritsen and H. R. Lewis, Qnontnm Electronics

(Columbia Press, New York, 1960), p. 385. (b) A. Okaya, Proc.
IRE 48, 1921 (1960).

z T. H. Maiman, Quantum Electronics (Columbia Press, New
York, 1960), p. 324.

where h~ is the paramagnetic linewidth expressed in
cycles per second; (res —rtr) is the population difference
between the two levels per cc; ~ttzt~ is the matrix
element for the transition and F is the filling factor
which is unity for this cavity.

In principle, the concentration, which is simply re-
lated to the population difference (Nz —rtt), can be ob-
tained from a measurement of the magnetic Q. The
difficulty arises in trying to calculate the term ttt»~.
~tt»~ depends on the orientation of the high-frequency
magnetic field and therefore is dependent on the mode
of the dielectric resonator which is unknown. Two ap-
proximate methods were used to obtain the concentra-
tion of the paramagnetic ions.

In one method, Qsr was measured for a large number
of cavity resonances. The average of these values was
then used in conjunction with the calculated space
average value of ~ttzr~. In the second method, it was
assumed that the smallest Qst value corresponded to
the largest value of )ttsi). This value of )ttsi) was com-
puted and substituted in the formula for Q jr. From this
the concentration was calculated. Both methods gave
values for the concentration which agreed with each
other within a factor of two.

In this manner it was found that the nickel-doped
rutile crystal contained about eighty parts per million
Ni'+, five parts per million Ni'+ and two parts per
million of a light-generated nickel center.

The microwave spectrometer that was used consisted
of a stabilized source and a superheterodyne detection
scheme with scope presentation.

The crystal was oriented with x-ray analysis by
G. W. Neighbor of RCA Laboratories. The crystal-
lographic axes were independently checked by observing


