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The in6uence of independent processes of relaxation of paramagnetic ions on nuclear magnetic relaxation
in the presence of these ions is discussed theoretically, using the Kubo and Tomita method. The nuclei are
assumed to relax as a result of their contact with the ions through the usual dipole-dipole mechanism and

this interaction is, in turn, considered to be of negligible inhuence on the ionic relaxation. Following a
suggestion by Abragam, the ionic interactions are described as a coupling of the ionic spins to an effective local

held varying randomly in time; this coupling is finally expressed in terms of experimentally more accessible
parameters such as the ionic correlation and relaxation times. All dissipative interactions are approximated

by autocorrelation functions with simple exponentially decaying time dependence, thereby limiting the

applicability of this calculation to liquids and to liquid-like solids. The second-order terms in the perturbation
expansion of the relaxation tensor yield contributions to the Bloch relaxation times of the system of nuclear

spins that agree with previous calculations by Solomon. The fourth-order terms describing ionic relaxation

yield a contribution to the nuclear relaxation times with a narrowing influence, except in the limit of very

strong fields when a broadening is produced.

I. INTRODUCTION be limited to liquids and to solids where molecular

groups are free to undergo a considerable amount of

internal motion, ' thus producing a relaxation mechanism

similar to the one encountered in viscous liquids. This
means that the autocorrelation functions of the nuclear

or ionic local field components can be approximated

by exponential functions exp( —~t~/r), with r a cor-

relation time. '0 The method is applicable to the

description of nuclear relaxation when the system of

nuclear spins is in the liquid state with the ions in the

solid state or vice versa, as long as the geometry is

such that the nuclear interactions with the ions still

provide the dominating mechanism of nuclear relaxation.
The spin of the nuclei as well as the effective spin of

the ions will be assumed to equal ~; our discussion,

however, can easily be extended to the case of spins

with arbitrary magnitude.
Section II summarizes the results of K.T. that will

be applicable to this paper together with the analytical
formulation of the present problem.

The discussion will be limited to cases where the
contribution of the random motion of the electron

spin to the nuclear relaxation is only a small correction
to the contribution of the random relative motion.

This permits an expansion, of which the first correction
term will be calculated.

In Secs. III and IV the procedure for computing the
various terms in the perturbation expansion is outlined

and explicit expressions for the relaxation times are
derived. The second-order expressions will reproduce
Solomon's results' and illustrate, in simple terms, the

principles involved in carrying out the considerably
more involved calculations of the fourth-order terms.
This is followed in Sec. V by a discussion of the various

limiting cases of interest, and criteria are established
for the applicability of the present method.

'HE relaxation of nuclear spins caused by their
interaction with paramagnetic ions has been

treated by several authors. '—' Two distinct mechanisms
are obtained, one for which the interaction is randomly
modulated due to additive motion of the ions and the
nucleus, the other where it is due to an independent
means of relaxation of the electron spin. In discussing
the relaxation of protons in magnetic ion solutions,
Bloembergen and Morgan' considered the combined
i&uence of these two types of random modulation;
this was done by inserting in the conventional formulas
for the nuclear relaxation time, a correlation time
obtained from the sum of the reciprocals of the cor-
relation times of relative motion and of electron spin
motion. A similar description was used by Torrey,
Seevers, and Korringa' in a discussion of paramagnetic
wall eGects on the nuclear spins in liquids. The present
study was undertaken to check the validity of this
procedure, and to find its generalization when, e.g. ,
the electronic or nuclear motion cannot be characterized
by a single correlation time.

To this end, we have used the method of Kubo and
Tomita' (from now on referred to as K.T.), which is
based on a perturbation expansion for the induced
nuclear magnetization in terms of the interaction
Hamiltonian of the spin system. Our discussion will
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The induced. magnetic moment M' d(t) of the system
due to Hi(t) will then be given by

(2)

where the tensor +(t) will be called the relaxation
tensor. Following K.T. we shall assume N(t) to be
independent of the magnitude of Hi, provided that Hi
is small.

Once the components of e(t) are known, one can
easily calculate the Blochu relaxation times. If Hi is
assumed to be along the x direction, the x component
of induced magnetization becomes

and if the initial time dependence of M, ' d(t) can be
approximated by a single exponential decay, one has

ind(t) Xpe t/T& cos(ppt—)Ifi
=xp(1 —t/Ts+ ) cos(ipt)Hi, (4)

where Xo is the static susceptibility and T2 is the
transverse relaxation time. The cosine factor is included
in order to account for the precessional motion with

frequency co of the transverse magnetization in the
longitudinal Geld H, . C„(t) can now be expanded in

powers of the time'.

C,.(t) = cos(~et) (b,'t+ ),

and consequently
1/T, = —b, '/xp. (6)

The longitudinal relaxation time TI can similarly be
obtained by writing down the expressions analogous
to (4) and (5) for M, '"d(t) and C„(t), respectively,
and equating coeNcients of like powers of time. This
time, however, the cosidt factor is missing since M,'"d(t)
does not precess around a transverse axis. The result is

1/Ti ———b, '/xp, (7)

where b, ' is the coefficient of the erst power of time in
the expansion for C„(t).

No limits have so far been imposed on the magnitude
of the time interval t if the definitions Eqs. (6) and (7)
for the relaxation times are to remain meaningful.
Such limitations will be established, as the need for
them arises, in the subsequent development of this
paper.

» F. Boch, Phys. Rev. 70., 460 (1946).

II. ANALYTICAL FORMULATION OF THE PROBLEM

A. Relaxation Tensor

Consider a system of spins in the presence of a strong
magnetic 6eld H, in the z direction and under the
action of an arbitrarily small disturbance,

X~= tpggI—„,
X.'= —AQ Qs S,s,

(10)

with I armor frequencies

GO +NBz and Q=y,H, .
The quantities pN and p, are the nuclear and ionic
gyromagnetic ratios, and I, and S, are the z components
of their respective spin angular momentum operators
I and S.

X' is the Hamiltonian of the environment in which
the ionic spins Gnd themselves.

Since the ionic magnetic moment is three orders of
magnitude larger than the nuclear magnetic moment,
mutual interactions among the nuclei may be dis-
regarded. The interaction between nuclei and para-
magnetic ions will be taken to be of the dipole-dipole
type 3C'&&, and will be assumed to have negligible
inQuence on the ionic relaxation. Following Abragam, '
we take the ionic perturbation to be an interaction
between the ionic magnetic moments and an effective
local field operator V. This local Geld may be due to
mutual magnetic interactions between the ions, spin
orbit coupling, crystalline Geld (in a solid), or other
possible sources for magnetic interactions, and its
components will be de6ned in terms of statistical
parameters such as mean square values and correlation
times.

The perturbation Hamiltonian X' will be written as

X X g+X dd~ (12)

where X', is assumed to be linear in Ss, LV&,S&)=0,
and is given by

X',=Ps Vs Ss. (13)
3C'~~ is the usual dipole-dipole interaction,

3- gd=IJNIJe ~~a ~y'I

&(LI; Ss—3(I; r;s)(Ss r;„)r,s—'j. (14)

The constants p~ and p, , are the nuclear and ionic

B. The Hamiltoman

The Hamiltonian for a system of two diBerent
species of spins can be written in the form

X=Xp+X'.

Ko is the total energy of the individual particles apart
from magnetic interactions, but including their Zeeman
energies, and 3C' is the sum of their magnetic inter-
actions and will be treated as a small perturbation
on Xg.

The unperturbed Hamiltonian 3CO will be written as

Xp=X "+X '+X ~+X '+X' (9)

In this expression X ~ and X ' are the motional energies
of the nuclei and ions respectively; K,~ and K,' are
their respective Zeeman energies (in the static field H, )
and are given by
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magnetic moments and are given by

p,~=pp~k RIld p.e=+ek. (15)

%e choose the representation where I, and 5, are
diagonal. Moreover, we take the interaction representa-
tion, for which the time-dependence of X is given by

c"~(t)=Z- c««'"'(t), (25)

where X stands for any one of the three Cartesian
coordinates and where

C««("&(t)=P(i') "Q.Pe exp(ior. t)

X.'(t) =exp(itxo/h)X' exp( —itxo/i't ). (16) X dfge - ~ ~ «.Z Z«" Z.
Then, using Eqs. (9) and (12)—(16) one can express
X'(t) in the form

where

x'(t) =Q. x"(t)e'""

=P Pr«x'r. «(t) (17)

Xi. g2(t) I +S ++ T2(t)e+i(&u+(rrr

Xr. +I(t) I+S +. +1(t)evict

x' «+"(t)= (I*S«+q, « '(t)+S«+V «+') e+'"'

Xr, +00(t) 1I+S T+„0(t)e,Ti(~Q)i

X';«0(t) =I„S,«q;«'(t)+S.«V«'(t).

(18)

y y~=-AN@ t"g, 3 sin% I,8+2 ~ ~

p&Ie+ = —~pNp~»Ie S1118&p COSH&'Ie8

q r«0=ti«iti. r;«(1 3cos%r«—),

(20)

with e;«and P;«denoting the usual spherical polar
angle and azimuth, respectively. The time dependence
of q;~& can be written as

qr, «&(t) =exp| it(x "+X ')/&7

X qr;«& expL —it (x„N+x„')/t't j. (21)

The terms VI, ~ denote the diR'erent components of the
vector operator V«.'

V«+'=g(V«*+'V«") ( )

Their time dependence is given by

V«'(t) =expL(itx, '+X„'+X')/t't j
X V««exp/ —it(X, '+X '+X')/tt j, (23)

and the approximate relation,

fqri«(t), V«'(t))=0, (24)

will be assumed valid.

C. Perturbation Expansion of e (t)
Using quantum statistical methods, K.T. have shown

that the components of Cr(t) can be expressed as a
series in powers of X'

In this expression the symbols I;+ and S&+ denote the
usual raising and lowering operators. '

I+=I,&iI„and S+=S,&iS„.(19)

The quantities y+& denote the usual spherical harmonics
that arise as factors to the diferent terms in the
standard expression for dipole-dipole interactions;
they are given by

X exp(ti (or, tg+orrrtm+ +or.t„)j
X{(LM«(or.);X'&(tr), X"(t«) X'"(t„)j

XM.( ))}, (26)

where P stands for 1/kT with k equal to Boltzmann's
constant and T the absolute temperature. The factor
exp(ior t) describes the explicit time dependence of the
magnetic moment operators, which in our representa-
tion can be expressed as

M, (t)=g M, (or )e'"~'=M+e '"'+M e'"'

M+ =kt ~ Z Irr~.
(27)

The exponential factor under the integral sign
follows from Eqs. (17) and (18). The curly brackets
signify the real part of the enclosed expression and the
square bracket denotes a multiple commutator,

[a;a," P j=(L "La,a]," ],Xj. (28)

The remaining bracket ( ) indicates the p'rocess of
averaging over the ensemble; explicitly, given that P
is any operator,

(P)=Tr(pP) (29)

is the average value of P with respect to the density
operator

p= exp( PRO)/Tr—exp( —Pxo). (30)

Expression (26) is valid provided that the energy
diGerence for any transition nz ~ n of statistical
interest satis6es the inequality

is„-Z„iP«1. (31)

It can be shown that as long as the high-frequency
Fourier components of the local ield X"(t) are com-
paratively small, the individual terms under the
summation sign in Eq. (26) are similarly small unless

or~+ore+or~+ ' ' 'or| =0. (32)

Inview of the fact that the magnitude of the static
6eld H, is assumed much larger than that of the local
field, Eq. (32) will be a good approximation throughout
the rest of this paper.

K.T. have shown that the multiple commutators
under the summation sign in Eq. (26) individually
satisfy the relation

(LM„(or );X'"(tr) X""(t„)$M„(ore))
= (—1)" «(LM„(or );X'"(tr) ~ X"«(t«)j

XLM„(ortr); X""(t ) .X"«+'(t«r) j), (33)



RELAXATION OF PA RA IVI AGN ET I C ION S i827

III. SECOND-ORDER CALCULATION

A. Computation of +(t) to Second Order

With the help of Kqs. (26), (27), and (32)—(34) we
may presently begin the computation of 411(t). The
calculation of 4 „&"(t) is straightforward.

4'„(ol(t)=P P (M, ((o )M (—(o ))e'" '=Xocos(ot, (35)

where
Xo '2pcUt22(2I (I+——1)-, (36)

with %=number of nuclei, is the expression for the
static susceptibility of the system of nuclear spins.
4„(ol(t) contains no terms that would describe a
relaxation.

The 6rst-order term 4„('l (t) is identically zero since
the trace of an odd power of any spin operator is zero;
the same holds for the other odd orders of the xx and yy
components of 4q1, (t).

The second-order expressions 4„(2&(t) can easily be
obtained; using Kqs. (26), (27), (32), and (33), one
can write

4.,(»(t)
t

=Pcs 2+ Qt&P«go exp(ioo t) dt1

x exp[i((o«t1+(osts)]

X([~.( -), X"(t ))[~.( ), X"(t ))) (37)

With the use of Eq. (21) and the fact that X ~, X ',
3CN 3C,', and 3C' all commute with each other and
after rearranging the dummy indices in accordance

'2 The difference between this condition and the one stated in
Eq. (3t) is that while in the'latter only statistically significant
transitions are considered, the former is sensitive to virtual
processes as well.

provided that the energies Aa&, Ace« ~ ~ are small&2 in
comparison with 1/P. This means that in a 6eld H, of
10000 gauss (where the ionic magnetic energy is
approximately AQ~10 'o cgs =k) the temperature should
be T»1' Kelvin in order for Eq. (33) to be approxi-
mately true. In weak 6elds, however, Eq. (33) remains
valid down to quite low temperatures. If the condition
of validity for Eq. (33) is satis6ed, and this will be
assumed from now on, the Zeeman energy term
X/+X, ' may be omitted altogether from the density
operator Kq. (30) when computing averages over the
spin operators. Hence,

p=exp[ —P(X ~+X„'+X'))/
Tr exp[—P(X +X '+X')) (34)

In this approximation, the ensemble average of any
spin operator is just the trace of that operator divided
by the trace of unity in spin space.

with Kq. (32), one can rewrite Eq. (37) in the form

(2) (t)

=pk 2+, g«exp(i(o, t) dt1

Xexp[i((o«t&+oo «ts)]([M, ((o ), X'«(t1—ts)]

X[~.(—.), X'- (0)]) . (»)

a„=1/r„2(o«—
B. Relaxation Times

(42)

We may now evaluate 4, "'(t) for a length of time
which is long compared with the correlation time v~.
We also have to impose an upper limit on the time
interval t, otherwise Eq. (6) may no longer be meaning-
ful for the initial behavior of the relaxation process;
accordingly

~~&&t&&T2 and z~&&t&&T~. (43)

Using Eqs. (5), (6), (41), and the fact that because
of Eq. (43) the exponentials exp( —a„t) approach zero
one obtains, in agreement with Solomon,

)1 ~(2)

(r 1 4a

s foro 2f1r1
foro+ +

1+res((o—Q)' 1+r12(o2

4flrl 4f2r2
+ (44)

1+r12Q2 1+r22((d+Q)2

This integral contains factors of the form

(g;s Oo;s«(t1 —t2) O2;s«(0) ).
Assuming exponential time dependence, one may write
(as is usually done)

(P;2 q;s«(t1 t,) O2;s
—"(0))

=&"(2 2 o s«(0) &o' «(0)) exp(l t1—tsl/r«), (39)

where 5~„ is the usual Kronecker 5 symbol and where
7.~ is the correlation time of the mode p&. Actually v~
is the effective correlation time for the nuclear and
ionic motion, defined by

1/r„= 1/r«(nuclear)+1/r«(ionic). (40)

Since the nuclear motion is usually faster than is the
ionic motion, we shall refer to r, as the nuclear cor-
relation time; it is clear, however, that Eq. (40) should
be consulted in any specific application.

With the explicit time dependence of the integrand
in Eq. (38) thus determined, it can be integrated to
give

4,.(2& (t) =2/is —' cos((ot)

XP„{([M+,X"(0)]PS-,X'-«(0)])
X[a,t+ exp( —a,t) —1)a«2), (41)

where
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where
fv=Z&(v»i'(0) w~'(0)) (45)

TABLE I. Expectation values C~, b of spin variables.

and where the constant terms in Eq. (41), which
are the second-order contribution to the static
susceptibility, have been omitted.

The calculation of (Ti) "&, which is obtained from

C„(»), strictly follows the procedure described above.
One 6nds, again in agreement with Solomon,

( 1 &'& 1 srofo rif i

kT»»' 1+r '(cu I»)'—1+x 'oP

+ (46)
1+T2 ((0+0)

IV. FOURTH-ORDER CALCULATION

A. Outline of the Calculation
I

The expressions for the relaxation times, Eqs. (44)
and (46), contain no details of the ionic relaxation;
mathematically, this is because the ionic interaction,
Eq. (13), commutes with the nuclear magnetic moment
operators and hence does not contribute to 4&"(»).
The ionic interaction may, however, be larger than the
ionic-nuclear interaction, Eq. (14), in the ratio of
»i,/»i~=10'; its influence on the nuclear relaxation
times may be calculated by evaluating the contributions
of the ionic perturbation, Eq. (13), to +&4&(»).

Thus, we calculate +&'&(») for the case where the
fourth-order contributions of the nuclear ionic inter-
action terms are neglected in comparison with terms
involving the ionic local field V&,. Using Eqs. (26) and
(33) we can write

C..&'&(»)=P-'2-Zp "Z. exp(~ -»)

0
11—11

—00

@..'4&(») =PA 4A cos(a&»)

Xg, , i(C, iF, ia, '(u, +bg) ')», (5-0)

where the fourth-order contribution of the static
susceptibility has been omitted, and where the C~ q

are averages over the spin variables and their values
needed in this calculation are given in Table I. Also,

F, ,= (p,„„,, (o) ,„- (o)v, (o)v; (o)), (51)

a,= 1/r, i(o, an—d b i 1/0 i
——i(d»,

~ =(1/9). 1(1+1)5'(~+1)

(52)

(53)

The fourth-order contribution to the transverse
relaxation time (T2) "& can then be written as

(1/T2)"'

P»o 'Z—v. i(cv. ~Fr. ~&~ '(~.+bi) ') (54)

In analogy to Eq. (39) it will be assumed that the time
dependence of the fluctuating field components V" can
reasonably be approximated by

(v (»)v- (0))=b,„(v (o)v- (o)) exp( —IIl/, ), (49)

where ~~ is the correlation time of the component X of
this effective local field. 0-~ will be referred to as the
(ionic) spin correlation time.

Substituting Eqs. (39) and (49) into Eq. (48),
performing the integration, a,nd using condition (43),
one obtains finally

To obtain the fourth-order contribution to the longi-
tudinal relaxation time, (1/Ti)&4&, one calculates the

Xexp(i (o),»&+~i»2+~&»3+~, »4)j relevant parts of C „&'&(»), with the only difference that
terms of the form M, (cu ) exp(ice») and M, (arp) in

X (LM.((o );x'&(»i), x"(»g)j Eq. (47) are to be replaced by M, . The result is

xlM. ( p);x'"(» ), x'"(» )j) . (47)

P»o ' Zv ~(—&v ~F~ ~&v '(~v+b~) '), (55)
In view of Eq. (24) this can be expressed as

4„&4&(») = 2Pf'» 4 cos(ce»)

~ f2

dI j dt2 dt3
0 0 0

XP~ PqexpLi(~„»i+coq»2 —co~»4—aoq»3) j
X{(LM+;x'~(», —»,), x"(»,—»,)j

XLM-; x'-~(0), x'-'(0) j)). (4S)

where the E~, q are averages over the spin variables
and are given in Table II.

TABLz II. Expectation values IC~, g of spin variables.

Xv

0
11—11
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B. Evaluation of the Relaxation Times

To evaluate the sums in Eqs. (54) and (55), one may
start with the evaluation of the real part of the expres-
sion u& '(a„+b&) '. Using Eq. (52), one can easily
show that

Sz'- Izl I
2 2

Sz =y IzI

a,'(a,+bl)

where

1—r7 Gdl 27~T—~ 1(d&(M&+6)l)

(1+rv'~v')'Ll+ v, l'(~~+~1)'j

I

W2 WI WP

1/7, 1=1/r, +1/cry, (57)

Wo=-'rofo& '(1+ro'Q') '

W, =-'rlflk —'(1+Tl'M ) '

Wl = 2rlfp, —2(1+rpQ1)—'

Wz ——2rzf&A (1+el Q') '

(61)

In terms of this notation, the second-order expressions
for the relaxation times (1/T2) "& and (1/Tl) "& become

(1/T2) &'& =2W0(1+so'Q')

+ g Wo+ Wl+2W1'+ 2W1, (62)

(1/Tl) (n =WP+ 2W1+ Wl.

and 7~, q will be called the effective correlation time for
the nuclear and the ionic interactions. Furthermore,
whenever terms of the form ~+Q appear, use can be
made of the approximation

(58)

The quantities F~ 1 from Eq. (51) can be rewritten in
the form

F,, =.~(Z. ~,"(0)...— (0)V"(0)V.-'(0))
=&f.(V~'(0)V~ '(o)) (59)

In order to facilitate interpretation, averages over
V&~(0) may be expressed in terms of the longitudinal
and transverse ionic relaxation times T~' and T2', or
in terms of the Larmor frequency associated with
V'(0). The former can be accomplished by calculating
Tl' and T2' under the perturbation p 1, Vl. (t) .Sl,
according to the method outlined in Secs. II and III.
One obtains

(V"'(o)V~+'(0) )
= -'fl'1 1'——-'fl'(1+ o,'Q') (0,T, ')—'

(Vl,'(0) Vl'(0) )
=A'1 0' ——fl'L(0oT1') '—(200T1') ')

subject to the condition analogous to Eq. (43), namely,
TI'))0.), Tg')&0 g.

Next, the quantities f~ will be expressed in terms of
the nuclear and. ionic spin Rip transition probabilities
calculated by Solomon' and defined in Fig. 1.

Using Eq. (58) one may write

WI .

z=-p Iz $l

Sg8 y ITS
I

FIG. 1. Schematic diagram showing the four energy levels and
transition probabilities of the s components of two spins S and I.

The corresponding expressions for the fourth-order
contributions to the relaxation times can be obtained
by successively substituting Eqs. (56)—(61) into (54)
and (55) and eliminating the quantities f~ and
(gl, Vl, '(0)V1, '(0)) After . some algebra, one obtains
the result which, combined with (62), can be written as

1/Tl = (1/Tg) &'&+ (1/T2) &'~ = 2WO(1+ ro'Q')

X (1—wo')+2Wo(1 —wo)+Wl(1 —w, )
+2W1'(1—wl')+-', W2(1 —wl), (63)

and

wl X1LV1 0+Zl j
w& ——XRLV&,0+z2(1+;& 11~ )

—lj,
X~= r„(1+rPQ') ',

V„,l=f~, ll P/1 r~(r~ +2f ~,
—l)Q')(1+'r~ PQ') ',

Z„=—',r, , 1vl'(1 —rv'Q').

(65)

V. DISCUSSION OF RESULTS

A. Limits of Applicability

From Eq. (57), it is clear that r~ 1~0 as al~0,
and all the fourth-order terms w in Eq. (65) become
negligible in comparison with unity if the correlation

1/T, = (1/Tl) &'&+ (1/Tl) &'& =Wo(1 —w,)
+2W1(1—wl)+W, (1—w,). (64)

The quantities w are the fourth-order contribution to
the relaxation times and are de6ned as

wo' ——112rorp, l(1+ra, PQ') ',

wo ——XOLVo, p+Zo(1+ro, l'o)') '$,
wl= rlrl, lP1 $1 rl (rl+2rl, l)~ j

X (1+r 'or') '(1+1. , 'Q') ',
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times 0.
~ become su%.ciently small. This is to be

expected since as the correlation time of an interaction
becomes arbitrarily small, the influence of this inter-
action vanishes in the limit, as can be seen from
Eq. (49). In the rigid case when op~ ~, r», o will
approach r~ and the corrections to the nuclear relaxa-
tion times become the ones given in Eq. (65) with
7-~, & replaced by r~.

From Eqs. (63) and (64) it is clear that the calcula-
tion breaks down if any of the quantities m satisfies
m» 1.H the applied field H, is weak, such that 0 ~'0'(&1,
r»'Q'&(1, one can use the expression for wp' in Kq. (65)
to get

(66)~y'&o7 o, j.&&1

as the necessary condition for the validity of our
calculation. More generally, in weak fields one must
have

(r,r, p)&v p&&, 1; (67)

i.e., the ionic local field must be so weak that the
Larmor period associated with it is smaller than the
geometric mean of the nuclear and e6'ective cor-
relation times; otherwise the expressions Eqs. (63)
and (64) become meaningless.

If the applied field H, is strong, such that r~, q'oP&&1,

it is easily seen that all terms in Eq. (65) except wp'

will become negative and contribute no dangerous
terms to the relaxation times. Considering Eq. (63),
we see that wp' carries an additional factor of (1+ro'Q')
so that it is the dominating factor of S'p in strong
fields. Therefore, a criterion of validity of this calcula-
tion in strong fields becomes

v lo/Q'«ro, 1/r o, (68)

or, using the condition olpQ'))1 in Eqs. (57) and (60),
one has

(69)

This last inequality is only meaningful as long as the
second equalities in Eq. (60) can be defined; specifically
if T,'&o 1, Eq. (68) has to be used.

In the more frequent case when 0-&'0'»1 and
~~'0'&&1 but v.~, q'oP&&1 one has, in addition to condition
(69) involving rp, an identical condition for rl as well.

For long ionic correlation times ~~&&rp and one has
rpl=ro and E,q. (68) becomes vip(&Q'; this condition

. simply states that H, must be much stronger than the
local field, in agreement with one of the basic assump-
tions underlying our perturbation expansion.

wp = (ro+)rl)/Tl (&1,

wo= —-', (ro+)rl)Q'(Tl'oP) '

Wl =—(r1+301)/Tl'&(1,

wl o (rl+)rl)rl, l Q /Tl )

wo o(ro+gl)Qo(o)oTle) —1

(7o)

indicating that details of the ionic relaxation may have
an appreciable broadening influence on nuclear relaxa-
tion in strong fields.

The more frequently encountered case where 7 ~'0'&&1
and 0.~'0'&&1 but f~, q'co'(&1 gives results analogous to
Kq. (70),

I
Rp (ro+o 1)/Tl',

—
o roo lro, lQ'/Tl',

(rl+& 1)/Tl',

o (rl+)rl) rl, l Q /Tl )

oroa l—ro, lQ /Tl'

(71)

When the applied field H, is weak, such that
r»'Q'«1»o ppQ', one can use Eqs. (60) and (65) to show

where

wo = roro, 1()11T1 ) ) wo=)lo,

wl rorl, l()rlTl ) ) wl )rl) 'K2 tX2)
(72)

n„=r,fr ,,o(aoTo') '-

+(r», 1)11 '—r», p)ro ')(2T1') 'j (73)

If the ionic field fluctuates vary rapidly compared with
the nuclear motion, one has o p((r» and Eq. (72)
reduces to

w p /r p=wl/rl = 1/Tl')

Wo/rp Wl /rl Wp/ro 1/Tp .

In the limiting case of completely random nuclear
motion one can evaluate the quantities f» in Eq. (45)
by simply averaging the spherical harmonics over a
spheres.

ofo f1=f1='o—&')—
where E' =A'y~y. /(r'; p).

Assuming further that 0.~=02=0, v'p= rj= 7.2= r, and
r», 1= r, one may use Eqs. (75), (61), and (72) to obtain

1/To= 1'orE'L10 —13rr(2o Tl') ' 7rr(20To') 'j, —
76

1/Tl = 1 p rE L10 3rr (o Tl') 7rr—(oTo')— '

with the property that T&=T2'if T&'= T2'. Hence, if
the system of nuclei is liquid and the ions are in the
solid state, T~/T2 since in this case T2 (&Ty'.

B. Relaxation in Strong and Weak Fields

In this section we will evaluate the relaxation times,
Eqs. (63) and (64), for the limiting case when r», opo)'&)1.

Using Eqs. (60) and (69) it can easily be shown that
the quantities w in Kq. (65) then reduce to

C. Comparison with the Phenomenological Theory

The phenomenological expressions' for the relaxa-
tion times Tl and To can be obtained from Eqs. (44)
and (46) if the following assumptions are introduced:
(1) Let the quantities f„be defined by Eq. (75),



RELAXATION OF PARAMAGNETI C ION S 1831

1—
~

+1+a'Q'
2T 1+r'Q' (1+a'Q'

1 E'r ( r ~ 7
3~ 1——~+——

T, 10 I TJ 1+re~

l1 r'Q'] —1
X 1-

~

+1+~~Q2
~

2T 1+r'Q'(1+a'Q' J

(79)

for this isotropic case.

(2) let ro r——i=rm=r, (3) let r'ai'«1 (this is usually
the case), (4) replace 1/r by

1/.=1/ .= 1/,+1/ ., (77)

where, using the notation of reference 6, v, is the
effective correlation time for nuclear ionic dipolar
interaction, v, is the correlation time for the relative
motion and r, is the ionic spin relaxation time.

Under these circumstances, Eqs. (44) and (46)
become

1/Tg= (1/20) r j'Cm f7+13/(1+r,'Q2) j,
1/Ti=~~' r,E't 3+7/(1+r 2Q') j. {7s)

Using conditions 1-3, together with T~'= T2'= T&&7.

and aa=a&=a((r, one readily finds that Eqs. (63) and
(64) simplify to

1 E'r ( r i 13
7I 1——I+

Tg 20 5 T & 1+r'Q'

It can easily be shown that expressions (79) reduce
to (78) for both limiting cases of weak and strong Gelds
alike, provided that in the latter case 1(&r2Q21))o'Q2
and that one lets v =7„and T=g, .

VI. SUMMARY

We use the K.T. method to study nuclear magnetic
relaxation in the presence of paramagnetic ions and
discuss the influence on the nuclear relaxation times
of independent processes of ionic relaxation. Explicit
expressions have been obtained for the nuclear relaxa-
tion times when the ionic interactions can be approxi-
mated by a random local field. Criteria of validity
have been established for these expressions and several
limiting cases have been discussed. Phenomenological
expressions that have recently been proposed for
isotropic interactions are veri6ed. In general, the ionic
interactions tend to slow down nuclear relaxation in
weak 6elds, producing a narrowing phenomenon. In the
limit of very strong Gelds, however, nuclear relaxation
is enhanced, with a corresponding broadening. In
intermediate situations one will have to consider the
specific cases of interest since the dependence of T~ and
T2 on the applied field strength and correlation times
is fairly involved.
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