
EXCITON STRUCTURE AND ZEEMAX EFFECTS IN CdSe

State Energy

1S 14931+3cm '
2S—2Pg2 15032+2 cm '
2 I'0 15022~3 cm '

The series limit may be estimated to be 15 050+15 cm '
with an effective rydberg of Ry= 120+10 cm '.

Series Il
The experimentally observed states and their energies

are

Series III

The 1S state was observed at 18 218&10 cm ', with
an estimated series limit at 18 340~20 cm '.

The difference in the series limits between the 6rst
and second series corresponds to a crystal 6eld splitting
of the valence band of 200+15 cm '. The difference
between the limits for the first and third series corre-

sponds to a spin-orbit splitting of the valence band of
3490+20 cm '.
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The etfect of interband electron-electron scattering (electron-
hole scattering, light hole-heavy hole scattering, etc.) on the
electrical transport phenomena is studied with a variational
method obtained by a generalization of Kohler's variation
principle to a multiband conductor. To this end we make the
following assumptions: (1) The electronic structure is given by
parabolic conduction and valence bands, separated from each other
by ~))kT; the valence band may be twofold degenerate;
(2) The average occupation numbers of electronic eigenstates are
given by Fermi-Dirac statistics; (3) The dynamical interaction
between charge carriers is described by a shielded Coulomb
potential.

Assuming nondegenerate semiconductors, we consider acoustical
and optical phonon scattering and ion scattering, besides electron-
electron scattering. Quantitative results are obtained for the
electrical conductivity, the heat conductivity, and the Seebeck
coefficient, including the ambipolar effect. The results can easily be
applied to cases of physical interest; we discuss here hole-hole
scattering and mobility of p germanium, intercarrier scattering
and mobility of intrinsic germanium, transient conductivity
of charge carriers in germanium produced by short pulses of high-
energy electrons, intercarrier scattering and its influence on the
heat conductivity, and the %'iedemann-Franz ratio of intrinsic
semiconductors.

I. INTRODUCTION
' 'N a previous paper' the effect of electron-electron
~ ~ scattering on the electrical transport phenomena was
studied on the basis of the free-electron approximation
and under the assumption of a shielded Coulomb
potential describing the pair interaction between con-
duction electrons. The allowed electron eigenstates were
restricted to one band only. For such a simple model,
because of momentum conservation in a single (non-
umltlapp) scattering process, the electrical conductivity
is not affected in its zero-order approximation. However,
in 6rst and higher order, the electrical conductivity
changes. The reason for this change lies in the energy
dependence of the perturbation f&, which, as a conse-
quence of the electron-lattice interaction, adds to the
unperturbed Fermi-Dirac distribution fo The perturba-.
tion fr is modified because electron-electron scattering
randomizes energies. The effect on the electrical con-
ductivity of semiconductors is shown in Fig. 1, assuming
electron-ion scattering as the primary scattering source.

' J. Appel, Phys. Rev. 122, 1760 (1961), hereafter referred to
as A.

The effect of electron-electron scattering becomes
more importarit for the electrical conductivity when the
electrons are distributed over two or more partly 6lled
energy bands. Transition metals and intrinsic semi-
conductors are examples of a multiband structure. In
considering the electrical conduction of such substances,
it is convenient to distinguish between intraband and
interband electron-electron scattering processes. The
former have been discussed in A, while the latter may be
understood as scattering processes in which each of the
two participants belongs to a diferent band (the 6rst to
a conduction band, the other to a valence band, etc.).
The transition probabilities are the same whether each
of the two electrons stays in its original band or whether
the two electrons exchange bands. Both direct and ex-
change transitions will be called interband scattering
processes. Physically, the difference between intraband
and interband scattering is trivial: In the 6rst case the
momentum conservation in a single scattering event
implies the velocity conservation v&+vs ——vr'+vs',
whereas in the second case usually v&+vs' v&'+v&'. In
other vrords, interband scattering processes affect the
electrical conductivity primarily because of a current
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FIG. i. Effect of electron-electron scattering on the Brooks-

Herring formula; 0. , ('& is the 6rst-order approximation of the
electrical conductivity for electron-ion and electron-electron
scattering, 0(') is the 6rst-order approximation of the Brooks-
Herring conductivity formula; the parameter S, , (Eq. 40 of A)
is proportional to electron wavelength over Debye length.

'However, if ksSn«rfE (en=Debye temperature), or if one
considers two overlapping bands, the upper band being a conduc-
tion band and the lower band being a valence band (transition
metals), interband scattering of electrons induced by thermal
phonons has to be taken into account. Then it is convenient to
relate the energies of the electrons in the conduction band (s elec-
trons) and the valence band (d electrons) to the same zero energy;
see A. H. Wilson, Proc. Roy. Soc. (London) A167, 580 (1938).

3 H. Ehrenreich and A. W. Overhauser, Phys. Rev. 104, 331 and
649 (1956}.

change in most scattering events and secondarily be-
cause energies are randomized. Special cases of physical
interest are electron-hole scattering and light hole—
heavy hole scattering in semiconductors.

The purpose of the present paper is to discuss the
combined infiuence on the electrical transport coe%-
cients due to intraband and interband electron-electron
scattering which results from the dynamical interaction
of charge carriers via a shielded Coulomb potential. As a
basis for this discussion we consider a three-band model
with one-electron eigenstates given by the free-electron
approximation. As is usual, electrons in inverted bands
(valence bands) are replaced by positive holes. Thus, we
assume one conduction band and two valence bands as
shown in Fig. 2; m„mj„and m~ are the effective masses
of the electrons and of the heavy and light holes, respec-
tively. The energy gap hE is assumed to be large com-
pared to k~T, so that transitions of electrons from the
conduction band to the valence band and vice versa, do
not occur as a consequence of single-phonon scattering
processes. ' However, interband transitions of holes be-
tween the light hole band and the heavy hole band,
induced by phonons, may be important. ' These transi-
tions can be incorporated in our calculations provided
one knows the corresponding transition probabilities.
Here, for the sake of simplicity, the formal theory will
be restricted to intraband phonon scattering. However,
in applying the final results to a concrete case, such as
germanium, interband phonon scattering is taken into

account by retaining an appropriate mobility ratio for
the phonon-scattering of light and heavy holes.

The main mathematical problem consists in solving
simultaneously three coupled Boltzmann equations. To
this end, we shall apply a mathematical procedure which
is a generalization of Kohler's variation principle to a
multiband conductor. Besides intraband and interband
electron-electron scattering, we shall consider intraband
scattering due to longitudinal acoustical phonons, longi-
tudinal optical phonons, and ionized impurities.

II. VARIATION PRINCIPLE FOR A
MULTIBAND CONDUCTOR

Let us consider the following system of three linear
integral equations for the perturbations C „4»,4 & of the
distribution functions of electrons, heavy holes, and
light holes, respectively,

vg g Bfpg B (t BT
eF+T

I

——+kne,
Bss&T BxkgT 86g

=L.(4,)+L, ,(4,)+L, s(C,+C p,)

+L, t(C,+4 (), (1a)

The same notation is used as in A; however, the suffixes

e, h, and / refer to different species of charge carriers. For
electrons we write

C,=krsT(f, fp,)/(Bfp, /Be, )—, (2)

where e,=Z,/kjsT and fp, is the Fermi-Dirac distribu-
tion for electrons (Fermi energy 1 ). Although the
original Boltzmann equations are nonlinear in the f's,
Eqs. (1a) through (1c) have been linearized in the C 's.
The linear integral operators L describe the interactions
of the charge carriers with the real crystal lattice and
with each other. Thus, L„L~,and L~ include the scatter-
ing of electrons and of light and heavy holes by acous-
tical and optical phonons and by point imperfections,
respectively; L, is given by Eq. (4) of A, and Ls, and L&

are defined correspondingly. The nine operators charac-
terized by a pair of subindices, L, „etc., describe
Coulomb scattering of charge carriers by each other. In
the case of electrons, the three electron-carrier scattering
operators which determine the rate of change of the
steady-state distribution f. due to electron —heavy hole
scattering, electron —light hole scattering and electron-

&a, ~ Bfos
eP+ T

I

—+—k~es
kgT Bes Bx(T BS

=Ls(C s)+Ls s(C's)+Ls, (C's+C', )

+Ll, g(@p,+4), (1b)

&txBfoe,
— eF+T —I+k,e,—

krrT Be~ BS T ) BS

=L,(e,)+L, ,(C,)+L, .(C,+C.)+L, ,(C,+C,). (1c)



CT«N CA T TFR[ NGI NTFR BAN FLE, CTRON-

G v& are and bbrevis, tioils or the'el.vv ere ~ ~

s 1a), (1b, an . .
l

P(v ) G(vte) n
d (1.C) reSPCCtive y.l it-hand sides o& Eq

'
d variation princip c

e-
The proof pf the g

a systematic genemanciple cpnsists
'

1 rocedure. ' Itf Kphler's «'g
h' h cprrespond

0 -snd (11) o& A
rin rocesses.c()nsidcr g

1 T){@@» @} p~e mention that
't voluine due «roductipn per umpf entropy p

f 11 charge carriers(3) scattering

re iven, respectively,electron scattering are given,

2 t'Bs)e) o

L, ) (c'.+c'),)

CXP (oe+ o)e
—{ /k)) T fy/—ksT

Xfo.foafoe'fox (C" )—

)(Az g slnxl+8+dvg~ p

RT COEFFICIENTRT SIII. TRANSPORT

(6a)

(6b)

(6c)

and +).
m 3

L (eeP»%))dve{%.,+oP&}=2—

+ '
om E . (3) by replacing indindex

lculate the electrical condu
' '

elculate t e e ductivity r, the

I-. )(C'.~ ) omE .+
In order to calculate t e e clu

co duct ty
erators

d d t th
eRection ang, es respectiv y

1 BT
)) c(l)+— c

'
c

' — (')

it due to a singe

C,=v... e

for the relative velocity

ists in finding

1 BT
gP+g(e)+ g(e)Ca=~a, . e +

1 BT

T ax

t rinciple is convri
' t 1 h

a ion
the following in isL t us consider

qua ra i
'

f allowe riad t '
1 functions 4'„

eK

quadratic functional o

4 L (%»p,p))dvt,+2I +o )e ))) ep

&I

@L (@&+,po)dv), (4+21 +l ) )y e)
&I)

lewhere, for exarnp

L,(+,p»p &)
=1.,(%,)+I...(+,)

e h e h

lio
'

im lies that of all triap
'

tion rinciple imp ies
s. 1a)th solutions C „

through ( c) ha

subsidiary conditions

I I
pl

~ $aa

= K

AVY HOLKS

LIGHT HOLES

» ) = @eF Ve)dve),(%,P&P &)dv. =

4 L o e& ) = VAG v@)dv»+@L)(C o,%'„+))dvo=

Q)G (V))dv),+)L)(+),+»Pe) dv )='
(Sa)

(Sb)

(Sc)

energyr extrem

r iven in D. Dorn'sg
h 12a 739 95»$; ) eth' thoZ. Naturfo sc . a,

integral equationstwo ssimultaneous in e

A. Z

tructure consistingof the electronic struc u
dband and a twofol ege e an0

tth t f ha occur a



J OACHlM A pPEL

5( ) =p 5,(")o)t"
o

(10c)
where

I'~ eI'——+T

'librium we haveAssuming thermal equi i ri

8 (1+) 8

Bx T sx(r)

(seIIII-t- fkt)T (or &.= '
ts satisfy the

w

Th expanslo
t)ons (g =0

here ge=~e
'

n. coefjjcien sconductors .
stems of linear equfollowing simultaneous sys e

'
e ua

3 5to ~, n=-„-',

It„,('

(12a)

(12b)
2 trrrto)o 1'-""""=k.Ti k i,.

i
(h-')C, (")

nsider t ens' h uasI-Perm'
s rs s

(h-l)g(n

'n nonequi i ri'1'brium we cons'

e for holes + to be
+h„- b — —, 1

and the one
x.' With th o q

electrons

attering opera o

e) e - e (e-h) (e-l)
P occurring in t ese s

for electrons o
g p

d as follows:

we shall iscus
1 tical orm

ns . a arede ne a
1 ns text ointegra

h th th eop
'

crest ere

'or v„

.6 Of primary inte
's transformatio y

d„(')= o)s Ps(Itsx corn the velocity vectors

,')(odv„

t ei
t assuming Fermi-o erators,

rs
(e-e) — sterne-e(O)ss (O Vs

he three scattering p t
statistics, is give y

' 0)oodv„(e-o)
~ rQ „(~grs

' (12c)

X I I+1+)lkt)Tjfo.fo),fo. foxexpLo, +oo—(f.

ot, "9, I (It,',0)(ddv„( l) (12d)
( . ' (e) o ')XLve'VsC (")(o)—v, v, c (,'

')j sfnxdydydvo, .~ 9)~ b( ) eh 0!, h

(n)C (ss) —Q C (10a)

(oa) —V, Vo+Ve'VII (

c, '
tained from Eq. (9

(")) is given by Eq.
e-l c

p

l'Bee C" IS

of solving

1 ton g ven

lf tio d h

po
i z .Thus, the tria(Ritz procedure .T us,

in power series

0 o')oodv. ,
(e-h)

~
r srs (12e)

0 I )(odve,(e-l) —
~

r srs (12f)

fo.
ge"Cud V„

~&e

8
ar(") = (kt)Toe)" I (12g)

s. 11b)eKcients of Eqs.
o di 1.

f 1

0 set of Eqs
(11 ) are obta)ned qas uotien

'
nts can en 1 the three transsport coefEcie

h dt tmsoft e eobtained in term

I)(e) —p f) (e)~„r
r=o

(10b)

e UniversityiV tat (C bndn Tho Theory of o'
53) 2.d .d p 302Press, New York, 195, n ., 2.

0
~ (n)Gp

A„,„= ()po(")
(e;)

(m)
CX0

Boo
(h- e)

00
(l- e)00

gp (se)

(e-h)
pp

Boo (h)

h (l-h)
00

g+ (vn)

(e-l)
pp

(h-L)
00

Boo'(l)
(14)



I NTERBAN D ELECTRON —ELF CTRON SCATTER I NG

and A. The determinant A is derived from A„„by
omitting its first row and column. With these definitions
for A,„and A the general expressions of the transport
coefficients are given elsewhere. ' However, for practical
purposes the infinite determinants are to be replaced by
determinants with a 6nite number of rows. Thus,
successive approximations of the electrical conductivity
0. o', -, tile heat conductivity K, K ~, and
the Seebeck coefFicient e&", 0.('&, .-, are given by
determinants A„,„"& and A "& with 3j+1 and 3j rows
(j=1, 2, ), respectively. We observe rapid con-
vergence of successive approximations of o, tt, and n in
the case of semiconductors.

IY. NONDEGENERATE SEMICONDUCTORS

Assuming small carrier concentrations some simpli-
fications occur since (1) the effective cross sections for
intercarrier scattering are given by the Born approxi-
mation and (2) the Fermi-Dirac distribution can be
approximated by the Maxwell-Boltzmann function.

where

(c)=AK,fo,c/m&ttTX, „(C,'), (16)

0, „(c)= (D,'K'fo, c/245'ke&T&e).
XP ( +ee/T)h+(X+1)(e, tt/T)—lh(.. tt/T) —j, (17)

0, ;(c) is given by Eq. (44) of A. The operator 9„,„is
derived elsewhere, ' and the free path 'A, „for elastic
scattering of electrons by acoustical phonons is given in
terms of Bloch's constant C, by Eq. (48) of A. The
operator 8, „which describes inelastic scattering of
electrons by optical phonons with energy k& is obtained
with Seitz's expression for the transition probability';
D, is the Seitz constant and K is a wave vector terminat-
ing on the surface of the first Brillouin zone. Heaviside's
unit step function h(x) is defined as follows: h(x) =0 if
x(0, h(x) = 1 if x)0. The operator 9, ; is derived in A;
however, the shielding parameter X~ is the one given
below.

The operators 9 describing electron-carrier scattering
are given by Eq. (9) and two similar equations. The
scattering formulas are

cr. &= (e'/tto'm„'g') (++1—cosy) —s, (1g)

where P=h/2&XDm„ag; m«a is the reduced effective
mass, and Kp is the static dielectric constant; 0., g has the
same analytical form as n, &, ot, , is given by Eq. (29)

r J.Appel, Z. Naturforsch. 13a, 386 (1958), Eq. (5a).' F. Seitz, Phys. Rev. 73, 549 (1948), Eqs. (27) and (45a); see
also D. T. Howarth and E. H. Sondhei~er, Pro&. Roy. Soc.
(London) 219, 53 (1953),

Scattering Operators

The rate of change of the electron distribution due to
scattering by longitudinal acoustical and optical pho-
nons and ionized impurities is proportional to

&.(c) =~.--(c)+~.-"(c)+~.- (c),

of A with m„e=m, /2 and Xo as given below. The a' s
which determine the effective scattering cross sections
are obtained with the Born approximation assuming a
shielded Coulomb potential to describe the dynamical
interaction between charge carriers. The shielding
parameter is the Debye length X& given by

Kok~T
+

XD XD, Xtss XDts 4sres(n+p+p)
(19)

where n, p, and p are the concentrations of electrons,
heavy holes, and light holes, respectively. The use of the
scattering formulas given above puts two (independent)
upper limits on the carrier concentration for a particular
temperature. The 6rst restriction is imposed by the
Born approximation: Electron wavelength is to be
smaller than X~. The second, more serious restriction
occurs because the pair interaction potential with X~ as
screening length is derived in the Debye-Huckel limit':
many charge carriers in a Debye sphere. This latter
condition is not satis6ed in several cases of physical
interest. However, it has been pointed out by Herring"
that results obtained in the Debye-Huckel limit seem
to be valid beyond the range where its derivation is
clearly justified.

General Results

Successive approximations of 0-, K, and 0. are deter-
mined by the elements of the determinants A, „'&'& and
A&~'. We have calculated those elements necessary to
find the first and the second approximation of the
transport coeScients. For electrons we obtain with the
scattering operators 'given above the following results:

Acousticat phonon scattering.

(e-ao)—
16ee

(r+s+2)!,
9%me )tie-aa

2
(20)

where p, „is the electron mobility.
Opticat phonon scattering

doo' "'=A (2Ki+sEo/2),

d„-"=A)(6+»/2)K, +3»Ko/2j,

(21a)

(21b)

2&nDPK'm, & exp(-,'s)
A=

3sr&ph'(kit T)& exps —1
(22)

' In the framework of a continuum approach the derivation of
A,D for a completely ionized plasma is given by ¹ Rostoker and
M. N. Rosenbluth, Phys. Fluids 3, 1 (1960).' C. Herring, Proceedings of the International Conference on
Semiconductor Physics, Prague, 1960 (Czechoslovakian Academy
of Sciences, Prague, 1961),p. 82; see also H. Brooks, Advances ie
Electronics and Electron Physics, edited by L. Marton (Academic
Press Inc. , New York, 1955), Vol. 7, p. SS,

dri&' '» = A((24+11»'/4)Kt+ (6»+s'/2) KoJ, (21c)

where
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gpp&' ")=B(ms/m. )J(), (23a)

gip' "& =B(ms/m, +ms) $5Jp/2+ (m&/m, )Jij, (23b)

E =E (s/2) is the Bessel function defined elsewhere"
and s=8/T.

Ionisedimpurity scattering. d„,&'-" is given by Eq. (45)
of A with P replaced by 28, ,', where

5. ,s =h'/4XgPm, k Js T.

ElectrorI,—heavy hole scattering.

(40) of A with 5s=5, ,s=h'/2)(»sm. keT. The deter-
minantal elements for heavy and light holes are obtained
by appropriate interchange of indices e, h, l, and of

I P) P'
Ambipolar effects can be taken into account correctly

to all orders for both the heat conductivity and the See-
beck effect by adding a potential energy AZ(T)/2k»T
to the kinetic energy of the charge carriers in the
brackets of Eqs. (1a) through (1c).Then cr„(l) remains
unchanged I Eq. (12g)); however, for r =-,' we have

grr&' "'=B/m, ma/(m, +m )s'j!(55Jp/4+5(ms/m, )Ji
+ (ms/m, )'Js+2(ms/m, )Ir]; (23c)

rI kgT 1 AB-
(-'+r)!+(l+r)!

m, (-,')! 2k&sT
(25)

g„,("-') is obtained from g„,('-"' by interchanging indices
e and h; V. QUANTITATIVE RESULTS AND DISCUSSION

h„('-"&= —(m,/ms)goo' "'

hip&'-"& = —(m,/ms) gip &'-"&,

hpi " ———(ms/m, )gyp(" '

hii(' "'—— B(m,—m&/(m, +mo)' j(55Jp/4+ (5/2)
XL(m./mg)+ (mp/m, )jJr+Js—2I)};

where

(23d) Two-Band Semiconductor

(23e) Assuming two Parabolic bands, a conduction band
and an inverted or valence band separated from each

(23f) other by an energy gap AE))k&)T, we can easily obtain
the zero-order approximation for the three transport
coeflicients. The results are:

Electrical Conductivity

2'm-'e4„~
8=

3L(m, +ms)m, ma)'&&os(k&) T)'*

(26)J„=J„(5,s') and I„=I (5, s') are parameter integrals
given in Appendix A; and

where
2 srie'(m, mo) I

C=
3&&o'(ka T)-*'(m,+ms) '*

(27)
5, y,

' h'/4)(D'(m, —
m—s/m, +m&) kis T.

~,«)+~,(') —~,(')~s(') L(1—n/p)+ (I—p/ss) jCJo
(24) &o&

1+I:(u/p) ~a")+ (p/u) ~.")XJo

Electro' —light hole scatteri rig. g„,'-", g„,('-'), and
h„&' " are obtained from Eqs. (23a)—(23g) by replacing
index h by l.

Electrorr;electron scattering. d„('-'& is given by Eqs.

and Jo=Jo(5. «'); the electrical conductivity of elec-
trons and holes obtained in zero-order approximation is
denoted as 0-, ( ' and o-z(0), respectively. "

Heat Conductivity

k&r)' (5+DE/keT)'
~«)= —

I
T

(1/ ."')+(1/ "')

HOLES
Seebeck Coefficient

5k& tT (0) o.I, (0)

~(o)—
g (p)+g @(p)

KLKCTRON

Kx The simple formula LEq. (26)$ for the electrical conduc-
tivity is understood easily. We consider two cases:

(1) For I=p the additional term in the denominator
represents the effect of electron-hole scattering on the
conductivity in complete analogy to the effect of
electron-ion scattering on 0, „-,"'. Indeed, assuming

m),/m. —+ ~,
we find

FIG. 3. Schematic diagram to illustrate the displacement of the
electron and hole distributions associated with the zero-order ap-
proximation of the electronic heat conductivity. Assuming acous-
ticaI phonon scattering we have e:h= (X, ,o/Xy, o)(rr&s/sa. )t-
"A. H. Watson, Theory of Besset Fu&sottoms (Cambridge

University Press, Cambridge, 1958), p. 77.

1/g (0) —I/g (P)+]/g, .(o)

'2 Assuming electron-hole scattering to be weak. compared to
electron-lattice scattering, 0(') has been calculated by D. Dorn
LZ. Naturforsch. 885, 11a (1961)j for an intrinsic semiconductor.
His result is in agreement with the one obtained from Eq. (26) if
the gorregt va]ue for the sgreenin0, ' length ig introduce,



INTERBAND ELECTI&ON —ELECTRON SCATTERING 182i

where 0, ;&" is the correct zero-order approximation of
the Brooks-Herring formula Lsee Eq. (51) of A].

(2) For N/p, the bracket term in the numerator of
Eq. (26) is different from zero. The 6rst and second
terms in the bracket are proportional to the drag which
electrons impose on holes and vice versa, respectively.
A drag e8ect on the mobility of minority carriers was
first observed and discussed in detail by Paige" and
McLean '4

The formulas (28) and (29) for the thermoelectric
effects apply if' f'+ ——f' . The heat conductivity &&&a& is the
exact zero-order approximation including the conduc-
tivity due to the transfer of pair excitation energies as
electron-hole pairs Row from the hot to the cold region of
a crystal. Thereby the total electric current i~ sero.
Thus, the finite heat conductivity ~(') is implied by
steady-state distributions of electrons and holes as
shown in Fig. 3. It is in the approximation J(:(') that those
terms occur which correspond to the usual electronic
heat conductivity of a single band. Therefore, JI:(') is
affected also by electron-electron scattering. However,
in intrinsic semiconductors the ambipolar diffusion term
given by Eq. (28) is predominant. "Assuming o, ,

s&s& to
be due to phonon scattering, we 6nd that J(:(" is a good
approximation (correct to 10%) for the exact ambi-

polar diffusion term of a two-band semiconductor. Thus,
electron-hole scattering reduces the ambipolar heat
conduction by approximately a factor

IOII IOt1

I

g
«~
8
4a

IO

l5o

IO" IO

Fro. 4. The mobility of 1&-germanium (a) ignoring and
(b) including hole-hole scattering.

and heavy holes. The following parameter values are
appropriate":

F(5. s') =
1+(o,&'&o s&'&/&r, &'&+a s ' ) (I/p+ p/I 2)2CJo—

5, s'(1. (30)

J&lp= 16, 5s~= 0.043M wg= 0.35M,

1+ (~./m, )'
fs, + (rrcs/r&s&) llss „(15'K)1

= 580 000~
~

cm'/v-sec.r I
The Wiedemann-Franz ratio I."& given by Eqs. (26)
and (28) is larger than the corresponding ratio obtained
by ignoring electron-hole scattering. The thermoelectric
power n "& is not changed LEq. (29)]and in higher order
the effect of intercarrier scattering is usually small in
intrinsic semiconductors.

p-Germanium

An interesting application is provided by p-germa-
nium and, of course, other semiconductors of the zinc-
blende type which have a similar valence band struc-
ture. The electrical conductivity which we shall consider
here is in its zero-order approximation given by Eq. (26)
with the minus signs in the numerator replaced by plus
signs. We have calculated the first-order approximation
o "& of p-germanium at 77'K as a function of the con-
centration of ionized impurity centers assuming this
concentration to be equal to the concentration of light

~s E. G. S. Paige, J. Phys. Chem. Solids 16, 207 (1960)."T.P. McLean and E. G. S. Paige, J. Phys. Chem. Solids 16,
220 (1960)."P. J. Price, Proc. Phys. Soc. (London) B69, 851 (1956); O.
Madelung, Encyclopedia of Physics, edited by S. Fliigge (Springer-
Verlag, Berlin, 195'F), Vol. 20.

Optical phonon scattering is correctly taken into ac-
count by determining the Seitz constant D&=D& from
the measured mobility at room temperature. We find

Dg=8.1 ev

with 8=436'K and with

E=sr/&J (a=2.81X10 ' cm).

The results are shown in Fig. 4 for fs&»= r&'&/&(P+p)e

ignoring and including hole-hole scattering, respectively.
A discussion of these results and their comparison with
experiments will be given elsewhere. "We mention that
two parameters determine the relative inQuence of
hole-hole scattering on p, . the hole concentration and the
screening length (see also Fig. 1).

Intrinsic Germanium

The characteristic feature of an intrinsic semi-
conductor is the well-known exponential temperature

"R.Bray and D. M. Brown, Proceedhngs of the International,
Conference ore Seroccors&fuc&or Physics, Progge, 1960 (Czechoslo-
vakian Academy of Sciences, Prague, 1961),p. 60.

» J. Appel and R. Bray (to be published).
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electrons the following:

m, =0.22m,

f&, „=34000(80'K/T)f cm'/v-sec,

D,=4.1 ev.

The Wiedemann-Franz ratio for intrinsic germanium is
shown in Fig. 6. It is true in general that the quotient
i.„,/1.)1, provided that the ambipolar term is the
predominant one in the electronic heat conductivity.
Then, l.../I is determined primarily by electron-hole
scattering processes. The latter, however, affect the
momentum distributions of electrons and holes more
strongly by shifting both momentum distributions in
K space, than by randomizing the energies of electrons
and holes. We mention the fact that in the case of a one-
band conductor the Wiedmann-Franz ratio is always
reduced by electron-electron scattering.

2P
200 Wo eM 800 IOOO

T ('K)
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(I)
"e-e

Lt )
I.02—

I.OI

F&o. 5. (a) The first-order approximation for the mobility of
intrinsic germanium p&'&=a&'&/e(»+p+f&), ignoring intercarrier
scattering. (b) Ratio of the mobility &&, ,& & (lattice and intercarrier
scattering) and p&'&.

dependence of the charge carrier concentration. With
increasing electron-hole concentration, Coulomb scat-
tering processes will occur more often. However, since
the interaction potential becomes weaker with increas-
ing number of carriers, the effective scattering cross
sections decrease. In the limit of a degenerate electron
gas (metals), the. screening becomes so strong that
electron-electron scattering is unimportant for the
electrical resistivity, except at very low temperatures.
Therefore, we may expect that in an intrinsic semi-
conductor the relative inQuence of intercarrier scatter-
ing on the mobility does not monotonically increase as
the temperature rises. This is verified by Fig. 5 for the
case of germanium. The electronic mobilities p, ") and
p, ,('~ have been calculated as a function of temperature
assuming for holes the parameters given above and for

Transient Mobility of Ge

In an intrinsic semiconductor the carrier concentra-
tion increases with temperature. As the temperature
rises the scattering of electrons and holes by the thermal
lattice vibrations becomes more important, and, there-
fore, the relative inQuence of intercarrier scattering on
the mobility is only a few percent. However, it is
possible to increase the carrier concentration by several
orders of magnitude without changing the temperature
by exposing the crystal to high-energy primary electrons
for short time intervals (1—5 &«sec). These primary
electrons are supplied by an electron linear accelerator,
and the dynamical interaction between primary elec-
trons and crystal valence electrons results in the latter
being excited to the conduction band. The resultant
free-electron —hole pairs give rise to an increased con-
ductivity. Since the lifetime of the excess carriers is
usually quite short —approximately 20 +sec for an
initial electron concentration of 10" in g-G- the
transient conductivity is to be measured by special
experimental methods. "The result to be expected for
the transient mobility of germanium at 77'K is shown
in Fig. 7.
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APPENDIX A. PARAMETER INTEGRALS

The integrals occurring in Eqs. (23a) through (23g)
are defined as follows:

exp ( x2) xs n+&

XPln(1+2x'/y) —(1+y/2x') '1&Ex, (A1)

"E.G. Wikner (private communication); V. A. J. van Lint,
General Atomic Report GA-1827, 1960 (unpublished).
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I~(y) = exp( —x')x'"+'

XL2(1+y/x') ln(1+2x'/y) —4jdx. (A2)

Both integrals can be expressed in a closed form for
g&0.

APPENDIX B. TRANSITION METALS

In order to investigate in the framework of the Boltz-
mann equation the inQuence of interband electron-
electron 'scattering on the electrical and heat conduc-
tivities of transition metals, some difhculties must be
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FIG. 7. The mobility &&,.,&'& (lattice and intercarrier scattering) of
germanium as a function of the electron-hole concentration.

overcome which have been outlined before. ' One may
expect, however, that a theoretical consideration based
on the Boltzmann equation gives the correct tempera-
ture dependences of the transport coeKcients because
the low-frequency phenomena in metals can be de-
scribed comp/etely in terms of oppropriotely defined
quasi-particles, "the interaction of these quasi-particles
with impurities, and their interaction with each other
via a screened Coulomb potential. Therefore, also in
the case of metals, the electrical conductivity and the
heat conductivity in zero-order approximation are given
by formulas of the type presented by Eqs. (26) and (27),
respectively, with CJ&&ec (kr&T/f)' Thus, a co. ntribution
to the low-temperature resistivity which is proportional
to T', caused by interband electron-electron scattering,
should be accompanied by a heat resistivity contribu-
tion which is proportional to 2'. Experimentally, a T'
contribution to the electrical resistivity has been con-
firmed by %hite and %oods;20 however, a T' contribu-
tion to the heat resistivity has not been observed yet.

Fro. 6. (s) The Wiedemann-Franz ratio Lo& =&&&»/e &'&1' for &s J. S. Langer, Phys. Rev. 124, 1003 (1961).
intrinsic germanium. (b) Ratio of L, ,&'& (lattice and intercarrier a& G. K.White and S.B.Woods, Phil. Trans. Roy. Soc. (London)
scattering) and L('&. A251, 273 (1959).


