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the ordinary Raman process predominates, and where
1/reT7.

In the latter case, we could intercompare 1/75 and
1/7ro and eliminate the common interaction parameter
B from them. In this way, Eq. (24) could be tested.
This would not only test the present theory, but also
Eq. (18), i.e., the theory of the anharmonic relaxation
time of local modes. In other cases, a cruder test is
possible by taking A~B and intercomparing 7ro and 7p.

According to the theory of Montroll and Potts,* one
would expect local vibrational modes to occur at para-
magnetic ions which are substitutional impurities and
are either of lighter mass than the normal atom at that
site, or are bound to the neighboring atoms with forces
stronger than the normal forces. If a lighter atom was
also more weakly bound, such that the effect of the
mass was compensated by weaker bonds, a local mode
would not occur. In general, we know little about inter-
atomic forces, but it may be presumed that if the para-
magnetic ion is substantially lighter than the parent
atom (say half), a local mode will occur, and the present
considerations will apply. Unfortunately, none of the
paramagnetic ions in various environments, whose spin
lattice relaxation has been studied to date, fulfills this
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condition of local mode occurrance. Examples of cases
to which the present theory may apply are paramagnetic
ions from Ti through Cu in environments such as
cadmium sulfide, silver halides or in a suitable heavy
IIT-V compound (indium antimonide, grey tin).

The present treatment is valid only if the local mode
frequency wo is well separated from the continuum of
lattice modes. As wq approaches wp, the mode becomes
progressively less localized, and it is wrong to assume
that most of the strain energy lies within the unit cell
containing the impurity. Thus e¢® will be less than given

by (23), and Eq. (24) will likewise overestimate 1/7gq.

In the limit as wo becomes wp, €¢? and thus 1/7go vanish,
and the spin-lattice relaxation is given by the normal
theory. The relationship between wo/wp and the spatial
extent of the local mode is discussed by Montroll and
Potts.* It is readily shown that (23) remains a good
approximation provided wo is not less than about 1.1wp,
that is, provided the mass difference is not less than
about 209,
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An analysis is undertaken of the different possible types of simultaneous interactions between more than
two atoms or molecules in so-called molecular solids. The analysis is carried out on the basis of a double
series expansion: (1) in terms of linked exchange-clusters of increasing numbers of atoms; (2) as a series in
increasing orders of perturbation theory. The use of a multipole series for the electrostatic interactions
between different atoms is avoided by retaining this interaction in unexpanded form. Instead, an effective-
electron model is used with a Gaussian form for the charge distributions. The method is illustrated by com-
puting the exchange quadrupole moment of two argon atoms as a function of their distance. Calculations by
Rosen and by Shostak for first-order interactions between three helium atoms are extended to atoms of the
heavy rare gases. It is found that the relative magnitude of this many-body effect may amount to 209, of
the first-order interaction energy. Possible implications with respect to stability of the cubic structures of

heavy rare-gas crystals are briefly discussed.

INTRODUCTION

HE possible importance of simultaneous inter-
actions between more than two atoms, molecules,

or nucleons for the interpretation of properties of com-
pressed gases, liquids, solids, and nuclear matter has
from time to time aroused interest in the literature. In
molecular physics, this interest arose principally from a
possible role of many-body interactions in a solution to
the problem concerning the stability of the observed
* This research has been made possible through the support and

sponsorship of the U. S. Department of Army, through its
European Research Office.

cubic crystal structures of the heavy rare gases. Calcula-
tions based on pair interactions had revealed that a
hexagonal structure should be somewhat more favora-
ble, in contradiction with experiment. It seemed, there-
fore, that the pair assumption (additivity) of inter-
actions between rare-gas atoms could not be reconciled
with their crystal structure.

In contrast with nuclear problems, we possess for
molecular systems complete knowledge regarding the
origin of the forces between the particles, so that, in
principle, it should be possible to assess the significance
of many-body interactions for the properties of molec-
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ular solids, for example. Yet, the explicit calculations
which have so far been carried out were either based on
approximations which clearly ceased to be satisfactory
at relatively small interatomic distances, or they con-
cerned systems of little interest.

As an example of the first category, we mention the
so-called triple-dipole effect for three rare-gas atoms,
evaluated by Axilrod and Teller! and by Axilrod.? This
calculation concerns the induced-dipole interaction in
third order of perturbation theory between three non-
overlapping distributions of charge. As such, it con-
stitutes simply an extension of van der Waals inter-
actions, as calculated by London, to third order. But
many-body interactions occur already in lower orders of
perturbation theory (induced by electron exchange); in
addition the use of a multipole expansion for the electro-
static interactions becomes increasingly less accurate as
the distances between the atoms decrease. In fact, such
series usually do not converge at all.*~® Tredgold and
Ayres® have modified this calculation by using a Gaus-
sian distribution function for the negative charge cloud
of each atom, and treating the overlap of charge dis-
tributions of neighboring atoms in a classical way. This
adds still another source of error, since at small distances
the interactions are mainly of exchange type.

The same type of third-order effect was evaluated
independently by Muto’ using an oscillator model for
the atoms, and later extended by Midzuno and Kihara.®
Bade® computed the dipole-dipole part of the London-
van der Waals interaction energy in the general order of
perturbation theory, without exchange, using a model
which represents each molecule as an isotropic harmonic
oscillator. His results were applied to a linear chain of
atoms by Bade and Kirkwood.!

On the other hand, first-order forces (exchange,
chemical, or valence forces) are predominant when the
interatomic distances are small. Margenau® had already
pointed out that they are of a many-body type. Such an
effect was evaluated for an equilateral triangle, and a
linear symmetric array, of three helium atoms by
Rosen.”? Shostak® repeated the calculations for, the
linear array, using molecular orbitals. Unfortunately,
helium is of no direct interest as far as its crystal struc-

1 B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943).
2 B. M. Axilrod, J. Chem. Phys. 17, (1949); 19, 719, 724 (1951).
3 F. C. Brooks, Phys. Rev. 86, 92 (1952).
74 (1} Dz;lgarno and J. T. Lewis, Proc. Roy. Soc. (London) A69,
57 (1956).
5 L. Jansen, Physica 23, 599 (1957); Phys. Rev. 110, 661 (1958).
¢ R. U. Ayres and R. H. Tredgold, Phys. Rev. 100, 1257 (1955);
Bull. Am. Phys. Soc. 1, 292 (1956).
7Y. Muto, Proc. Phys.-Math. Soc. Japan 17, 629 (1943).
(13 Y.) Midzuno and T. Kihara, J. Phys. Soc. Japan 11, 1045
956).
9 W. L. Bade, J. Chem. Phys. 27, 1280 (1957).
( 10 \;\; L. Bade and J. G. Kirkwood, J. Chem. Phys. 27, 1084
1957).
11 H, Margenau, Revs. Modern Phys. 11, 1 (1939).
12 P, Rosen, J. Chem. Phys. 21, 1007 (1953).
13 A. Shostak, J. Chem. Phys. 23, 1808 (1955); see also
P. O. Lowdin, 4bid. 19, 1570, 1579 (1951) (ionic crystals).

1799

ture is concerned, since this element crystallizes in a
hexagonal lattice, in agreement with the result of calcu-
lations based on the assumption of pair interactions.

It is, nonetheless, of interest to note the sigr of the
relative three-body interaction energy; both in the
third-order (Axilrod-Teller) and the first-order (Rosen-
Shostak) effects this sign is minus for an equilateral
triangle, and plus for a linear array of atoms. This
means that for an equilateral triangle the attraction (or
repulsion) is weakened, compared to a simple sum over
three isolated pairs, whereas the interactions for the
linear array are stronger than the pair assumption
indicates.

If exchange effects are taken into account, then many-
body interactions occur also in second order of pertur-
bation theory, i.e., in the same order as the van der
Waals forces.*1® In this case we have to do with a triplet
of atoms, two of which overlap, whereas exchange with
the third atom is not considered. Calculations were
carried out on the basis of a Gaussian model for the
electron charge distributions of the atoms, for the dipole-
dipole and dipole-quadrupole components of the inter-
actions. Again, the use of a multipole series renders the
results unreliable for small interatomic separations, so
that quantitative conclusions regarding crystal stability
cannot be drawn.

For completeness, we mention many-body interac-
tions between atoms or molecules which are originally in
excited electron states. They are of importance at very
high temperatures, and have been discussed by Dahler
and Hirschfelder.!® Such effects, together with additional
complications arising in case the charge distributions
are not spherically symmetric,'*'® will not be considered
in this paper.

In view of the various shortcomings of the existing
calculations, it seems useful to devise a systematic
analysis of all possible types of many-body interactions,
and to carry out their evaluation in a consistent manner,
avoiding assumptions which invalidate their application
to, especially, the stability of rare-gas crystal structures.
Since the interactions in molecular crystals are very
weak compared to those in metals or in ionic crystals,
we will use a perturbation expansion starting from free-
atom wave functions, but avoid using a multipole series
for the perturbation.

LINKED EXCHANGE-CLUSTER EXPANSION

Starting from ground-state free-atom wave functions
Yoy, @b, Qo * * -, Where a, b, ¢, - + - denote atoms
which are antisymmetric with respect to exchange of
electrons of the same atom, we write the zeroth-order
wave functions, except for normalization, of the as-

1 R, T. McGinnies and L. Jansen, Phys. Rev. 101, 1301 (1956).
151, Jansen and R.T. McGinnies, Phys. Rev. 104, 961 (1956);
R. T. McGinnies, Ph.D. thesis, University of Maryland, 1957
(unpublished).
(11“ J.) S. Dahler and J. O. Hirschfelder, J. Chem. Phys. 25, 986
956).
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TaBLE I. Possible types of many-body interactions.

Order per-
Exchange turbation
cluster theory
monatomic first
diatomic second

triatomic third

sembly of atoms as (Slater determinant)
e@ =3 2(—I)*Prpagpper -, (1

an antisymmetric sum of products of atomic wave func-
tions; Py exchanges electrons between different atoms,
or it denotes a combination of inter- and intra-atomic
exchange.

Relative to a fixed association of electrons with the
different atoms, each P, in (1) can be written as a
product of P’s involving exchange clusters of atoms.
For example, if P, denotes exchange of electrons 1 and 2
between atoms ¢ and b, 2 and 3 between atoms b and ¢,
5 and 6 between 7 and #, then we call the triplet (abc) a
linked exchange cluster ; the pair (mn) is also such a linked
cluster. If we follow a perturbation method for the
evaluation of any property of the solid, then we will in
principle obtain contributions due to such exchange
clusters in every order of approximation. These con-
tributions can be ordered according to the largest cluster
which they contain: monatomic terms (without ex-
change), diatomic terms (only pair exchange), triatomic
contributions involving triplets of atoms but no larger
clusters, etc. With increasing cluster size we describe the
solid in terms of units of increasing numbers of atoms:
single atoms, pairs, triplets, etc.; this procedure amounts
to an increasing delocalization of electrons in the solid.

In this way, a double series expansion is obtained:
one, in terms of exchange clusters of increasing size, and
one, in increasing orders of perturbation theory. For
molecular solids this procedure may be expected to yield
convergent series in both directions. In fact, it is con-
venient to define molecular solids by therequirement that
both the cluster expansion and the perturbation series
converge rapidly for any property of interest. Such a
solid can be expected to show molecular characteristics
to a large extent.

The different possible types of many-body inter-
actions can now be indicated. In Table I, we place to the
left the exchange clusters of increasing size, to the
right the different orders of perturbation theory. A
straight line between left and right columns connects a
cluster term with the lowes? order of perturbation theory
in which many-body interactions occur.

If we use two sets of numbers 1, 2, 3, - - -, to charac-
terize a type of many-body effect, of which the first
number denotes the cluster size, the second the order of
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perturbation theory, then the Axilrod-Teller'? effect is
of type 1-3, the second-order (van der Waals) many-
body term!#'5 of type 2-2, and the Rosen-Shostaks-?
calculation of type 3-1. The common #wo-body inter-
actions may also be indicated in this manner: 1-2, i.e.
van der Waals forces, and 2-1, i.e., repulsive interactions
between closed shells at small interatomic distances
(exchange forces).

A GAUSSIAN EFFECTIVE-ELECTRON MODEL

The task is now to evaluate these different types of
many-body interactions. In principle, accurate knowl-
edge of atomic wave functions is required to obtain
precise results. However, if we have in mind an applica-
tion to the stability problem for crystals of the heavy
rare gases, then the use of a more approximate model
may be justified, since the effect can depend sensitively
only on some general characteristics of the wave func-
tions (‘“size” of the atom, plus eventually symmetry
properties).

We will simplify the problem by means of the follow-
ing assumptions:

(1) Only single interatomic exchange of electron
pairs is taken into account. Effects due to exchange of
two or more pairs of electrons between the same two
atoms are therefore not considered.

(2) Contributions due to coupling of inter- and intra-
atomic exchange are neglected. .

(3) The electron charge distribution of an atom has
spherical symmetry.

The assumptions (1) and (2) must be applied with
care. In many cases the overlap integrals between the
atomic orbitals of the constituents are not small, imply-
ing that higher order overlap and exchange effects may
not be neglected.’” In the case of rare-gas crystals,
effects due to (1) [or (1) and (2)] were found to be
negligible, except for very small interatomic distances,
for helium and neon.***5 The validity of assumption (3)
is somewhat in doubt for atoms of the heavy rare gases,
following calculations by Linnett and Poe,'8 but quanti-
tative results are not available.

On the basis of the above three assumptions, the
following model can be constructed. We sum over single-
exchange effects between all possible pairs of electrons
(parallel spins) of two, or three, atoms. The total effect
is then replaced by exchange between one “effective”
electron on each atom. The problem becomes thus
formally the same as that concerning hydrogen atoms
with parallel spins. The charge distribution for the -
effective electron is chosen to be of Gaussian form

p(r)= (B/")? exp(—Fr*); @)

17 Ct. P.-O. Lowdin, Advances in Physics, edited by N. F. Mott
(Taylor and Frances, Ltd., London, 1956), Vol. 5, p. 1, for a
general discussion of this difficulty.

18 J. W. Linnett and A. J. Poe, Trans. Faraday Soc. 47, 1033
(1951). See also J. Cuthbert and J. W. Linnett, Trans. Faraday
Soc. 54, 617 (1958).
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r is the distance from the effective electron to its
nucleus, 8 is a parameter. Values of 8 for atoms of the
heavy rare gases are determined empirically, by cal-
culating second-order dipole interactions between two
Gaussian atoms at large distances and comparing the
result with an empirical potential function.!® In this way
we fit the outer part of the Gaussian distribution. For
short-range interactions the inner part of the charge
distribution also plays an important role, so that it
becomes necessary to compare such interactions between
Gaussian atoms with the repulsive part of an empirical
potential function. Such a comparison will be carried out
in a following section.

EXAMPLE: THE EXCHANGE QUADRUPOLE MOMENT
OF A PAIR OF ARGON ATOMS

To illustrate the use of the Gaussian model, we
calculate the electric quadrupole moment of a pair of
argon atoms, a distance R apart. The exchange repulsion
between closed shells will give rise to a small net positive
charge in the region between two argon atoms, and a net
negative charge elsewhere. This effect gives rise to
exchange multipole moments of even order, of which we
determine the first one, an electric quadrupole moment.

Consider two Gaussian atoms at interatomic distance
R. The charge distribution of this pair has cylindrical
symmetry about an axis 2, coinciding with the direction
of R. For such cylindrically symmetric distributions of
charge we can define scalar multipole moments of
arbitrary (positive) order?; the first nonvanishing mo-
ment is in this case a quadrupole, defined by

Q=(Tiesd)—(Liewd), (3)

where the x axis is perpendicular to z, but otherwise
arbitrary. For two Gaussian atoms ¢ and b, we have two
electrons 1 and 2, and the analogy with the case of two
hydrogen atoms with parallel spins makes it possible to
write the zero-order wave function as

YO ={0u(1)0p(2)— 0a(2) e(1)}/[21—2) T, (4)

where ¢?=p, the Gaussian charge density of an atom,
and A is the overlap integral, A= /" ¢, ¢ud7. The direct
terms in ¥©? give, of course, no contribution to Q or to
any other permanent multipole moment, so that we are
left with the exchange terms (omitting normalization)
—20¢4(1) 03(1) 9a(2) 5(2).

We denote the z coordinates of the position vectors of
electrons 1 and 2, with respect to the center of the line
connecting the two nuclei, by 2z and 2., respectively.
Then we obtain

i ezd)=[4el;A—4e(R/2)2A27]/2(1— A2),
where

I,= /22¢a¢bd7, (5)

(Zz eixi2>= 4812A/2 (1 - Az),
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with

Ig=/x2goa<pbdr. 6)

The expression for the scalar quadrupole moment of
the pair (ab) of argon atoms becomes with (3), (5),
and (6),

0= end)— (T eav)
=[4eA(I3—1)—4eA2(R/2)2]/2(1—A%). @)

For a Gaussian distribution I3=1,, so that then
Q=—2¢[A*/ (1—A") J(R/ 2™ ®)

This quadrupole moment is the same as that caused
by an effective negative point charge

— (0e)=—e[A%/ (1—A%]

at nucleus ¢, the same charge at nucleus b, and a positive
charge 2(8e) at the center between the two nuclei.

Values of A2/ (1— A?) can be determined with the help
of those of the parameter 3 in the Gaussian distribution
function, for the heavy rare gases.!®* For nearest neigh-
bors in solid argon A2/(1—A2)=0.06 and R/2=1.92 A.
The resulting value for the scalar quadrupole moment
of a pair of nearest-neighbor argon atoms is then

0=2.14X10728 esu=0.45X 10"1% cm?,

i.e., a value of the same order of magnitude as for a
nitrogen molecule. This large value is not due to a large
displacement of charge, but in the first place to the large
value of the distance between two argon atoms, which
enters as the square in the expression for the quadrupole
moment (compare a nitrogen molecule: R/2=0.55 A).

In view of the approximations which are inherent in
this type of model, quantitative conclusions do not seem
to be justified. The result indicates, however, that effects
due to diatomic exchange clusters of heavy rare-gas
atoms may be significant for the determination of some
solid-state properties.’

THE TRIATOMIC FIRST-ORDER (3-1)
MANY-BODY EFFECT

The task is now to evaluate the different possible
types of many-body interactions in first, second, and
third orders of perturbation theory. The remainder of
this paper is devoted to a calculation of the 3-1 effect,
involving a cluster of three atoms, in first order of
perturbation theory. It was mentioned earlier that
Rosen and Shostak computed such interactions for
three helium atoms. Helium is, however, of no direct
interest as far as its crystal structure is concerned, and
a direct extension of the methods used by these authors
to the heavy rare gases would be very complicated, since

19 This quadrupole effect may possibly be observed by means of
spectra emitted by trapped radicals in rare-gas matrices, e.g., from
excited nitrogen atoms or excited alkali atoms in solid argon.
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detailed knowledge of the wave functions is required.
We will, therefore, make use of the Gaussian model : one
effective electron per atom, with a charge density given
by (2), and variable 8. _

Consider such a triangle (abc) of atoms. The zero-
order wave function is (Slater determinant)

YO=[31(1—Au2) I det{ (1) 05(2) :(3)}, (9)

with
Aab(:2=Aab2+Auc2+Ab02~'2AabAacAbc' (10)

The perturbation Hamiltonian H,s.' can be written as
Hoo'=Hop'+Ho +H'.
For the first-order energy we have to evaluate
Ey=(Hap)=(Hot' )+ (Ho )+ (Hs.).

After substituting the expressions for H,;' and ¥©
into E, the following result is obtained:

(Hav')/ €
1 1_%(Aa02+Ab02)
=——2————Gouw
-Rab 1_Aabc2
Aab_AacAbc Aac“'AabAbc
2 Gab(a)t Gac(b)
I—Au602 l—Aabz;2
Abc AabAac .
bc(a)+ (Aabub—Aaabb)
I—Aabc 1_ alw2

AaC
+( )(Aabbc_Aabcb)
1 - Aabc2

Abc *
+< )(Aaabc—Aubac), (11)
1_Aab02

where the symbols G and A are abbreviations for the
following integrals:

PaPd PaPa
Gab(c)= d'r, Gaa(b)= dT,
7e Ty

etc., with 7.=distance between an electron and nucleus
of atom ¢, r,=distance between an electron and nucleus
of atom b, and

o(1) o(2) a(1) 0. (2
Aamz//so()so(r)w()ﬂ)d p

T147T2,
12

Aaabc=// ‘Pa(l)ﬁpa(z)ﬁob(l)‘f’c(z)d d

T1072,
712

etc., with 7;;=distance between electrons 1 and 2.
The first-order energy between a and b, without ¢
present, is
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TasLE II. List of integrals for E;.

Value for Gaussian

Integral distribution
Aat? " exp(—p2Ra?/2)
Asl’ exp(—B2Ra/2)
Ab02 exp(_ﬁszcz/z)
Asbt=Aa 2t Acct+Ap?— 2AapAaclbe
Gaa(v)=Gba) (28/+/7)F (6?Rai?)
Gov(@y=Gan(p) (28/+/7)AatF (62Rar?/4)
Gro(ay (ZB/VT)Ach(ﬂZRu(DC)g)
Gac(h) (28/+/7)AacF (B2Rb(acr?)
Aabab B(Z/‘"‘)’F(ﬂzkabz/z)
Aaavp 5(2/7")*43052
Aasbac ﬂ(Z/W)QAch(ﬂzka(bc)z/z)
Aabed /3(2/7r>§AacF(ﬂsz(uc)2/2)
A aabe ﬁ(z/ﬂ')iAabAacF(ﬂszcz/s)
Aabbe B(Z/W)*AabA ch(ﬂzRap2/8)

1 1
(Ho')® )= ——
Rap 1-A0¢

X [ZGaa(b) - 2AubGab (a) ™ (A abab™ A aabb)j,
The three-body component of (H,s')/¢? namely
{(Hat")—(Ha') O}/ ¢,

is obtained by subtracting (12) from (11). We do not
need any further equations, since (H,."), for example, is
obtained from (11) by replacing b by c.

The integrals G and 4 have, for Gaussian distribu-
tions of charge, been evaluated by Boys? For the
atomic wave functions we take

p=pi=(8/m} exp(—F43/2).

It is convenient to use the following abbreviation:

(12)

F<x>=-vl—x [ " exp(—y)dy;

also, we denote by Ra .y the length of the line connect-
ing the nucleus of atom a with the center of the line Ry,
etc. Table II contains a list of the integrals occurring in
the equation for E;.

MACHINE CALCULATIONS

The computations were carried out on the digital
computer Bull Gamma AET (word length: 12 digits;
memory access: 172 usec; type of storage: magnetic
drum of 8192 memories). After calculating the argu-
ments of the F and A functions for various triangular
configurations, these functions were evaluated by inter-
polation, using Tables of the Error Function and its
Derivative (Natl. Bureau of Standards, Washington,
1953). The interpolation was carried to the fifth term of
a Taylor expansion; this appeared sufficient for the

2 §. F. Boys, Proc. Roy. Soc. (London) A200, 542 (1950).
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accuracy desired. The intermediate results were trans-
mitted by punchcards to the main program, i.e., the
computation of (Hgs.'), (Hase' )@, their difference, and
the relative 3-body component of the first-order inter-
actions, for values of B8R from 1.5 to 3.5, in intervals of
0.1, for each triangular configuration.

For values of SR larger than about 3 the results are
somewhat irregular, since the different terms in Egs.
(11) and (12) are then very small, and the sums and
differences of a large number of such terms have to be
determined. The program was devised in such a way
that different triangles require only slight modifications.

RESULTS FOR SOME SPECIAL TRIANGLES

The three-body, first-order interaction energies were
evaluated for a number of special triangles, among
others, an equilateral triangle, a 120°-symmetric array,
and a linear symmetric array. These three types of
triangles occur among those formed by a central atom
and two of its twelve nearest neighbors in the cubic, and
hexagonal, close-packed lattices. The relative three-
body contribution is

((Hubcl>"_<Habo,>(0))/<Habc’>(O); (13)

where (Hape') @ =(Hap' ) O +(Hao')O+(Hp)®, a sum
of first-order energies over three ¢solated pairs of atoms.
The relative three-body component (13) is a function
only of the dimensionless parameter SR, where R is the
smallest distance between neighbors on the triangle.
Calculations were performed for the three types of

This range covers the SR values for neon, argon, kryp-
ton, and xenon, which are 3.44, 2.40, 2.10, and 1.99,
respectively.!® The results are collected in Fig. 1.

The main characteristics of the 3-body interactions
are:

(1) Equilateral triangle. The relative 3-body inter-
action is practically independent of BR, i.e., of the size
of the triangle (at constant 8). It amounts to about 209,
and its sign is minus, meaning that the total first-order
interaction is weaker (less repulsive) than obtained on
the basis of an additive sum-over-pairs. The sign agrees
with the result obtained by Rosen for three helium
atoms;

(2) 120°-symmetric array. For this configuration the
relative 3-body component is only at most 59 of the
additive first-order interactions and its sign is plus,
signifying slightly enhanced repulsion compared with
the sum over three isolated pairs;

(3) Linear symmetric array. The relative 3-body
interaction is very nearly decreasing linearly with in-
creasing BR, from 209, at BR=1.5 to a few percent at
BR=3. Its sign is plus, which means that the effect
enhances the repulsion between the three atoms, com-
pared with an additive sum-over-pairs. The sign agrees
with that obtained by Rosen and by Shostak for three
helium atoms.
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Fic. 1. Relative 3-body, first-order interactions for an equi-
lateral triangle, a 120° symmetric, and a linear symmetric array,
as a function of gR.

VALIDITY OF GAUSSIAN MODEL AT
SMALL DISTANCES

At small interatomic distances the inner part of the
charge distribution plays an important role in the
determination of the repulsive interactions between
closed shells of electrons. Since the values for the
parameter 3 in the Gaussian distribution were deter-
mined empirically from a comparison with long-range
interactions, it is of interest to check whether or not 8
changes appreciably with decreasing distance between
the atoms. To this end we use the repulsive part of a
modified Buckingham potential,

E(r)=[¢/(1—6/a)](6/a) exp[a(1—R/Ry)],

with values of ¢, @, and R, for neon, argon, krypton, and
xenon as given by Hirschfelder, Curtiss, and Bird? as an
empirical basis, and compare the results with (H, )@,
Eq. (12), taking for 8 the values for the heavy rare gases,
and varying R. The results of this comparison are given
in Fig. 2.

It is seen from Fig. 2 that the Gaussian model yields
excellent values for the repulsive potential between two
neon atoms, but that with increasing atomic weight the
two curves deviate more and more. This implies that 8

21 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular
Theory of Gases and Liquids (John Wiley & Sons, Inc., New York,
1954), Chap. 12.
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for argon, krypton, and zenon sncreases somewhat as R
decreases, indicating a certain ‘“quenching’ of the three-
body effect. It should be remembered, however, that
with decreasing R multiple-exchange effects become
more and more important, rendering the single-exchange
model less and less valid. For neon, argon, krypton, and
xenon, the nearest-neighbor distances in the crystals
are 3.20, 3.84, 3.94, and 4.37 A, respectively.

CONCLUSIONS

(1) It is possible to classify the various many-body
interactions between atoms in “‘molecular solids” on the
basis of a double series expansion ; one in terms of linked
exchange clusters of increasing size, and one in increas-
ing orders of perturbation theory. Molecular solids may
then be defined by the requirement that both expansions
converge rapidly.

(2) With the help of a Gaussian effective-electron
model, the triatomic first-order 3-body interactions
given by Rosen and Shostak for helium atoms may be
extended to the heavy rare gases. Both for an equilateral
triangle and a linear symmetric array the sign of the

7
Sy R In A

relative 3-body interaction agrees with previous results
for helium.

(3) For a single triangular configuration the relative
3-body interaction may amount to 209, of the additive
first-order energy.

(4) Values for the parameter 8 of the Gaussian dis-
tribution, obtained from a comparison with long-range
interactions, give excellent values for short-range forces
between two neon atoms. For argon, krypton, and
xenon B appears to increase somewhat with decreasing
interatomic distances.

In a following paper the foregoing results will be
applied to the stability problem of crystals of the heavy
rare gases, and in which the diatomic second-order (2-2)
many-body interactions will be evaluated.
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