EXCITON STRUCTURE AND

Series II

The experimentally observed states and their energies
are

State Energy
1§ 14 931+3 cm™
25—-2P4, 1503242 cm™
2 Py 15 022+3 cm™

The series limit may be estimated to be 15 050415 cm™
with an effective rydberg of Ry=120410 cm™.

ZEEMAN EFFECTS IN CdSe 1815

Series III

The 1S state was observed at 18 218410 cm™, with
an estimated series limit at 18 3404-20 cm™.

The difference in the series limits between the first
and second series corresponds to a crystal field splitting
of the valence band of 200415 cm™. The difference
between the limits for the first and third series corre-
sponds to a spin-orbit splitting of the valence band of
3490420 cm™.
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The effect of interband electron-electron scattering (electron-
hole scattering, light hole-heavy hole scattering, etc.) on the
electrical transport phenomena is studied with a variational
method obtained by a generalization of Kohler’s variation
principle to a multiband conductor. To this end we make the
following assumptions: (1) The electronic structure is given by
parabolic conduction and valence bands, separated from each other
by AE>kpT; the valence band may be twofold degenerate;
(2) The average occupation numbers of electronic eigenstates are
given by Fermi-Dirac statistics; (3) The dynamical interaction
between charge carriers is described by a shielded Coulomb
potential.

I. INTRODUCTION

N a previous paper! the effect of electron-electron
scattering on the electrical transport phenomena was
studied on the basis of the free-electron approximation
and under the assumption of a shielded Coulomb
potential describing the pair interaction between con-
duction electrons. The allowed electron eigenstates were
restricted to one band only. For such a simple model,
because of momentum conservation in a single (non-
umklapp) scattering process, the electrical conductivity
is not affected in its zero-order approximation. However,
in first and higher order, the electrical conductivity
changes. The reason for this change lies in the energy
dependence of the perturbation fi, which, as a conse-
quence of the electron-lattice interaction, adds to the
unperturbed Fermi-Dirac distribution fo. The perturba-
tion fi is modified because electron-electron scattering
randomizes energies. The effect on the electrical con-
ductivity of semiconductors is shown in Fig. 1, assuming
electron-ion scattering as the primary scattering source.

1J. Appel, Phys. Rev. 122, 1760 (1961), hereafter referred to
as A.

Assuming nondegenerate semiconductors, we consider acoustical
and optical phonon scattering and ion scattering, besides electron-
electron scattering. Quantitative results are obtained for the
electrical conductivity, the heat conductivity, and the Seebeck
coefficient, including the ambipolar effect. The results can easily be
applied to cases of physical interest; we discuss here hole-hole
scattering and mobility of p germanium, intercarrier scattering
and mobility of intrinsic germanium, transient conductivity
of charge carriers in germanium produced by short pulses of high-
energy electrons, intercarrier scattering and its influence on the
heat conductivity, and the Wiedemann-Franz ratio of intrinsic
semiconductors.

The effect of electron-electron scattering becomes
more important for the electrical conductivity when the
electrons are distributed over two or more partly filled
energy bands. Transition metals and intrinsic semi-
conductors are examples of a multiband structure. In
considering the electrical conduction of such substances,
it is convenient to distinguish between intraband and
interband electron-electron scattering processes. The
former have been discussed in A, while the latter may be
understood as scattering processes in which each of the
two participants belongs to a different band (the first to
a conduction band, the other to a valence band, etc.).
The transition probabilities are the same whether each
of the two electrons stays in its original band or whether
the two electrons exchange bands. Both direct and ex-
change transitions will be called interband scattering
processes. Physically, the difference between intraband
and interband scattering is trivial: In the first case the
momentum conservation in a single scattering event
implies the velocity conservation vi+ve=v,4vy/,
whereas in the second case usually vi+4vy£vy'4vy'. In
other words, interband scattering processes affect the
electrical conductivity primarily because of a current
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Fi6. 1. Effect of electron-electron scattering on the Brooks-
Herring formula; ...V is the first-order approximation of the
electrical conductivity for electron-ion and electron-electron
scattering, ¢ is the first-order approximation of the Brooks-

Herring conductivity formula; the parameter &... (Eq. 40 of A)
is proportional to electron wavelength over Debye length.

change in most scattering events and secondarily be-
cause energies are randomized. Special cases of physical
interest are electron-hole scattering and light hole—
heavy hole scattering in semiconductors.

The purpose of the present paper is to discuss the
combined influence on the electrical transport coeffi-
cients due to intraband and interband electron-electron
scattering which results from the dynamical interaction
of charge carriers via a shielded Coulomb potential. As a
basis for this discussion we consider a three-band model
with one-electron eigenstates given by the free-electron
approximation. As is usual, electrons in inverted bands
(valence bands) are replaced by positive holes. Thus, we
assume one conduction band and two valence bands as
shown in Fig. 2; m,, m;, and m; are the effective masses
of the electrons and of the heavy and light holes, respec-
tively. The energy gap AE is assumed to be large com-
pared to kT, so that transitions of electrons from the
conduction band to the valence band and vice versa, do
not occur as a consequence of single-phonon scattering
processes.2 However, interband transitions of holes be-
tween the light hole band and the heavy hole band,
induced by phonons, may be important.? These transi-
tions can be incorporated in our calculations provided
one knows the corresponding transition probabilities.
Here, for the sake of simplicity, the formal theory will
be restricted to intraband phonon scattering. However,
in applying the final results to a concrete case, such as
germanium, interband phonon scattering is taken into

2 However, if 2p0p<<KAE (6p=Debye temperature), or if one
considers two overlapping bands, the upper band being a conduc-
tion band and the lower band being a valence band (transition
metals), interband scattering of electrons induced by thermal
phonons has to be taken into account. Then it is convenient to
relate the energies of the electrons in the conduction band (s elec-
trons) and the valence band (d electrons) to the same zero energy;
see A. H. Wilson, Proc. Roy. Soc. (London) A167, 580 (1938).

3 H. Ehrenreich and A. W. Overhauser, Phys. Rev. 104, 331 and
649 (1956).
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account by retaining an appropriate mobility ratio for
the phonon-scattering of light and heavy holes.

The main mathematical problem consists in solving
simultaneously three coupled Boltzmann equations. To
this end, we shall apply a mathematical procedure which
is a generalization of Kohler’s variation principle to a
multiband conductor. Besides intraband and interband
electron-electron scattering, we shall consider intraband
scattering due to longitudinal acoustical phonons, longi-
tudinal optical phonons, and ionized impurities.

II. VARIATION PRINCIPLE FOR A
MULTIBAND CONDUCTOR

Let us consider the following system of three linear
integral equations for the perturbations ®,, ®;, ®; of the
distribution functions of electrons, heavy holes, and
light holes, respectively,

Ve,z afOe 9 /¢ aT

l:eF+T——(~—)+kBee :I

ksT e, ox\T ox
:Le(q)e)+Le-c(¢e)+Le-h(¢e+¢h)

+L8-l(q)e+q)l), (la)
z 0 i) aT
e 3 Oh[eF—FT—(&)-{-kBEh—:I
kBT 86}, ox T ox
=Lh(q)},)+Lh-h(¢’h)+Lh-s(th+®e)
+Lpa(@r+®:), (1b)

v,z 0foe 9 /¢t oT
[eF—i— T-<—>+k3el———J
kBT 36; T dx

=Ly(®0)+ L11(®)+ Li-o(®1+®.)+ Ly (@+P2). (1c)

The same notation is used as in A ; however, the suffixes
e, k, and ! refer to different species of charge carriers. For
electrons we write

¢eszZ‘(fe""f()e)/(afOe/aee)y (2)

where e,=E,/ksT and fo, is the Fermi-Dirac distribu-
tion for electrons (Fermi energy {_). Although the
original Boltzmann equations are nonlinear in the f’s,
Egs. (1a) through (1c) have been linearized in the ®’s.
The linear integral operators L describe the interactions
of the charge carriers with the real crystal lattice and
with each other. Thus, L., L, and L; include the scatter-
ing of electrons and of light and heavy holes by acous-
tical and optical phonons and by point imperfections,
respectively; L, is given by Eq. (4) of A, and L, and L;
are defined correspondingly. The nine operators charac-
terized by a pair of subindices, L..., etc., describe
Coulomb scattering of charge carriers by each other. In
the case of electrons, the three electron-carrier scattering
operators which determine the rate of change of the
steady-state distribution f. due to electron-heavy hole
scattering, electron-light hole scattering and electron-
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electron scattering are given, respectively, by

2 mp 8
Lc-h(®e+q>h)=“_<—>
keT\ k

X/// exp(ecten—§_/ksT—{4/ksT)

X foefonfoe for' (2e4-@p— D/ — ;')
Kaen sinydxdydvs, (3)

L, 1(®,+%®;) is obtained from Eq. (3) by replacing index
h by l; Le..(®) is given by Eq. (9) of A observing the
appropriate notation (a=a,, {={_). The functions
Qe-hy 0.1, and a,-, are related to the effective scattering
cross sections for electrons. Explicit formulas for all o’s
will be given below. The variables x and v denote the
polar and the azimuthal deflection angles, respectively,
for the relative velocity ¢ due to a single scattering
event.

The main mathematical problem consists in finding
the solutions of the three simultaneous integral equa-
tions (1a) through (1c). These solutions will be obtained
by means of a generalized variation principle which
applies to a multiband conductor. The following formu-
lation of the variation principle is convenient:

Let us consider the following integral which is a
quadratic functional of allowed trial functions ¥,, ¥y,
and ¥;:

Me\3
{\I’e,‘I’h,‘I’z} = 2(7) /\I’¢Le(\1’3,‘1’h,\l’l)dV¢
Mp 3
+2(-h—> /\I/hL}.(‘I’h,\I’e,‘I/l)dvh

my 3
+2(—k—> /‘I’sz(‘I’z,‘I’e,‘I’h)d"l; (4)

where, for example,

LB(\I,B"I,hr\I’l) = Le(\I’e)—l—Le-e(\I’e)
+Le-h(\1’8+\1,h)+Le-l(‘I’e‘l—\I/z).

Then, the variation principle implies that of all trial
functions the solutions ®,, ®;, and ®; of Eqgs. (la)
through (1c) have the characteristic property of making
the integral {¥,¥;¥;} a maximum subject to the
subsidiary conditions

/ WL (T )iy / VEdv,  (5)
/ ToLn (T, T ) dvam / WGvdv,,  (5b)
/‘I’[Ll(‘lfz,\I’h,\I’e)de= /‘I’IG(vl)dvl; (SC)
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where F(v.), G(v3), and G(v;) are abbreviations for the
left-hand sides of Egs. (1a), (1b), and (1c), respectively.

The proof of the generalized variation principle as a
maximum principle consists in a systematic generaliza-
tion of Kohler’s original mathematical procedure.* It
relies on two integral theorems which correspond to the
relations (10)-and (11) of A and which are obtained by
considering all kinds of intercarrier scattering processes.
We mention that (1/7T){®.®:,®:} represents the rate
of entropy production per unit volume due to the
scattering processes of all charge carriers.

III. TRANSPORT COEFFICIENTS

 Inorder to calculate the electrical conductivity o, the
heat conductivity , and the Seebeck coefficient a, it is
convenient—in view of the linearity of the operators
L—to rewrite the variation principle for the ®’s in a
slightly different form. To this end we make the usual

ansatz:
1 0T
<be='ug,z<eF_c(%)+— ——c"’”), (6a)
T ox
1 0T
b= vh,,<eF+b(%)+— b(%)), (6b)
T 9x
_ 10T
q)z—‘l)l x(eFer(%)-i—— —b(%)), (6C)
T ox
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F16. 2. Schematic sketch of the electronic structure consisting

of a conduction band and a twofold degenerate valence band; the
energy extrema occur at the center of the Brillouin zone.

4 The proof proceeds similarly to the one given in D. Dorn’s
paper [Z. Naturforsch. 12a, 739 (1957)7]; this author considers the
two simultaneous integral equations for electrons and phonons.
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where

ad /¢
Fr=cl+ T—-(j) )
ox\T

Assuming thermal equilibrium we have

3/t d /e

7)) ®

x\T x\T
Assuming nonequilibrium we consider the quasi-Fermi
level for electrons {_ and the one for holes {; to be
independent of x.> With the help of Egs. (6a) through
(6¢) new scattering operators & are defined and the three
integral equations (1a) through (1c) break into three
pairs of equations for the ¢, 5™, and ™. Of all the
scattering operators ¢ occurring in these six integral
equations we shall discuss the ones for electrons only;
those for holes have the same analytical form. The
integral operator &, is given in Wilson’s textbook on
metals.® Of primary interest here are the three operators
Le-¢; Le-n, and L,.;. Using Landshoff’s transformation by
which the # components of the velocity vectors under
the integral of Eq. (3) are eliminated, the final form of
the three scattering operators, assuming Fermi-Dirac
statistics, is given by

2 mp 3 1
&-h(uw,bm):—(—) —
keT\ h/ v?

X / / f explecten— (§-F¢4)/ksT] foefonfoe' for'

X[V Vec™ (e) — Ve Ve'c™ (&)
FVer Vab™ () — Vo va'd™ (en”) Jare-n sinxdxdydva; (9)

Re.1(c™,6(™) is obtained from Eq. (9) by replacing b
by b and index % by I; L...(c‘™) is given by Eq. (31) of
A observing the notation rules. The problem of solving
the three pairs of integral equations for the ¢¢», 5, and
b™ is reformulated as variation principle, in complete
analogy to the consideration given in Sec. I, which,
however, applies to the Eqgs. (1a) through (1c). The
appropriate variational function and the associated sub-
sidiary conditions can easily be derived from Egs. (4)
through (6¢).

The variational problem is solved by a direct method
(Ritz procedure). Thus, the trial functions'are expanded
in power series

c™W=3 ¢,(Wn,, (10a)
r=0
bm=73" b, (Mg, (10b)

r=0

5 Then Eq. (8) is an identity if T=const.
8 A. H. Wilson, The Theory of Metals (Cambridge University
Press, New York, 1953), 2nd ed., p. 302.
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-]
b(m) = Z br(")’fll',

r=0

(10c)

where n,=¢,—{_/ksT (or n.,=e;) for metals (semi-
conductors). The expansion coefficients satisfy the
following simultaneous systems of linear equations (s=0
to o, n=%, §)

5 o(Ds O,y (1B,

Fhey e Dh M) —a, (=0, (11a)

5o (Ds P,y (g, (0
Al POBMY —38,m =0, (11b)

3 (D1 s DB, b, G- ()
ARy BB M) — 8y, M =0, (11c)

where

Drs(e):drs(g)+drs(e.e)+grs(e'h)+grs(e-l),
Drs(h):drs(h)+drs(h-h)+grs(h-e)+grs(h'l).

The coefficients of Eq. (11a) are defined as follows:

d,x(e)=/ﬂcr8e(’7e8)wdv8y (lza)
A @O = | 0, Re.o(e?)wdve, (12b)
groleM = / 76" Qen(7.5,0)wdv., (12¢)
gyoleD = / 0" Lo-1(n*,0)wdv,, (12d)
]’lrs(e-h);-/nerge-h(oinh‘)wdve’ (126)
hra(c_l)z/nerge—l(oanla)wdv“ (12f)
afo-»
o, (M= / (kpTer) " +—n. wdv,, (12g)
€e

where w=2(m,/k)%.,,.%. The coefficients of Egs. (11b)
and (11c) are defined correspondingly. We observe the
following type of symmetry relations:

dm(e) =dsr(e), grs(e-h) = gsr(e-h); hrs(e-m = h"(h-e).

(13)

The solutions of the infinite set of Egs. (11a) through
(11c) are obtained as quotients of infinite determinants.
Correspondingly the three transport coefficients can be
obtained in terms of the determinants

0 ™ 8Bot™  byeim ...
ao(n) Dgo® hoo(e-h) hoo(e-l) e
Apn= B0 ™ hoo9  Doe® gD .. S (14)

o™ hoo™?  hge®P  Dg®
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and A4. The determinant A4 is derived from 4., by
omitting its first row and column. With these definitions
for Am,» and A4 the general expressions of the transport
coefficients are given elsewhere.! However, for practical
purposes the infinite determinants are to be replaced by
determinants with a finite number of rows. Thus,
successive approximations of the electrical conductivity
c@ g ... the heat conductivity @, x@, ... and
the Seebeck coefficient a@, a®, , are given by
determinants 4,,,,? and 4@ with 35+1 and 37 rows
(j=1, 2, ---), respectively. We observe rapid con-
vergence of successive approximations of o, , and « in
the case of semiconductors.

IV. NONDEGENERATE SEMICONDUCTORS

Assuming small carrier concentrations some simpli-
fications occur since (1) the effective cross sections for
intercarrier scattering are given by the Born approxi-
mation and (2) the Fermi-Dirac distribution can be
approximated by the Maxwell-Boltzmann function.

Scattering Operators

The rate of change of the electron distribution due to
scattering by longitudinal acoustical and optical pho-
nons and ionized impurities is proportional to

80(6)=ge-m(c)"'ge-op(e)'l"ge-i(c); (15)

where

LRe-n0(€) =K o fooC/Mek BTN oo (C ),

Lo-0p(¢) = (DEK2 fooc/ 2mti2k 3 T46)
XN (eat0/T) (N+1) (e.—6/T)h(e.—0/T)], (17)

R.-i(¢) is given by Eq. (44) of A. The operator L., is
derived elsewhere,” and the free path A, for elastic
scattering of electrons by acoustical phonons is given in
terms of Bloch’s constant C, by Eq. (48) of A. The
operator ¥,.op, which describes inelastic scattering of
electrons by optical phonons with energy kg0 is obtained
with Seitz’s expression for the transition probability?;
D, is the Seitz constant and K is a wave vector terminat-
ing on the surface of the first Brillouin zone. Heaviside’s
unit step function 4(x) is defined as follows: 4(x)=0 if
%<0, k(x)=11f #>0. The operator L..;is derived in 4 ;
however, the shielding parameter Ap is the one given
below.

The operators ¥ describing electron-carrier scattering
are given by Eq. (9) and two similar equations. The
scattering formulas are

Qo-n=(€*/ko*Mea®g®) (B2+1—cosx) 2, (18)

where B=7/2\pMreag; Meea is the reduced effective
mass, and «o is the static dielectric constant; a,.; has the
same analytical form as a..1; @.-. is given by Eq. (29)

(16)

7J. Appel, Z. Naturforsch. 13a, 386 (1958), Eq. (5a).

8 F. Seitz, Phys. Rev. 73, 549 (1948), Eqs. (27) and (45a); see
also D. T. Howarth and E. H. Sondheimer, Proc. Roy. Soc.
(London) 219, 53 (1953).
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of A with mea=m,/2 and A\p as given below. The o’s
which determine the effective scattering cross sections
are obtained with the Born approximation assuming a
shielded Coulomb potential to describe the dynamical
interaction between charge carriers. The shielding
parameter is the Debye length A\p given by

1 1 + 1 1 kokpT
Ap? Apd Apir Api? 47”32(”+P+17),

where %, p, and p are the concentrations of electrons,
heavy holes, and light holes, respectively. The use of the
scattering formulas given above puts two (independent)
upper limits on the carrier concentration for a particular
temperature. The first restriction is imposed by the
Born approximation: Electron wavelength is to be
smaller than Ap. The second, more serious restriction
occurs because the pair interaction potential with Ap as
screening length is derived in the Debye-Hiickel limit?:
many charge carriers in a Debye sphere. This latter
condition is not satisfied in several cases of physical
interest. However, it has been pointed out by Herring!?
that results obtained in the Debye-Hiickel limit seem
to be valid beyond the range where its derivation is
clearly justified.

General Results

Successive approximations of o, &, and « are deter-
mined by the elements of the determinants 4., and
A®, We have calculated those elements necessary to
find the first and the second approximation of the
transport coefficients. For electrons we obtain with the
scattering operators ‘given above the following results:

Acoustical phonon scattering.

16ne
—(r+s+2),

d, (50 = (20)
97 Ple-ac
where -5, is the electron mobility.
Optical phonon scattering.
doote-oP) =4 (2K 142K o/2), (21a)
dioteoP) = A[ (6+22/2)K1+32K0/2], (21b)
d11 P =A[(24+1122/4) K1+ (62+2/2) K], (21¢)
where

. 2inD2K*m g} exp(ds) 22)

- 3wt (kpT)} expz— s

¢ In the framework of a continuum approach the derivation of
Ap for a completely ionized plasma is given by N. Rostoker and
M. N. Rosenbluth, Phys. Fluids 3, 1 (1960).

10 C. Herring, Proceedings of the International Conference on
Semiconductor Physics, Prague, 1960 (Czechoslovakian Academy
of Sciences, Prague, 1961), p. 82; see also H. Brooks, Advances in
Electronics and Electron Physics, edited by L. Marton (Academic
Press Inc., New York, 1955), Vol. 7, p. 85,
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K=K (2/2) is the Bessel function defined elsewhere !
and z=0/T.

Tonized impurity scattering. d,.(*-? is given by Eq. (45)
of A with 2 replaced by 24,.2, where

8o 2=N2/4N\p*m.kpT.
Electron—heavy hole scattering.
200 M = B(mu/mo)J o, (23a)
2104 = B(mn/mo+mn)[57 o/ 2+ (ms/me)J 1], (23b)

Bl:memh/ (me+mh)2][55J0/4+5 (mh/me).fl
+ (mn/me)2J o+ 2(mp/me)I1];  (23c)

grs*-®) is obtained from g,;(¢-* by interchanging indices
eand k;

gll(e-h) =

hoote M = — (mo/mn)goote™, (23d)
hiote M = — (mo/mp)g1oteM, (23¢)
hol(e'h)= _ (mh/me)gm(h-e), (23f)
Ty @ = — BLmoms/ (mot-mn) 1557 o/4+ (5/2)
X[ (meo/mn)+ (mr/me) 1 1+J,—211} 5 (23g)
where
28riet,,
(24)

3[(me-l-m;,)mem;,]%:co?(kBT)%,
Jn=Jn(8e-r2) and I,=1,(8,-1%) are parameter integrals
given in Appendix A; and
e h = h2/4)\1)2 (memh/me+mh)kBT

Electron-light hole scattering. g, g..%9, and
hrs-D are obtained from Egs. (23a)-(23g) by replacing
index % by I

Electron-electron scattering. d.;>® is given by Egs.

p

F16. 3. Schematic diagram to illustrate the displacement of the
electron and hole distributions associated with the zero-order ap-
proximation of the electronic heat conductivity. Assuming acous-
tical phonon scattering we have e: = (\e-ac/Nb-ac) (71/m0)E.

1A, H. Watson, Theory of Bessel Functzons (Cambridge
University Press, Cambridge, 1958), p
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(40) of A with =6, 2=%2/2\p*m.ksT. The deter-
minantal elements for heavy and light holes are obtained
by appropriate interchange of indices e, %, /, and of
", D, D

Ambipolar effects can be taken into account correctly
to all orders for both the heat conductivity and the See-
beck effect by adding a potential energy AE(T)/ 2kgT
to the kinetic energy of the charge carriers in the
brackets of Egs. (1a) through (1c). Then e, remains
unchanged [Eq. (12g)]; however, for =% we have

AE %
ZkBT]' 23)

V. QUANTITATIVE RESULTS AND DISCUSSION

nekBT

5
ar(f = —

! | 3 l
o [<2 kG

Me

Two-Band Semiconductor

Assuming two parabolic bands, a conduction band
and an inverted or valence band separated from each
other by an energy gap AE>>kpT, we can easily obtain
the zero-order approximation for the three transport
coefficients. The results are:

Electrical Conductivity

004010 —0, D, OL(1=n/p)+(1—p/n)1CT,

0) =
Y Lm0+ oK
where
2%mde? (m o)}
- , @7)
3k (kpT) (metmp):

and Jo=Jo(8..?); the electrical conductivity of elec-
trons and holes obtained in zero-order approximation is
denoted as ¢, and ¢, respectively.?

Heat Conductivity

ks (SH+AE/kpT)?
k@O ={— .
( ( e ) (1/0:9)4(1/0,@) 28

Seebeck Coefficient

Skp 0,V —g,©@
—, (29)
2e 0,940,

a®=——_

The simple formula [Eq. (26)] for the electrical conduc-
tivity is understood easily. We consider two cases:

(1) For n=p the additional term in the denominator
represents the effect of electron-hole scattering on the
conductivity in complete analogy to the effect of
electron-ion scattering on o....”. Indeed, assuming

My Me—> 0,
we find
1/6®=1/64.0Y41/5,.;

12 Assuming electron-hole scattering to be weak compared to
electron-lattice scattering, ¢ has been calculated by D. Dorn
[Z. Naturforsch. 383, 11a (1961)7] for an intrinsic semiconductor.
His result is in agreement with the one obtained from Eq. (26) if
the correct valye for the screening length is introduced,
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where 0,.;( is the correct zero-order approximation of
the Brooks-Herring formula [see Eq. (51) of AJ.

(2) For np, the bracket term in the numerator of
Eq. (26) is different from zero. The first and second
terms in the bracket are proportional to the drag which
electrons impose on holes and vice versa, respectively.
A drag effect on the mobility of minority carriers was
first observed and discussed in detail by Paige® and
McLean.

The formulas (28) and (29) for the thermoelectric
effects apply if {=¢_. The heat conductivity x(® is the
exact zero-order approximation including the conduc-
tivity due to the transfer of pair excitation energies as
electron-hole pairs flow from the hot to the cold region of
a crystal. Thereby the total electric current is zero.
Thus, the finite heat conductivity «©® is implied by
steady-state distributions of electrons and holes as
shown in Fig. 3. It is in the approximation @ that those
terms occur which correspond to the usual electronic
heat conductivity of a single band. Therefore, @ is
affected also by electron-electron scattering. However,
in intrinsic semiconductors the ambipolar diffusion term
given by Eq. (28) is predominant.!® Assuming o,,® to
be due to phonon scattering, we find that «® is a good
approximation (correct to ~10%) for the exact ambi-
polar diffusion term of a two-band semiconductor. Thus,
electron-hole scattering reduces the ambipolar heat
conduction by approximately a factor

1
14 (0,904,9 /0, @ +0,@) 1/ p+p/n—2)2CTo
(30)

F(50.47)=

0e.n2<1.

The Wiedemann-Franz ratio L©® given by Egs. (26)
-and (28) is larger than the corresponding ratio obtained
by ignoring electron-hole scattering. The thermoelectric
power a© is not changed [Eq. (29)] and in higher order
the effect of intercarrier scattering is usually small in
intrinsic semiconductors.

p-Germanium

An interesting application is provided by p-germa-
nium and, of course, other semiconductors of the zinc-
blende type which have a similar valence band struc-
ture. The electrical conductivity which we shall consider
here is in its zero-order approximation given by Eq. (26)
with the minus signs in the numerator replaced by plus
signs. We have calculated the first-order approximation
c® of p-germanium at 77°K as a function of the con-
centration of ionized impurity centers assuming this
concentration to be equal to the concentration of light

B E, G. S. Paige, J. Phys. Chem. Solids 16, 207 (1960).

14T, P. McLean and E. G. S. Paige, J. Phys. Chem. Solids 16,
220 (1960).

15 P, J. Price, Proc. Phys. Soc. (London) B69, 851 (1956); O.
Madelung, Encyclopedia of Physics, edited by S. Fliigge (Springer-
Verlag, Berlin, 1957), Vol. 20.
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F16. 4. The mobility of p-germanium (a) ignoring and
(b) including hole-hole scattering.

and heavy holes. The following parameter values are
appropriate!s:

ko=16, m;=0.043m, m;,=0.35m,

Ilve-ac+ (mh/ml) %Ilh-ao 15°K
Mac= =580 000(

14 (ma/my)

3
) cm?/v-sec.

Optical phonon scattering is correctly taken into ac-
count by determining the Seitz constant Dj=D; from
the measured mobility at room temperature. We find

D;=8.1ev
with §=436°K and with
K=7/a (a=2.81X10"% cm).

The results are shown in Fig. 4 for p®=0¢®/(p+Dp)e
ignoring and including hole-hole scattering, respectively.
A discussion of these results and their comparison with
experiments will be given elsewhere.!” We mention that
two parameters determine the relative influence of
hole-hole scattering on u: the hole concentration and the
screening length (see also Fig. 1).

Intrinsic Germanium

The characteristic feature of an intrinsic semi-
conductor is the well-known exponential temperature

16 R, Bray and D. M. Brown, Proceedings of the International
Conference on Semiconductor Physics, Prague, 1960 (Czechoslo-
vakian Academy of Sciences, Prague, 1961), p. 60.

17 J, Appel and R. Bray (to be published).
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F1G. 5. (a) The first-order approximation for the mobility of
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scattering. (b) Ratio of the mobility u.-.‘V (lattice and intercarrier
scattering) and u®.

dependence of the charge carrier concentration. With
increasing electron-hole concentration, Coulomb scat-
tering processes will occur more often. However, since
the interaction potential becomes weaker with increas-
ing number of carriers, the effective scattering cross
sections decrease. In the limit of a degenerate electron
gas (metals), the. screening becomes so strong that
electron-electron scattering is unimportant for the
electrical resistivity, except at very low temperatures.
Therefore, we may expect that in an intrinsic semi-
conductor the relative influence of intercarrier scatter-
ing on the mobility does not monotonically increase as
the temperature rises. This is verified by Fig. 5 for the
case of germanium. The electronic mobilities x® and
#e-o have been calculated as a function of temperature
assuming for holes the parameters given above and for

JOACHIM APPEL

electrons the following :
me=0.22m,

Meo-ao=34 000(80°K/T)* cm?/v-sec,
D,=4.1ev.

The Wiedemann-Franz ratio for intrinsic germanium is
shown in Fig. 6. It is true in general that the quotient
L.../L>1, provided that the ambipolar term is the
predominant one in the electronic heat conductivity.
Then, L,.,/L is determined primarily by electron-hole
scattering processes. The latter, however, affect the
momentum distributions of electrons and holes more
strongly by shifting both momentum distributions in
K space, than by randomizing the energies of electrons
and holes. We mention the fact that in the case of a one-
band conductor the Wiedmann-Franz ratio is always
reduced by electron-electron scattering.

Transient Mobility of Ge

In an intrinsic semiconductor the carrier concentra-
tion increases with temperature. As the temperature
rises the scattering of electrons and holes by the thermal
lattice vibrations becomes more important, and, there-
fore, the relative influence of intercarrier scattering on
the mobility is only a few percent. However, it is
possible to increase the carrier concentration by several
orders of magnitude without changing the temperature
by exposing the crystal to high-energy primary electrons
for short time intervals (1-5 usec). These primary
electrons are supplied by an electron linear accelerator,
and the dynamical interaction between primary elec-
trons and crystal valence electrons results in the latter
being excited to the conduction band. The resultant
free-electron—hole pairs give rise to an increased con-
ductivity. Since the lifetime of the excess carriers is
usually quite short—approximately 20 usec for an
initial electron concentration of 10" in #-Ge—the
transient conductivity is to be measured by special
experimental methods.!® The result to be expected for
the transient mobility of germanium at 77°K is shown
in Fig. 7.
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APPENDIX A. PARAMETER INTEGRALS

The integrals occurring in Egs. (23a) through (23g)
are defined as follows:

- exp(— a2)a2nH
X[In(1+24%/y)— (1+y/24%) 7 Jdz, (A1)

18 E. G. Wikner (private communication); V. A. J. van Lint,
General Atomic Report GA-1827, 1960 (unpublished).

Jn(y)=/

0



INTERBAND ELECTRON-ELECTRON SCATTERING

I.(y)= / exp(—a%)a?rH
0

X[2(14y/2%) In(14-24%/y)—41dx.  (A2)

Both integrals can be expressed in a closed form for
n>0.

APPENDIX B. TRANSITION METALS

In order to investigate in the framework of the Boltz-
mann equation the influence of interband electron-
electron ‘scattering on the electrical and heat conduc-
tivities of transition metals, some difficulties must be
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overcome which have been outlined before.! One may
expect, however, that a theoretical consideration based
on the Boltzmann equation gives the correct tempera-
ture dependences of the transport coefficients because
the low-frequency phenomena in metals can be de-
scribed completely in terms of appropriately defined
quasi-particles,’® the interaction of these quasi-particles
with impurities, and their interaction with each other
via a screened Coulomb potential. Therefore, also in
the case of metals, the electrical conductivity and the
heat conductivity in zero-order approximation are given
by formulas of the type presented by Egs. (26) and (27),
respectively, with CJox (kgT/{)2 Thus, a contribution
to the low-temperature resistivity which is proportional
to 7%, caused by interband electron-electron scattering,
should be accompanied by a heat resistivity contribu-
tion which is proportional to 7. Experimentally, a 72
contribution to the electrical resistivity has been con-
firmed by White and Woods;* however, a T* contribu-
tion to the heat resistivity has not been observed yet.

18 7, S. Langer, Phys. Rev. 124, 1003 (1961),
2 G. K. White and S. B. Woods, Phil. Trans. Roy. Soc. (London)
A251, 273 (1959).



