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IV. CONCLUSION

Taking the ratio of spin to exchange corrections
from Eqs. (15) and (28) gives

10k'q'E ' 10k'E 4

=10-2
3 mG0 3 81M

(29)

and the corrected transverse dispersion relation will be

o~'= (res+oui)' —~ss+2o~so~t=oio' —3o~y'q'/40ceo'E»', (28)

with cess given by the first three terms of Eq. (15).
Since for physical reasons we must restrict our treat-
ment to q«Ep as discussed before and the exchange
correction is then small compared to the zero-order
frequency, the approach of calculating spin and ex-

change contributions separately is justified.

for a typical metal, indicating that for the region
q«E~, particle exchange is more significant than the
spin interaction. This is hardly surprising since the
typical metal at zero temperature is certainly non-
relativistic whereas particle statistics are important in
this system. An interesting feature of the calculation is
that when spin and exchange effects are included, the
transverse and longitudinal modes are still decoupled
in the sense of having separate dispersion relations, at
least for first order. They are not entirely independent,
however, since the exchange contribution to the trans-
verse relation arises directly from the Coulomb inter-
action. Thus, even in the "zero interaction" limit to
which the self-consistent field treatment corresponds,
the indistinguishability of the particles gives rise to
currents which couple the radiating and nonradiating
modes.
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The sum-rule
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is derived. In this relation ~ta), ~, ~a), form a complete set of orthonormal vectors, which are the
eigenvectors of the Hermitian linear operator 0, with eigenvalues e, ~ ~„, ; P is a parameter which
occurs in 0, and A is an arbitrary linear operator. In many sums of this type, 0 is the Hamiltonian operator FI.
Particular examples are considered, and a differential equation, relating the mass dependence and coordi-
nate dependence of the wave function Ift, is derived.

1. INTRODUCTION
' 'NFINITE sums of the form

(~/A [N)(~[a]~)Pl
&n &m

appear in many quantum-mechanical problems. In (1),
A and 8 are linear operators, while ~m), ~e),
form a complete set of orthonormal vectors, which are
the eigenvectors of some Hermitian linear operator 0,
with eigenvalues e, e„, , the prime in the sum-
mation sign indicates that the summation is over all
states except ~n)= ~tl). A familiar case occurs when 0

* Part of this paper was presented at the 50th Symposium on
Molecular Structure and Spectroscopy (The Ohio State Uni-
versity, June, $961).

f This research was supported in part by a grant extended to
Harvard University by the OQice of Naval Research.

is identical with the Hamiltonian operator B, so that
the e„'s become the energies E„associated with the
different stationary states ~e). The summation in S
then includes, of course, an integral over the continuum
states.

The reduction of S to a simple expression which
depends on the properties of

~
its) alone has long been a

challenging problem. A very simple, though dangerously
uncertain, expression can be obtained by using the
closure approximation. ' Clinton' seems to have been
the first to discover a case where, although one of the
two operators A and 8 remains completely arbitrary,
5 is exactly reducible. He treated those sums in which
one operator is identical to 2T—Q; r;. (fl V/Br, )
(T=kinetic energy operator, V=potential energy
operator), while the other operator remains arbitrary,

~ A. Unsold, Z. Physik 43, 563 (1927).
s W. L. Chntont, private communication to the author (tO be

published, )..
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and he showed that

(m[2T—Q; r;. (BV/Br~) In)(el A Im)

E

orthogonal set ((m I n) =0 for m&n). Hence

S —8$ = —~ —m

(—mls;r; p';(Alm)) ——',1V(m[A[m), (2) (B Bm
= —6m —S f@ — S

w. )

88$
= (o„—p„) e

BX
(ml A Ie)(e[ Ba/BI Im)

Sp—=P'
It follows that

(3)
&n &m

l9m
So———Q'(m[A le) n

n BX
(ml BII/BX

I e)(nl A Im)Sp'—=P'

where the summation indicated. by P, is over all
particles i, with coordinates r;, of the system;
represents the total number of particles, and E is the
energy eigenvalue corresponding to

I
e).

In the present paper we consider the set of sums

(6)

&n &m

where ) is some parameter which appears in Q. If A is
a Hermitian operator, Sp —=Sp*, where Sp* is the
complex conjugate of Sp. If A is anti-Hermitian,
Sp'=——Sp*. These sums have an extremely simple
value in terms of matrix elements involving

I m) alone.
The general formula is, as proven below,

So+So'

, (ml A
I e)(e I

»/» Im)+(ml »/B~
I e)(e I

A
I m)

&n

or

Sp= — mA mA m (8)

In a similar fashion

Sp'= — Anz nzA m m . 9

S,+5,'= —
I (m A )+( A m)), (10)

Remembering that (m I m) is a constant, one obtains

BA 8 or
m m ——((ml A Im)). (4)

BX, BX
BA 8

So+So' —— m m ——((ml A Im)),
BX BX

which completes the proof of (4).

In many second-order perturbation calculations, sums
such as (3) occur in which 0=H, where the —Hermitian
operator H is the Hamiltonian II=X+V, V be—ing a
real function. Then one has, from (8), (9), and (11),

2. PROOF

Let us consider the matrix element (elBQ/N[m),
Q'e rewrite it as

(ml A le)(el B&IB&lm) Bm
m A, (12)jv„E Nao a

n —m =—((elalm))

This sum-rule is contained implicitly in previous calcu-
lations by Epstein, Brown, ' and possibly others, but it
has never, to the author's knowledge, been given as
such or used before in simple applications.

(m[BH/N. le)(e[A Im)

E„—E
Am, 13

where
I Be/H, ) is an abbreviated notation for the state

represented, in the coordinate representation, by the
wave function Bf„/BX, P„being the wave function
representing the state

I
n). The first term on the right-

hand side of (5) is zero, since
I m) is an eigenvector of II

and since all the eigenvectors form a complete

3 Saul T. Epstein, Am. J.Phys. 22, 613 (1954);$V. Byers Brown,
Proc. Cambridge Phil. Soc. 54, 257 (1958).

(ml A
I n)(el Be/BI,

I m)+(ml BH/BXI n)(nl A
I m)

E

8A 8
m m ——((ml A

I
m)). (14)

Equations (12) and (13) are direct applications of
Eqs. (8) and (9), respectively, and of the fact that the
eigenfunctions of a real Hamiltpnian can always bq
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The first integral, which can be transformed into a
surface integral by Green's theorem, vanishes because
of the nature of X . Hence

It follows from (26) and (28) that x must obey the
differential equation'

(ps~ p; r;.Vl„,&(A
~
ps))

~ ~ X aAX .&Pg' ~ ~ or, using (24),

1 8X

M 8(1/M)
(29)

(V&f &X *)AX dsg" . (23)

Hence

~xm

M &)(1/M)

Xm= —-srX —p g
i

(30)

Using the relation

p&8X /&)&I =—ss1VX —P; g;BX /&I(; (24)

1 cia
'J&/f —-Qr, —

M 8(1/M) «)r, (31)

(sp/ Tfs)(s/A [ps)

E„—E

85$
Am . 26

8$

However an independent expression can be obtained
for the left-hand side of Eq. (26). Assuming, for con-
venience, the mass of all the particles to be the same
and equal to M, we have

T= (I/M)t aa/a(1/M) j,
so that the sum-rule (13) applied to the case )&=—1/M
yields

(rs& T(s)(s[A ~ss) 1 &)ts

Z„—Z„M a(1/M)
Am . 28

to calculate the second integral on the right-hand side
of (23), we obtain

(rs~ Q; r,"V &„,.&(A
~
Ps))+st(ss]A [Ps)

=&(ass/a&(A [m), (25)

which proves our contention. It follows that Clinton's
sum-rule is in fact a particular case of the more general
relation derived in paragraph 2.

If V is an electrostatic Coulombic potential, and
hence a homogeneous function of the coordinates of
degree —1, Eq. (21) becomes

Equation (31) will hold for any eigenfunction f of a
Hamiltonian H= T+V,—where V is a Coulombic
potential. It may be easily veri6ed, for instance, in
the case of the ground-state wave function of the
hydrogen atom. Consequences of this relation have
been studied in detail by Clinton. '

ACKNOVf LEDGMENTS

The author is greatly indebted to Dr. %illiam
Clinton for sending him the manuscripts of his forth-
coming papers and for his most valuable criticism. He
would like to thank Professor E. Bright Wilson, Jr.,
for his kind encouragement and helpful suggestions,
and Dr. Robert Harris, Dr. Darwin Smith, and Dr.
Richard 8ader for some extremely stimulating
dj.scusslons.

' Professor K. S. Wilson has kindly pointed out to the author
that Eq. (29) can be obtained directly by introducing dimension-
less variables into the Schrodinger equation; for the hydrogen
atom for instance, the dimensionless equation pr7 &r»/ (I/r—)—
=p&&, admits the familiar solution P(r)=pr& exp( —r). If, how-
ever, we had kept variables with dimensions, $=aor and
E= (eP/ap) p, the corresponding equation,

—(h'/g pr'2f')~& p&x
—(e'/8lx =Ex,

would have yielded a solution x((,ap)=pr pap I exp( —g/ap)—:ap SiP(g/ap). Comparing with (17) we see that ap, when it
appears explicitly, behaves exactly like a scale factor q. Hence
apBx/Bap =p&Bx/Br& and, since by deinition ap = Lhs/(4prre )j(1/M),
Eq. (29) follows.


