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Localized lattice modes can contribute to the strain at a paramagnetic impurity and thus influence the
spin-lattice interaction. Their contribution to the spin relaxation is estimated. It is governed by the rate
with which a local mode attains equilibrium with the phonon continuum, estimated in a previous paper.
Studies of the spin relaxation of paramagnetic substitutional impurities, lighter than the parent atom,
should yield information about the nature of local modes.

spin-lattice relaxation of a paramagnetic impurity
associated with this defect site.

It is not possible to have a spin-phonon interaction
involving a local mode so as to conserve energy. The
only conceivable process is one in which a spin-Qip is
accompanied by the absorption and subsequent re-
emission of a localized phonon. If the local mode fre-
quency were sharp, this process would also violate
energy conservation. It has been shown, however, that
the local mode frequency is broadened by anharmonic
interactions with the phonons of the lattice wave con-
tinuum', even at zero temperature a localized phonon
can split into two ordinary phonons, and this gives a
broadening of the local mode frequency of about 1%%u~.

The broadening is therefore larger than the spin energy,
and energy conservation is relaxed su%ciently to allow
this process to occur.

To take account quantitatively of how the an-
harmonic broadening of the local mode permits the
spin-lattice interaction with absorption and emission of
a local phonon, we consider their combined effect to the
next order of perturbation theory. A local phonon and
the spin combine; in the intermediate state we have the
same local phonon, but the spin is inverted, and in the
final state the spin stays inverted, and the local phonon
has split by anharmonic interaction into two phonons
of the Debye continuum. Since there is only one inter-
mediate state, there is a one-to-one correspondence
between the over-all second order matrix element and
the matrix element for the anharmonic interaction be-
tween a local phonon and two lattice-wave phonons.
Thus the contribution of local phonons to the spin-
lattice relaxation is related in magnitude to the an-
harmonic relaxation time of the local mode.

I. INTRODUCTION

N the theory of spin-lattice relaxation, one considers
& - the effect of a strain in the immediate vicinity of a
paramagnetic ion on the spin Hamiltonian, and uses
this perturbation Hamiltonian to calculate the spin
relaxation by the usual perturbation method. ' It is also
usual to express the thermal strain as a superposition
of lattice waves, and in this way one can describe spin-
phonon interaction processes. To lowest order, the com-
ponent linear in strain gives rise to the direct, or one-
phonon processes, while the component quadratic in
strain gives rise to two-phonon or Raman processes.

In many cases, the paramagnetic ion is at a defect
site, and since the lattice vibrations are modified by the
defect, one is not justified in using the usual relation
between strain and amplitude of a lattice wave, which
holds in a.perfect crystal. In view of the phenomeno-
logical nature of the theory, one would, of course, be
very hard put to isolate the error thus introduced from
the consequences of an incorrect choice of the strain
dependence of the spin Hamiltonian, except when the
temperature dependence of the spin-lattice relaxation
is modified in some characteristic and unusual manner.

Thus, Castle et c/. ,' have considered the effect of the
excess mass of the substitutional chromium ion in
magnesium oxide on the temperature dependence of the
Raman spin lattice relaxation, while the effect of loosely
bound interstitial ions is evident in the spin-lattice
relaxation of the E&' and E2' centers in quartz. '

Montroll and Potts4 have pointed out that in some
cases, in particular in the case of a substitutional im-

purity which is lighter than the parent atom, the
character of the lattice vibrations is particularly
strongly modified, and a new lattice mode arises, which
is localized near the impurity, and has a frequency above
the acoustic band. Since the energy of the localized mode
is concentrated in the immediate vicinity of the defect,
one would expect it to modify very substantially the

II. INTERACTION %PITH TRAVELING VfAVES

I.et the spin-lattice interaction Hamiltonian be

H'=Ac+Be,

where e is the strain of the unit cell surrounding the
paramagnetic ion, and H' is the change in the energy
difference of the two spin states as a function of strain.

A lattice wave of wave-vector p and frequency co

' P. G. Klemens, Phys. Rev. 122, 443 (1961).

' J. H. Van Vleck, Phys. Rev. 57, 426 (1940); s&& &9, 724
(l941). R. D. Mattuck and M. W. P. Strandberg, Phys. Rev.
119, 1204 (1960). R. Orbach, Proc. Phys. Soc. (London) 77,
821 (1961).

2 J. G. Castle, Jr., D. W. Feldman and I'. G. Klemens, in
Advancer te QNuetlst Electrorttcs, edited by J.R. Singer (Columbia
University Press, New York, 1961), p. 414.' J. G. Castle, Jr., D. W. Feldman, and R. S. Weeks (private
communication).' E. W. Montroll and R. B. Potts, Phys. Rev. 100, 525 (1955).
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causes a displacement at a site x of

g gee $ (gee $1Q ~ X)
7 (2)

where Dos=os co—' E—/fs, x= Aos/kT, etc. , and the sum-
mation is over all wave vectors, but no longer over
polarizations, If E(&kT, so that x x' for the important
phonons, we obtain after summing over all wave vectors,
and taking account of the resonance factor in (9), that

where G is the number of unit cells in the crystal, a the
polarization direction, and b the amplitude. The strain,
apart from numerical factors of order unity, is given by rg x'tv' (10)

e= P e(q)qe'& *,
(3G)& p

where a(q) =be'"', and is given in terms of the number

of phonons N as either matrix elements

where qD is the Debye limiting wave number. Since
rj=xq~T/8, and since (ago)'=3(2sr)'/4sr, we can re-
write (10) in the form

dx, (11)
(ee 1)s

(4) where to& ——ko/fs is the Debye frequency. The function

being an annihilation or creation operator respectively.
The factor 1/V3 was included as a root-mean-square

value of the direction cosine between e and q.
If s is the fraction of paramagnetic ions in the upper

spin state, then the rate of change of s due to spin-

phonon Raman interactions can be written as

ds—= g A, , L(1—s) (N+1)N' —sN(1+N') j, (5)
69 a q.

'

x g6ea

(12)

has been tabulated'; for small X (i.e., T) fi), it becomes
X'/5, for large X, it tends to a limiting value of 732.4.
Thus 1/vs' varies as T' at temperatures below about
0/10, and as T above about 0/2. This result has, of
course, been obtained previously. '

Similar considerations apply to the direct processes,
which arise from the term Ae in (1).One obtains

where the summation is over all pairs of lattice modes,

N and N' are the number of phonons in modes q and q',

and the coefFicient A~, ~ vanishes unless

—=32+' —AD (13)

where E is the energy difference between the two spin

states. In equilibrium, when s and X are given by the

appropriate distribution functions, the expression in the

square bracket of (5) vanishes for each pair q, q' sepa-

rately. If the phonon distribution is kept at equilibrium

but s deviates from equilibrium by bs,

ds—= —lsd A, , [N+N'+2NN' j
dt

Ke dedne the Raman relaxation time rg as

Comparing the direct and the Raman process, we
find that at lowest temperatures the former predomi-
nates, at higher temperatures the latter, and that the
two are comparable at a temperature

T=' (A/8) &0'(E/k) l.

One would generally expect A and 8 to be of comparable
magnitude, since in (1) the quadratic term should be
comparable to the linear term for unit strain. Thus,
putting (A/8)l 1, T,=ss8l(E/k)&. In most microwave
experiments, E/k 0.5'K.. In the case of Cr'+ in MgO,
Castle et a/. ' found T,=30'K. In this case, 8=750'K,
so that according to (14), T, should indeed be around
30'K. This agreement with the above crude considera-
tions is satisfactory.

7'g 8$ df

%e use second order perturbation theory to calculate

A q q~ in terms of the interaction Hamiltonian Be', where

e in turn is expressed in terms of (3) and (4), and obtain

after some reduction

III. INTERACTION WITH LOCALIZED MODES

Consider a two-stage process going from states i to k
via an intermediate state j; let hE be the energy-di6er-
ence between state j and states i and k, respectively;
this is equivalent to going from state i to k with an

(qq')' 1 cosDpet—282

rg 6 a, c' M2cocv' thaP

e*+e" W M Rogers and R. L. Powell, Tables of Trassporf Integrates,
(9) National Bureau of Standards Circular No. $95 ('p S Govern

(e'—1)(e"—1) ment Printing OfFice, Washington, D. C., 1958).
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effective perturbation Hamiltonian

I

jeff
i hE

H;I,'= a
1VO (Xi+1)(F2+1)

(No+1)Xi/2
(16)

depending on whether a local phonon is annihilated or
created, and where N p, X~, and Ã2 are the number of
phonons in the local mode and the traveling modes.
The relaxation time for the local mode is then inversely
proportional to Pi(H;q')', i.e.,

where B;,', H, I,
' are the perturbation Hamiltonians

linking i and j, and j and k, respectively.
As initial state, we take the local mode excited with

one phonon, and the ion in a given spin state. As inter-
mediate state, we need to consider only one state, i.e.,
with one phonon in the local mode, and the spin in-
verted. The interaction Hamiltonian is the Raman term
II; =Be', where ep is the strain due to one local phonon
(expressed as appropriate matrix elements). The final
state is one with the spin as in the intermediate state,
but with the local phonon removed and, instead, two
traveling lattice modes excited by an additional phonon
each. The interaction Hamiltonian for that second step
arises from the cubic anharmonicities (involving three
phonons at a time), and is the same as was used to
describe the relaxation to equilibrium of excess energy
in the local mode. '

Ke can write B;q' in the form

2 Bep' '

rap rp
Ãp, (21)

where ep' is the square of the strain at the paramagnetic
ion due to one local phonon, and Sp is the equilibrium
average number of local phonons.

One can estimate ep' from the condition that half the
energy of a localized vibration is potential energy, and
since the displacement falls o6 exponentially very
rapidly, practically all that energy resides in the volume
enclosed by the nearest neighbors of the defect. Thus if ~

is the elastic. modulus describing the localized vibration,

-~up ——&eo283, (22)

where a' is the volume per atom. Now the velocity of
sound is given by e= (~a'/M)&, so that ~a'= Ms', and

Lop
e 2~

Mp'
(23)

For most solids Aa&ii/Mv'= 1/100, and since &oo and &uD

of comparable magnitude, co~0.1.
Substituting (23) into (21) we obtain for the con-

tribution of localized modes to the Raman relaxation

1 rheo 'rB '
i0O( ]

—e "'r
&E

(24)

and at low temperatures, where E~&&1, S2(&1 and
A iXI=Np this simply becomes 2Xo5s. Thus the relaxa-
tion time for spins by the two-stage Raman process
involving local phonons is

—~ a' g (Si+Aig+1),
gp k

and at absolute zero, where S~ and E2 vanish, one
obtains'

LOp GDp—~
COp

7'p Afar co~
(18)

where coo is the circular frequency of the local mode.
There is a one-to-one correspondence between every

final state in the sum (17) and the final state in the
two-stage process considered here, since the spin energy
is negligibly small compared with the phonon energies.
The effective matrix element (15) is the matrix element
(16) multiplied by [Beo'/hE j. Since we must consider
also inverse processes, the rate of change of s, the frac-
tion of ions in the upper state, due to each set of Anal
states, is proportional to

sA p(1+iVi) (1+1V2)—1ViX2(1+1VO) (1—s). (19)

This expression vanishes at equilibrium. If s deviates
from equilibrium by bs, the term in bs is proportional to

est Ep(Ãi+X2+1)+XiE2$, (20)

where 80=

Julep/k

and E=AE is the spin energy.
Equation (24) is an approximation which holds only

at temperatures well below 80/2. At sufficiently high
temperatures, one can show that 1/rrio varies as T', in
the same manner as 1/rid, and makes a comparable
contribution to 1/r.

By comparing (24) and (11) one can estimate that
in typical cases (i.e. , 80 8, E/k p 81/1000) these two
Raman processes become comparable at a temperature
of about 8/20; the ordinary Raman process predomi-
nates below that temperature, the exponentially in-
creasing local mode Raman process above that
temperature.

Since the direct process predominates over the Raman
process below T, given by (14), and since T, is typically
of order 8/20 or somewhat lower, we can expect the
temperature dependence of 1/r to show two or possibly
three regions: the direct region at very low tempera-
tures, where 1/v ~ T; the local mode Raman regionat
higher temperatures, but generally below room tempera-
tures, where 1/r ~ e ~'lr, and in some cases, depending
on the value of the microwave frequency used, on the
values of H and Hp, and on the relative values of A and 8,
there may be a significant range of temperatures where
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the ordinary Raman process predominates, and where
1/r rc T'.

In the latter case, we could intercompare 1/rg and
1/r~ sand eliminate the common interaction parameter
8 from them. In this way, Eq. (24) could be tested.
This would not only test the present theory, but also
Eq. (18), i.e., the theory of the anharmonic relaxation
time of local modes. In other cases, a cruder test is
possible by taking A~8 and intercomparing r«and ~D.

According to the theory of Montroll and Potts, ' one
would expect local vibrational modes to occur at para-

agnetic ions which are substitutional impurities and
are either of lighter mass than the normal atom at that
site, or are bound to the neighboring atoms with forces
stronger than the normal forces. If a lighter atom, was
also more weakly bound, such that the e6ect of the
mass was compensated by weaker bonds, a local mode
would not occur. In general, we know little about inter-
atomic forces, but it may be presumed that if the para-
magnetic ion is substantially lighter than the parent
atom (say half), a local mode will occur, and the present
considerations will apply. Unfortunately, none of the
paramagnetic ions in various environments, whose spin
lattice relaxation has been studied to date, fulfills this

condition of local mode occurrance. Examples of cases
to which the present theory may apply are paramagnetic
ions from Ti through Cu in environments such as
cadmium suldde, silver halides or in a suitable heavy
III—V compound (indium antimonide, grey tin).

The present treatment is valid only if the local mode
frequency coo is well separated from the continuum of
lattice modes. As coo approaches co~, the mode becomes
progressively less localized, and it is wrong to assume
that most of the strain energy lies within the unit cell
containing the impurity. Thus eo~ will be less than given
by (23), and Eq. (24) will likewise overestimate 1/res.
In the limit as &os becomes coD, ess and thus 1/r gs vanish,
and the spin-lattice relaxation is given by the normal
theory. The relationship between ~s/coo and the spatial
extent of the local mode is discussed by Montroll and
Potts. ' It is readily shown that (23) remains a good
approximation provided coo is not less than about 1.icosa,
that is, provided the mass difference is not less than
about 20%.
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An analysis is undertaken of the dift'erent possible types of simultaneous interactions between more than
two atoms or molecules in so-called molecular solids. The analysis is carried out on the basis of a double
series expansion: (1) in terms of linked exchange-clusters of increasing numbers of atoms; (2) as a series in
increasing orders of perturbation theory. The use of a multipole series for the electrostatic interactions
between di6'erent atoms is avoided by retaining this interaction in unexpanded form. Instead, an eGective-
electron model is used with a Gaussian form for the charge distributions. The method is illustrated by com-
puting the exchange quadrupole mom'ent of two argon atoms as a function of their distance. Calculations by
Rosen and by Shostak for Grst-order interactions between three helium atoms are extended to atoms of the
heavy rare gases. It is found that the relative magnitude of this many-body eGect may amount to 20% of
the erst-order interaction energy. Possible implications with respect to stability of the cubic structures of
heavy rare-gas crystals are briefly discussed.

INTRODUCTION

HE possible importance of simultaneous inter-
actions between more than two atoms, molecules,

or nucleons for the interpretation of properties of com-
pressed gases, liquids, solids, and nuclear matter has
from time to time aroused interest in the literature. In
molecular physics, this interest-arose principally from a
possible role of many-body interactions in a solution to
the problem concerning the stability of the observed

*This research has been made possible through the support and
sponsorship of the U. S. Department of Army, through its
European Research OfBce.

cubic crystal structures of the heavy rare gases. Calcula-
tions based on pair interactions had revealed that a
hexagonal structure should be somewhat more favora-
ble, in contradiction with experiment. It seemed, there-
fore, that the pair assumption (additivity) of inter-
actions between rare-gas atoms could not be reconciled
with their crystal structure.

In contrast with nuclear problems, we possess for
molecular systems complete knowledge regarding the
origin of the forces between the particles, so that, in
principle, it should be possible to assess the significance
of many-body interactions for the properties of molec-


