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and the corrected transverse dispersion relation will be
W= (wot w1)’weP+ 2wow1 = we? — 3wy'g?/40w? K r?, (28)

with w@ given by the first three terms of Eq. (15).
Since for physical reasons we must restrict our treat-
ment to ¢&KKp as discussed before and the exchange
correction is then small compared to the zero-order
frequency, the approach of calculating spin and ex-
change contributions separately is justified.

IV. CONCLUSION

Taking the ratio of spin to exchange corrections
from Egs. (15) and (28) gives

10 722K s> 10 2K 5*
— K ——2102 (29)
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for a typical metal, indicating that for the region
¢ Kp, particle exchange is more significant than the
spin interaction. This is hardly surprising since the
typical metal at zero temperature is certainly non-
relativistic whereas particle statistics are important in
this system. An interesting feature of the calculation is
that when spin and exchange effects are included, the
transverse and longitudinal modes are still decoupled
in the sense of having separate dispersion relations, at
least for first order. They are not entirely independent,
however, since the exchange contribution to the trans-
verse relation arises directly from the Coulomb inter-
action. Thus, even in the ‘“zero interaction” limit to
which the self-consistent field treatment corresponds,
the indistinguishability of the particles gives rise to
currents which couple the radiating and nonradiating
modes.
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The sum-rule

E,(MIA|n><nlr39/6>\l7n)+(1n|W/GMMWAlm>_< .BA
=("|o

n €n— €m

Y= nl A )

is derived. In this relation |m), ---, |#), - -+ form a complete set of orthonormal vectors, which are the

eigenvectors of the Hermitian linear operator €, with eigenvalues em,

-; A is a parameter which

ccreny vt

occurs in @, and 4 is an arbitrary linear operator. In many sums of this type, Qis the Hamiltonian operator H.
Particular examples are considered, and a differential equation, relating the mass dependence and coordi-

nate dependence of the wave function ¢, is derived.

1. INTRODUCTION
IN FINITE sums of the form

sy AL B W

n €r ™ €m

appear in many quantum-mechanical problems. In (1),
A and B are linear operators, while |m), ---|n), ---
form a complete set of orthonormal vectors, which are
the eigenvectors of some Hermitian linear operator €,
with eigenvalues e, €, - -; the prime in the sum-
mation sign indicates that the summation is over all
states except |#)=|m). A familiar case occurs when

* Part of this paper was presented at the 10th Symposium on
Molecular Structure and Spectroscopy (The Ohio State Uni-
versity, June, 1961).

t This research was supported in part by a grant extended to
Harvard University by the Office of Naval Research.

is identical with the Hamiltonian operator H, so that
the e,’s become the energies E, associated with the
different stationary states |#). The summation in .S
then includes, of course, an integral over the continuum
states.

The reduction of S to a simple expression which
depends on the properties of |m) alone has long been a
challenging problem. A very simple, though dangerously
uncertain, expression can be obtained by using the
closure approximation.! Clinton? seems to have been
the first to discover a case where, although one of the
two operators 4 and B remains completely arbitrary,
S is exactly reducible. He treated those sums in which
one operator is identical to 27— ;ri-(8V/dr.)
(T=kinetic energy operator, V=potential energy
operator), while the other operator remains arbitrary,

1 A. Unsold, Z. Physik 43, 563 (1927).
2W. L. Clinton, private communication to the author (to be
published). )
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and he showed that
s (m|2T—>; x;- (AV /) | n)(n| A |m)
n E,—E,
=—m| Xt Vi(Ad|m)—§N(im|A|m), (2)

where the summation indicated by ».; is over all
particles 4, with coordinates r; of the system; N
represents the total number of particles, and E, is the
energy eigenvalue corresponding to |#).

In the present paper we consider the set of sums

S5 (m| A |n)n| 69/6)\[m)’

€ €Em

(] 09/ | ¥n] A | m) ©
So'=Y"

)
n €En— €n

where \ is some parameter which appears in Q. If 4 is
a Hermitian operator, S¢'=So*, where So¢* is the
complex conjugate of S,. If 4 is anti-Hermitian,
So’=—S¢*. These sums have an extremely simple
value in terms of matrix elements involving |7) alone.
The general formula is, as proven below,

S0+SOI
) (m|A|n)(n|0Q/ON|m)+(m|dQ/IN| n)(n| A |m)

=<m133§;m>—%<<m1Alm>>- @

This sum-rule is contained implicitly in previous calcu-
lations by Epstein, Brown,® and possibly others, but it
has never, to the author’s knowledge, been given as
such or used before in simple applications.

2. PROOF

Let us consider the matrix element (x|dQ/d\|m).
We rewrite it as

Q _ a
n|—|my=—(nla|m)

(Gl ) ©

where |dn/9N) is an abbreviated notation for the state
represented, in the coordinate representation, by the
wave function 8y,./d\, ¥, being the wave function
representing the state |#). The first term on the right-
hand side of (5) is zero, since |m) is an eigenvector of Q
and since all the eigenvectors form a complete

#Saul T. Epstein, Am. J. Phys. 22, 613 (1954) W. Byers Brown,
Proc. Cambridge Phil. Soc. 54, 257 (1
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orthogonal set ({m|n)=0 for m>£n). Hence

m
m> - em< m> - en<n’-——
a)\\ i (9)\

d m
== )
N
dm
_ e”<n o
I
am
= (em " -———> 6)
N
It follows that
m
So=—Y"{(m|A| n -—>, @)
n N

e o)

In a similar fashion

e ()

Remembering that {(m|m) is a constant, one obtains

So+So=—(< ' ‘ >+< m>) (10)

0A 0
so+so=<mf5|m>—5;<<mm|m>>, (11)

or

which completes the proof of (4).

In many second-order perturbation calculations, sums
such as (3) occur in which Q=H, where the Hermitian
operator H is the Hamiltonian H=T-+V, V being a
real function. Then one has, from (8), (9), and (11),

-, (ALl ot/ m)_ (o[, o

n En—Em
,(mlaH/c'))\]n)(nlA{m)_ om
% E.—E, _~<5§~Alm>’ (19
(| A || OBL/3N | m)-+Gm| OFL /3N | A | )
n E,—E,

=<m‘% m>—a%<<m!A!m>>. (14)

Equations (12) and (13) are direct applications of
Egs. (8) and (9), respectively, and of the fact that the
eigenfunctions of a real Hamiltonian can always be
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taken as realt ((m|dm/ONy=(dm/ON|m)=0). The
relations can be used to reduce second-order sums in
which occurs the operator dH/9\, or any operator
which can be put into the form dH/aA.

The sum-rule, in the form of Eq. (12) for instance,
is implicit in Epstein’s calculation of the equations of
perturbation theory and in Brown’s calculation of
second-order energy derivatives,? in which it is shown
that

(_92%>= }_‘: (n|aH/3Mm)l > 1)

2N

from which Eq. (12) follows immediately. Brown went
on to prove that the general equation for the adiabatic
second-order derivative of the energy E, of an eigen-
state |m) with respect to parameters A and A’ occurring
in the Hamiltonian H is

’E,, 0*H ‘ >
8)\3)\' (9)\(9)\’
(m|dH/IN | n)(n| OH/ON|m)
> — . (16)

Applying the sum-rule (14) to the sum on the right-
hand side of this equation, we obtain

8L oH
(ol
Ao\ lanaN’
o H
¢

6)\8)\'
9 fOE..
“alon)
AN\ AN
which shows that Eq. (16) and sum-rule (14) are
consistent:

Applications of the sum-rule occur in various prob-
lems, where it proves extremely useful in the simplifi-
cation of certain perturbation sums. A first application
appears in a subsequent paper,” and concerns the
Hellmann-Feynman treatment of a spherical atom in
a uniform external field; the parameter A is then equal

to the nuclear coordinate. Other simple cases are given
below.

>l

3. CASE WHERE 2 IS (a) A SCALE FACTOR 7,
(b) THE MASS M

Consider a system of N particles, with position
vectors ri, ---r; Iy, and let y¥,(r;) represent a
stationary state of the system. If we introduce scaled

4L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Per-
gamon Press, New York, 1959), p. 52.
5 L. Salem and E. B. Wilson, J. Chem. Phys. (to be published).
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coordinates ;=nr;,® the normalized scaled function is

X (Ecn) =073V 1%, (E:/m),

(/"'/Xm*xm"'d3£i"'=1)- 17

The Hamiltonian operator H may be written explicitly
in terms of the scale factor » as?

H=T+V
\ K a4 9
BT
+V &/, Ei/ny - En/m). (18)

Hence the partial derivative of H with respect to the
parameter 7 is

oH 2
—=-T+3 (= &/m), (19)
am 9 0(&/17)

' nOH /on=2T—3s 1:-(3V /or.). (20)

We may now apply our sum-rule, in the form (13)
for instance, to the case A=7,® and we obtain

5 (m|2T=Y i 1r;- (3V/0r;) | m)(n| A |m)

n E,—E,
=—n<%bA’m>. (21)

In Eq. (21), |m) refers indifferently to y.,, with inte-
gration over coordinates r;, or to X.,, with integration
over coordinates &;. This equation is none other than
Clinton’s sum-rule written in (2). Indeed one has

(m| X vV (A | m))

_—_Z /"'/\//m*rrv(r,-)(A*I/m)'"dan‘"
=X /'"fxm*fi'vtzi>(Axm)'"d"‘&'--
=2 /“'/Vm)'(xm*&AXm)“'dséi"-

_g / o /[v(fi)' (xm*fi)]Ax,,,' ced3E - (22)

6 For an assembly of particles enclosed in a rigid cube of volume
L3, 7 would be equal to L1,

TW. Byers Brown, J. Chem. Phys. 28, 522 (1958).

8 The Hamiltonian operator is Hermitian with respect to
9dx/dn [see W. L. Clinton, J. Chem. Phys. (to be pubhshed)],
so that the derivation of Section 2 is correct and it is allowable
to apply the sum-rule to the operator dH/dn.
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The first integral, which can be transformed into a
surface integral by Green’s theorem, vanishes because
of the nature of X,,. Hence

(m| XtV (A|m))

=_Z 3]-"/Xm*AXm-~-d3£f-"

-3 ]---fEr(V(z;)xm*)AXm--'d“’éi”' (23)
Using the relation
N/ On=—3NXm— 25 £:0Xom/ IE: (24)

to calculate the second integral on the right-hand side
of (23), we obtain

(M| i 15V oy (A | m))+3N(m| A |m)
=1(dm/dn| A |m), (25)

which proves our contention. It follows that Clinton’s
sum-rule is in fact a particular case of the more general
relation derived in paragraph 2.

If V is an electrostatic Coulombic potential, and
hence a homogeneous function of the coordinates of

degree —1, Eq. (21) becomes
m> (26)

However an independent expression can be obtained
for the left-hand side of Eq. (26). Assuming, for con-
venience, the mass of all the particles to be the same
and equal to M, we have

T=(1/M)[oH/3(1/M)], @7

so that the sum-rule (13) applied to the case A=1/M
yields

| T[] A ] m)
n E,,,—Em

="

5 <m1T1n><n|A|m>___<

" E,—E, a(1/M)‘ 'm> )
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It follows from (26) and (28) that X,, must obey the
differential equation®
1 X, 0X,,

Mo M) oy

) (29)

or, using (24),

1 ox, Vs ax -
- =—3 Xn— T .
Ma(/M - ¢ 12

Hence
1 oym Y
—_ =3NS . 31
Mo/M) =2 ar, (1)

Equation (31) will hold for any eigenfunction ¢, of a
Hamiltonian H=T-+V, where V is a Coulombic
potential. It may be easily verified, for instance, in
the case of the ground-state wave function of the
hydrogen atom. Consequences of this relation have
been studied in detail by Clinton.?
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— (B/8x*M V2 (eyx — (¢/£)x = Ex,
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