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The frequency distributions of spectral lines of nonhydrogenic atoms broadened by local Gelds of both
electrons and ions in a plasma are calculated in the classical path approximation. The electron collisions are
treated by an impact theory which takes into account deviations from adiabaticity. For the ion e6ects, the
adiabatic approximation can be used to describe the time-dependent wave functions. The various approxi-
mations employed were examined for self-consistency, and an accuracy of about 20% in the resulting line
profiles is expected. Good agreement with Wulff's experimental helium line profiles was obtained while there
are large deviations from the adiabatic theory, especially for the line shifts. Asymptotic distributions for
the line wings are given for astrophysical applications. Here the ion eKects can be as important as the
electron effects and lead to large asymmetries, but near the line core electrons usually dominate. Numerical
results are tabulated for 24 neutral helium lines with principal quantum numbers up to five.

1. INTRODUCTION

HE Stark broadening of spectral lines by inter-
actions of radiating atoms or ions with perturbing

electrons and ions aGords a sensitive method for
determining plasma densities. When Stark broadening
dominates the Doppler broadening, the line profiles do
not depend critically on the electron and ion velocity
distributions or the temperature; hence, electron densi-
ties can be inferred from line profiles without knowing
the plasma temperature precisely and without invoking
the assumption of local thermal equilibrium.

It is now possible to calculate the contribution of
electrons to the broadening using a recently developed
impact theory" which takes into account nonadiabatic
effects due to electron collisions. The ion contribution
can be treated in the usual adiabatic approximation.
The theory has already been applied to the broadening
of hydrogen lines, ' and good agreement with the
experimental profiles of Bogen' was obtained, except
for the far line wings where experimental errors are
quite large because of the strong continuous back-
ground. In this paper the broadening of nonhydrogenic
lines arising from transitions between states where the
hydrogenic degeneracy has been removed is considered.
Numerical results have been obtained for 24 neutral
helium lines, but the methods employed here can also
be applied to a wide class of spectral lines of other

*Jointly supported by the Once of Naval Research and the
National Science Foundation.

' M. Baranger, Phys. Rev. 111,494 (1958).' A. C. Kolb and H. Griem, Phys. Rev. 111,514 (1958).' H. R. Griem, A. C. Kolb, and K. Y. Shen, Phys. Rev. 116, 4
(1959). See also B. Mozer, Ph.D. thesis, Carnegie Institute of
Technology, 1960 (unpublished); and H. R. Griem, A. C. Kolb,
and K. Y. Shen, Astrophys. J. (January, 1962).

4 P. Bogen, Z. Physik 149, 62 {1957).

atoms. Helium was selected as an example because of
its importance in stellar spectra, and because it is
monatomic and convenient to use in laboratory studies
for plasma density determinations. Also, it has a
relatively simple electronic structure so that the wave
functions can be calculated with fair accuracy.

The line broadening calculation involves three steps.
First, the Quctuating microfields of the ions and
electrons perturb the radiating system and this causes
the wave functions (of the radiator) to be time-
dependent. The perturbed wave functions are calcu-
lated here in the classical path approximation using
time-dependent perturbation theory; i.e., it is shown
that the perturbers can be treated as point charges
moving along their classical trajectories. The validity
of this assumption has been open to question so that
some attention is given to justifying this approach to
the problem. However, the usual assumption of
adiabaticity is not required even when the classical
path approximation is made.

Secondly, one must average over the various possible
perturber configurations. The perturbers are assumed
to be statistically independent, which can be shown to
be a good approximation for nonhydrogenic isolated
lines. At extremely high densities, when overlapping
of diferent spectral lines occurs, the infiuence of
collective eBects on the microfield distribution is im-
portant as in the case of hydrogen line broadening.

Finally, the observable spectrum follows from a
Fourier transform of the dipole-dipole correlation
function calculated with the time-dependent perturber
wave functions and averaged over the perturber
trajectories.

In the case of the ion broadening the usual quasi-
static approximation fails in certain cases near the
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2. GENERAL THEORY OF ELECTRON BROADENING

The electron broadening is calculated in the impact
approximation. A general impact theory which allows
for the possibility of overlapping lines has been de-

veloped previously. '—' Here an alternative derivation
will be given which has several advantages, in particular
that of clarifying the handling of weak collisions. The
electrons are considered as classical particles; further
discussion of this point appears later in this section.
The interaction is

V(t)=er E(t), (2.1)

where —er is the dipole moment of the atom and E(t)
the total electric field of all the electrons, which is the
sum of the Coulomb fields of all electrons,

center of the line and the transition region between the
quasi-static and impact theories must be taken into
account by considering the full time-dependence of
the adiabatic phase integrals. This has been done, using
the Anderson-Talman' method, with the assumption
that the ion perturbations are scalarly additive, which
is equivalent to the binary collision assumption and,
in general, leads to negligible errors since the electron
broadening dominates in the line cores. This is demon-
strated numerically.

For the line profiles of other light neutral atoms,
validity discussions suggest that the errors in the line
broadening calculations are comparable to those due
to uncertainties in the atomic wave functions. The
general method described here is also applicable to
profiles of ion lines with certain modifications that are
described in other publications. ' '

The present theory is compared with the results of
earlier calculations which have been the subject of
several recent review papers. '—"

line shape is given by'-

I.b(ce) = Re dt expLi(co —cp p)t]

x&plt. ln)( 'lt.
l
p'){(

I
T.(t,o) ln')

x(PI Tb'(t, o) IP')}... (2.4)

T is its complex conjugate, i.e., the transpose of its
Hermitian conjugate.

Equation (2.4) is exact if quenching collisions and
radiation from transitions between the sublevels, n ~ n'

and P b P', are neglected. To make the impact approxi-
mation, one writes

6{T,(t,0)Tb*(t,O)}.
= {T,(t+At, 0)T;"(t+ht, 0)

—T.(t,O) T,"'(t,0)}.,
= {AT.(t+at, t)T,*(t+St, t) —1]

x LT.(t,o)T,*(t,o)]},.
The impact approximation is valid if At can be found
such that: (1) At is so large that the first factor on the
right-hand side of (2.6) is statistically independent of
the second factor, and the two may be averaged
separately; (2) At is so small that the average of the
first factor is very small compared to unity, in which
case it will be shown that it can be written"

expl i(Hp. —Hpb)t/ ]tabb. b

XexPl —i(Hp, —Hpb)t/A]ht, (2.7)

where p is a component of the dipole moment. The
average is the thermal average over all states of the
electron gas. T is the time development operator in the
interaction representation, which satisfies the
Schrodinger equation

iMT(t, t')/dt=e*~«/"V (t) e '«'«T—(t t'). (2.5)

E(t) = Q E;(t),
i=1

E;(t)= er, (t)r,—'(t).

(2 2)

(2.3)

ctb b being a time-independent operator which will be
calculated. Then {T,Tb*}, obeys the differential
equation

The initial states are designated collectively by a, and
individually by n, n' . Similarly, b, p, p' are used for
the Anal states. Except for unimportant factors, the

'P. W. Anderson, Phys. Rev. 86, 809 (1952); and P. W.
Anderson and J. D. Talman, Proceedings of the Conference on
the Broadening of Spectral Lin.es, University of Pittsburgh,
1955 (unpublishedl.

'H. R. Griem and K. Y. Shen, Phys. Rev. 122, 1490 (1961).
7 M. Baranger and J. C. Stewart (to be published).
R. G. Breene, Revs. Modern Phys. 29, 94 (1957).' S. Chen and M. Takeo, Revs. Modern Phys. 29, 20 (1957).

' H. Margenau and M. Lewis, Revs. Modern. Phys. Bl, 569
(1959)."G. Traving, Uber die T/zeorie der Druckeerbreiterzfng eon
Spektrcdlinierb iVerlag G. Braun, Karlsruhe, 1960l.

{T Tb*i —eCCHpe Irob) c/SA,
b&

C(Iroo I—rob) c/S— —
a b (av ~ah

dt
X{TTb*}, (2.8)

whose solution is

{TTbs} —ec(Koe rrob) o/[ sec(rroa—&ob)/s+e—abl& —(2 9)

Substituting in Eq. (2.4) and performing the time
integration, one obtains the following expression for

' Eq. (2.4) follows from Eqs. (8) and (10) of reference 1, or
from Eqs. (3) and (9) of reference 3. Note that the operator called
T in references 2, 3, and here, was called U in reference 1.

' The representation is always assumed to be the n, P repre-
sentation. Otherwise, various complex conjugate signs would
have to be inserted. This same assumption was made in reference
3.
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where ( ) indicates from now on i.he average over
angles; f(e) is the Maxwell distribution and V the
volume of the box, which combines with the factor e
to give N, the electron density. The integrand in (2.13)
is appreciable" only if all times occur within interval v-

of each other and of the time of closest approach, '
where r is again the maximum correlation time. Since
ht is much larger than 7, two kinds of collisions can be
distinguished: those for which the time of closest
approach s falls out. side of the interval (f, /+At), whose
contribution can be neglected; and those for which
t&s&t+df. For the latter, one can set t= —m and
t+ht=+~ without appreciably changing the inte-
gral. "This is analogous to the phase shift limit of the
usual adiabatic theory. Thus, (2.13) can be expressed
in terms of the S matrix" for a single collision taking
place at time s, S=T(+ oo, —~),

ie
o. r, c'

o. r, n o. r, 0
$2 (rva~~

X d01 et (et' aa" f41+of a' 'a'f42)
2

XL&'i. (u, )Ei,y (u2)+ . (2.15)

This is easily seen to be related to the S matrix for a
collision taking place at time t=0 by

But (2.16) is really independent of s as long as
&s&t+ht, because &o, At is very small. This follows

from the facts that two states n and 0.' will give rise
to overlapping lines only if co ~ is of the order of the
width of the lines, and that the product of the width

by 3 t is small as a result of the second condition imposed
earlier on Dt. Hence s on the right-hand side of (2.16)
can be replaced by t. Then the integral over s in (2.14)
can be replaced by ht and one obtains (2.7) withts

diverge for large p. It is convenient to use t.wo un-
shielded fields and to introduce an equivalent cutoff
in the p integration. It is shown in Appendix X that
the cutoff should be made at 1.1 times the Debye
length, if one uses the Debye shielded Geld.

Thus, the problem of electron broadening is reduced
to the calculation of the 5 matrix for a single scattering.
Here, the electrons have been treated classically, but
Eqs. (2.10) and (2.17) are also valid when their motion
is treated quantum mechanically, "provided that the
integral over impact parameters be replaced by a sum
over / values, and the classical path S matrix by the
appropriate matrix element of the fully quantum
mechanical one. The classical treatment is valid when-
ever a large number of / values contribute to the
answer. "This allows one to replace the sum over / by
an integration; it also means that the potentials vary
so smoothly that the matrix elements of the quantum
mechanical S matrix can be calculated in the %KB
approximation, which is equivalent to using classical
trajectories. If in addition, straight trajectories are to
be used, the interaction energy must be small compared
to the energy of the electrons. Both these conditions
are realized in the applications to neutral helium lines
that will be given here. In the case of lines emitted by
ions, it may be necessary to use hyperbolic classical
trajectories to take into account the Coulomb inter-
action. This has been done for a number of cases where
it was found that the effect can either increase or
decrease the broadening. ' ' For ionized helium lines, '
the corrections are small for temperatures from
5000—80 000 'K and densities from 10"—10"cm '.

3. ELECTRON BROADENING OF ISOLATED LINES

Equation (2.10) is the general result to be used in all
cases where electron broadening is treated by the
impact approximation. It applies to overlapping as
well as isolated lines. In many of the applications to
helium lines the line is isolated and the only degeneracy
is that associated with the magnetic quantum numbers;
moreover, the final state is usually much less polarizable
than the initial state, so that its interaction with the
electrons can be neglected. Then Ss*(0) can be replaced
by unity in Eq. (2.17), and the resulting P is just a

P s=N ef(n)dv 2~pdpfs, (0)ss (0)—1). (2.17)
0 0

The average over angles eliminates all terms containing
an odd number of electric fields. And it must be re-
membered that, in the second-order terms, one of the
fields should be shielded and the other unshielded. If
two unshielded Gelds are used, the integral over p may

'~ The following argument is due to B. Mozer (reference 3).
'7This is true even of the second-order terms because of

shielding.' This operator was called T; in references 2 and 3.
"This is Eq. (61) of reference 1 and Eq. (7) of reference 3.

"M. Baranger, Phys. Rev. 112, 855 (1958).
2' In the recent article by H. Margenau and M. Lewis, reference

10, some doubts were expressed about the validity of the classical
path treatment even under these conditions. The conclusion, as
expressed in Eq. (2.11) of this reference, is essentially that the
classical treatment is not valid whenever the impact approxi-
mation holds. That this must be erroneous is clear since, in simple
cases LE. Lindholm, dissertation, Uppsala (1942); M. Baranger,
Phys. Rev. 111, 481 (1958); H. R. Griem and K. V. Shen, Phys.
Rev. 122, 1490 (1961)g, the identity of the classical impact and
quantum mechanical impact treatments is easily established. The
fallacy resides in Eq. (2.6) of reference 10 which is needlessly
restrictive and where d should be replaced by r. The condition
(2.9a) in this reference is also unnecessary, since the problem at
hand is not that of calculating the precise angle by which the
electron is scattered, but only the effect that the presence of the
electron has upon light.
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which are shown in Fig. 2. (See Appendix Y for mathe- (see the following section):
rnatical details. )

With these definitions the contribution of weak
collisions, for which terms of higher than second order 2 3&

(nlyjn&, = — —Ã

are negligible, to the P-matrix element can be written

(n I y, I n)„=—(4Ã/3) (e /A) 1V

x f(v)—Z I( I'I ')I'
'V ~ra'

XL+(s,min) +g(s,min) ] (3 10)

where s ~ '"=—~ .p;„/v corresponds to a minimum
impact parameter, at which the perturbation theory
breaks down. The effect of strong collisions can be
estimated by the I.orentz term (assuming complete
interruption of the radiation)

In) = & dv f(v)virp;„(v). (3.11)

In the high-temperature limit (s ~
'" —+0), Eqs.

(Y15) and (Y16) may be used and one obtains with
ao= A'/me'

A ~ CL ~= CX ~ O.' 8

( 1 (nlr. ln') ' l
XI p —

'
(v—:&..(1~iv3). (3.14)

l ~a' aa'

(nip. ln&, =—cV dvf(v) ~vp;.'+——
I

3v mi

Gp

Lii(s, min)+g(3s, min)] (3 13)

where p;„=s„~ '"v/~ „ is defined by

I f(nl ~ (p--) —1ln&) I

2 fi )'- (nlr ln'& '
g (S,min)

3 mvpmin) — +n gQ

In the intermediate range (the usual situation), ap-
propriate estimates for the strong collision term and
the limiting impact parameter must be used. One
possible set of equations which properly reduce to both
limits is

4v. A ' dv (nlr. ln') '
Ã —v

Gp

XDn(ls ™nl')~~v/2], (3.12)

where the signs of the contributions to the shift are
determined by those of the co . In this case

Pf (s,min) 1 P(s,min) 0]

the condition for the validity of the perturbation theory
is particularly simple, namely

l((nl~. (p-.)—1ln&) I

(ni'In'& '

Here for the widths, the strong and weak collision
terms of Eqs. (3.10) and (3.11) are preserved, and
agreement with the limiting cases is achieved by
choosing diferent cutoffs in width and shift and by
the choice of the numerical value of Eq. (3.16), which
defines the impact parameter at which the perturbation
theory fails.

An alternative cutoff procedure is to use

( l@.ln&, = —iV dv y(v) (-', )-*~vp,„;„'

3lmvp. ;.i .- Qp

2
(3.13)

3 mvp;„)

Qp

+(3)'~f(s- '")], (317)

4~(&)' (nlr ln') '
+ I I Q I e(s, min)

3v l m) ~

(Here, a is the principal quantum number of the upper
state. ) The minimum impact parameter is accordingly
inversely proportional to the velocity, and the strong
collision term in Eq. (3.12) is entirely negligible, i.e.,
perturbation theory gives the exact answer in the high-
temperature limit.

Also for the opposite extreme (low-temperature
limit) an exact result is available from the adiabatic
impact theory, which can be worked out to all orders

and an equation like (3.16) with (3/4)l replaced by
v3/2, which, however, only reduce to the adiabatic
limit (using again 2ii'(-', )= 1.339 = 3~). Here a single
cutoff in the real and imaginary parts is employed, but
an ad hoc correction factor (4/3)*=1.21 had to be
inserted in the strong collision term and the shift.

The deviation of the correction factor in Eq. (3.17)
from unity may be considered as an indication of the
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uncertainties introduced by the schematic treatment
of the strong collisions, i,e., the second set of equations
exhibits more clearly the limitations inherent in this
treatment. The largest differences between the two
proposed procedures are expected at high velocities,
because they both reduce to the adiabatic theory result
for small velocities. But for large velocities the width
is dominated by the weak collision term, which depends
only logarithmically on the cutoff, and therefore Eqs.
(3.15) and (3.17) give practically the same widths.
Only the shift is seriously affected; it is a factor 1..21
too la, rge in the second case. However, in this limit, the
shift. is smaller than the width, and if the shift is
expressed dimensionlessly in terms of the width the
two procedures should only deviate by (20%. This
was borne out by comparing numerical results for the
24 helium lines. Further insight into the errors intro-
duced by the use of cutoffs may be gained by subjecting
calculated widths and shifts to a quantum mechanical
dispersion relation. '4

It may be surprising that sufficient accuracy is
obtained from a perturbation treatment in which only
the first nonvanishing term is considered. The ex-
planation is that because of the long-range nature of
the interaction for high electron velocities, most of
the broadening is due to the distant collisions whose
contribution is accurately described by the second-order
term in the perturbation solution of the Schrodinger
equation. Strong collisions usually only account for
approximately 20% of the electron broadening, and
the uncertainty in the strong collision term (probably
good to within a factor 2) should therefore produce
errors of about 10% in terms of the total width. For
smaller electron velocities strong collisions are more
important. However, this does not lead to large errors
because the cutoff procedure was chosen in such a way
as to yield the adiabatic result, which is correct to all
orders. This is quite different from cases where the line
broadening is due to interactions with neutral per-
turbers. Then the short-range forces cause the strong
collisions to dominate, and no satisfactory results can
be obtained from just the leading term in the per-
turbation expansion.

At high electron densities and in case of closely
spaced levels, the above equations wil1. tend to over-
estimate the broadening and shift because screening
was neglected. But under such conditions, one can use
the p-matrix elements for hydrogen, ' which were derived
taking into account the Debye screening. These &-
matrix elements LEq. (29) of reference 3j should
accordingly be used instead of those given by Eqs.
(3.12), (3.15), or (3.17) in cases for which the latter
yield larger results, that is, for densities larger thanE, defined by

a(s ~ '")=1n(v/(o .p;„)= in(pg)/p;, ), (3.18)

~4H. R. Oriel and C. S. Shen, following paper /phys. Rev.
125, 196 (1962)g.

since the @ matrix depends logarithmically on the
cutoff in both instances. Kith pn ——(kT/47re'1V)l and
(1/a), =(2m/mkT)& (the p-matrix elements are in-
versely proportional to the velocity) this yields the
critical density

tV, =m(o, '/2m'e'. (3 19)

For typical values of the splitting or„=10"sec ', the
g-matrix elements which were derived taking into
account the splitting but neglecting the Debye-
screening are therefore applicable for electron densities
below lV „=2&10' cm ', i.e., almost in the whole
range in which isolated lines can be observed. That
these formulas only yield diagonal elements is no
serious restriction because off-diagonal elements are
of interest only in case of overlapping lines, i.e., small
split tings and high densities, where the hydrogen
formula is valid. It is interesting to note that Eq. (3.19)
is equivalent to saying that at the critical density the
plasma frequency is compa, rable to the splitting.

(T,(t,0)Tq*(t,0));,„,= exp i hu&, q(t')dt'—, (4.1)
0

where dco, b is the instantaneous shift due to the ion
6eld. According to the previous section, the electron
contribution is

(T.(t,0) Tb*(t,0)).).,t,.„,——exp (Q.gt)

= exp L
—(a+id) t$. (4.2)

(p, q is never affected by the ion Geld because this causes
in case of quadratic Stark effect only shifts much smaller
than the splitting of the interacting levels, and because
in case of linear Stark effect p, q is independent of the
splitting. ')

The phase integral in Eq. (4.1) can be calculated
provided that two approximations are made; namely,
(1) the individual ion perturbations do not overlap in
time so that they are scalarly additive, i.e., Aar, b is a
sum of contributions from single ions,

b(t) Zi E~~ &(t)j'

and (2) the adiabatic approximation is also valid near
the line center where the usual statistical theory fails.
The 6rst approximation does not cause serious errors
because in the line center, where the impact approxi-
mation is valid, the binary collision assumption also
applies as the interactions are weak; while on the line

4. ION AND ELECTRON BROADENING OF
ISOLATED LINES

The ion velocities are usually small enough that the
adiabatic approximation is valid. In the general
formula for the profile of a spectral line due to dipole
radiation (2.4), the average over the perturbers of the
T Tb* operators splits into two factors, if electron and
ion perturbations are independent, The ion factor is
given in terms of the usual phase integral
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aild
Fo= 2.61'&,

(2 s/re )sC4F ps ——Sent,

Wlr(p)dp

ws+ (&o
—d—sonSPs) s

(4.13)

or Gnally in dimensionless variables

which gives, with the Holtsmark distribution function,

W~(P) =W~(F/F p) =FpW(F),

S. FORBIDDEN LINES

If the splitting between neighboring levels is of the
same order as the corresponding &t-matrix elements, or
if the instantaneous shifts due to the ions are of similar
magnitude, forbidden components will be excited. In
the neighborhood of a forbidden component denoted by
i and after expansion and normalization, Eq. (2.10)
becomes

I .el(&o)

1 " WII(p)dp
jli(x,n) =-

s 1+(x—nSPs)s
(4.14)

with the abbreviations

2 Re(goy '*)&t&'s&oil

+ I, (51)
I po I 44i&oio'

As indicated in Appendix Z, Eqs. (4.9), (4.11), and
(4.14) reduce to the asymptotic wing formuIas for
large x. This is as expected, because then both the quasi-
static and the nearest-neighbor approximations are valid
for ions, and the distinction between scalar or vector
addition of the individual ion fields is accordingly
irrelevant.

For large ion velocities one has the phase shift
limit"" (see, e.g., reference 11)

1
lim j(x,n, o.)=—Re
o~0

Xexp[ixr —i'4(sr/2)*'F(s)nsi a ~rj, (4.15)

i.e., a dispersion pro61e whose width in units of the
electron width (in the x scale) is

1+ (sr/2);F ( )nsiso.—) 1+1.36ns&sa —y (4.16)

and whose shift due to ions, also in the x sca,le, is

d.=+(3'/g) ( /2):r (-',)
2.36nsIso y. (4.17)

(The sign is determined by that of n and C4.)
Debye shielding of ion fields by electrons and ion-ion

correlations are much less important for the neutral
helium lines considered in this section than for hydrogen
lines. First of all, because of the second-order Stark
effect, only relatively large ion field strengths are of
interest, whose probability is not much affected by
correlations and shielding. In addition, at high densities
where these eRects might be of interest, helium lines
can only be observed at much higher temperatures
than hydrogen lines. Finally, the ions contribute here
a much smaller pa,rt of the broadening, so that neg-
lecting the two effects is not expected to reduce the
accuracy of the theoretical profiles signiGcantly except,
perhaps, near the intensity ma, xima.

2~ E. l.indholm, Arkiv. Iat. astron. Fysik 288, No. 3 (1941)
n, riel &dissertation, Uplisala, 1942 (unpublished)."H. M. I'oley, Phys. Rev. 69, 616 (1946).

&0 Iu. In"')=1„—&n"'
I 0 In'"') =—0's,

'—= —
(& "'IIIo.I

"')—&&IIIo IP))/»
CO;p= CO;—G)p.

(5.2)

I;(&o)= dF W(F)I;"(&o)

dF W(F) ( p, (F) '

osis(F)+y;is ~ pp os,s(F)

bio

2 «L»~''(F)3&'s~'(F) )
(5 3)

Is o I'0 "~'s(F)

If several forbidden components exist, they will

usually be so closely spaced that they show a linear
Stark eRect. Then the components shifted towards the
allowed line will be the most important, and I,"(&o) in
the integrand of (5.3) will increase rapidly with Geld
strength until all components merge at a maximum
field strength Ii given by

I
eF so;1=1+is'o(o) I (5.4)

(wit.h s().,
—= (n&"'

I z In&'~)).
The quantity which is most critically affected by the

ion field is I p, (F)/psl', whose mean value can be esti-

Eq. (5.1) holds for 1&o;I((I&os I &
i.e., in the neighborhood

of the forbidden component. The contribution of the
allowed component (i=O) is not included here and it
was assumed that the forbidden line is weak compared
to the allowed line (Iysl» I p'I l&o'sl»14"sl) an«h«
all g-matrix elements are real. The latter assumption
is nota serious restriction because forbidden components
only appear at high densities, where the hydrogenic
approximation for the p matrix is applicable.

The ion eGects on such lines can be calculated using
the quasi-static theory, which is generally valid at high
densities. The hydrogenic p matrix and ps are practically
independent of the ion Geld strength in the case con-
sidered here, and the observable proGle of a forbidden
line is therefore
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mated using the asymptotic Holtsmark distribution

W .(F)=2~e**I'VE ', (5.5)

=4&re&iV . (5.6)
i Aco, p(0)

For densities at which the forbidden components are
suQiciently weak, the maximum Geld strength is always
much larger than the mean field strength

F= 8.8e.V:. (5.7)

Therefore, the probability of fields greater than E,
which produce a linear Stark effect in the allowed
component is very small, so that the cutoff in the above
integral is not critical.

The mean values of the other relevant quantities,
now assuming linear Stark effect and neglecting the
shift of the allowed line, are

(cd, (F)). =co,(0)+fs 'es, ;F,

(cp, p(F)). =co,p(0)+&s—'es;;F,

Re(pop;(F)). esp, F

/1cpf' Acd;p(0)

(5 8)

Using these relations and (5.7) for Z, (5.3) may iinally
be approximated by

I,(cp) = (fop, (0)+fs 'ez;,Ffs+@,,s) '

y 4
8.8Acd;p(0)

P;o

cp, p(0)+Pi 'es, ;F

2espcF&;pLcd;(0)+&ts 'es, ~F1
(5.9)

Acp, o(0)ct&;,t co'p(0) +1s 'es, ,F)
(The strongest forbidden component will be that for
which co,p(0) and es,;F/5 have different signs. ) Hydrogen
wave functions can be used for all the matrix elements
with adequate accuracy or—for the forbidden com-
ponents showing a linear Stark effect—the linear com-
binations which diagonalize the s matrix.

The last term in (5.9) will often be negligible. Then
one can say that the first term represents the excitation
of the forbidden components by the quasi-static action
of the ions„and the second term represents their de-
excitation by electron impacts. The second term
increases somewhat faster with the electron density
than the first term, i.e., electron effects become more
and more important at high densities.

Eq. (5.4), and the standard quadratic Stark effect
result,

I '(F) ' esp,F
dFW(F)—

pp g~ p Aco, p(0)

When the intensities of the forbidden lines approach
that of the allowed lines, the approximations made in
this section are no longer valid. For example, the
profile of the Her 3965A line was computed" using the
complete impact profile described by Eq. (2.10), folded
into the ion 6eld-strength distribution, and the result
agreed with Wulff's experiment" within 20%%uz. LThese
calculations were made for the electron density 3.2X 10"
cm ' quoted by WulG, but only one interacting state was
considered in the p-matrix elements. New calculations
with more interacting states (up to five) give best
agreement for an electron density 2.5)&10&o cm '.j In
this case the forbidden component has practically
always a linear Stark effect, and for high Geld strengths
also the allowed component. If this transition to linear
Stark effect occurs already for relatively small field
strength, the theory developed for hydrogen lines' must
be applied, and the profile will correspond to that of a
hydrogen line with the same upper state, except for
trivial factors due to the difference in wavelengths and
the fact that usually the S states do not merge.

6. NUMERICAL RESULTS AND USE OF TABLES

The electron impact widths and shifts using Eqs.
(3.15) and (3.16) were calculated with an IBM-704
computer. Broadening and shift of both the upper and
lower states were taken into account with a maximum
of five interacting states by adding the widths and
subtracting the shifts of upper and lower states. Also
calculated were the parameters n and o. Lsee Eq. (4.8)],
which characterize the ion broadening. (For o the mean
value of ~' was employed, assuming electron and ion
kinetic temperatures to be the same. ) All quantities
are tabulated (Table I) for electron densities 1P which
were chosen to be smaller than the densities for which
the various allowed lines overlap. (These 11/' are almost
always smaller than 1V,„defined by (3.19), i.e., Debye
shielding is usually negligible in the electron broaden-
ing. ) For electron densities X smaller than 1P the widths
of lines without forbidden components are obtained by
multiplying the tabulated values with 1V/1P, the
asymmetry parameters cc by multiplying with (1V/1P) 1

and the parameters cT by multiplying with (X/1P) l. If
other than helium ions dominate the ion broadening, o-

must be multiplied by the square root of the foreign
ion to helium mass ratio. The electron impact shifts
follow directly from the tabulated shift-width ratios,
which are positive if the line has a red shift. Also given
for comparison is the adiabatic theory result for the
widths.

For many cases, the linewidths obtained with the
adiabatic approximation are not too different from those
derived from the generalized impact theory, but

28 H. R. Griem and A. C. Kolb, I'roceeCings of the I~'ozzrfls

International Conference on Ion&ation Phenomena in Guses,
Uppsala, Sweden, August 17—21, 1959 (North-EIolland Pul&lishing

Company, Amsterdam, 1960).
s' H. Wulft, Z. Physilc 150, 614 (1958).
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TABLE I. Caicuiated line broadening parameters: electron impact (half) half-widths w, adiabatic widths w, relative shifts d/w, and
ion broadening parameters a and logi00. LThe widths are in A for electron densities ii/ in cm ' and the static Stark coefficients C and
C' are in units of cm ' per (100 kv/cm)'. g

Linel
11S—4 1P
522.2A
E'= 10"
C=+39.4

1'S—3 'P
537.1A
E'= 10"
C=+4.10

11S—2 1P
584.4AE'= 10'0
C= +0.0046

2 3S—4'P
3188A
37'= 10"
C= —6.83
C'= —6.2

23S—33P
3889Ag'= 10'8
C= —0.67

C'= —0.71

2 'S—4'P
3965AS'= 10'8
C=+39.4
C'=+37.3

2'P —5'S
4121A
X'= 10'8
C= —15.7

2'P —O'S
4438A
g i —1018
C= —28.1

2 'P —4'S
4713A
E'= 10"
C= —3.14
C'= —2.9

2'S—3 'P
5016Ag'= 10'8
C=+4.14
C'=+4.3

2 1P—41S
5048A
Ã'= 10"

C = —5.79
C'= —5.2

23P—3 3D
5876A
P7i —1018
C=+0.39
C'=+0.67
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TABLE I (costzzzzzed)
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C= —2.43
C'= —2.6

2'P —3'S
7065A
E'=10'8
C= —0.37
C'= —0.25

2'P —3'S
7281AE'= 10'8
C= —0.72

3'P —5'S
12 850A
jP=10"
C= —15.0

3 V' —5'S
13 477AE'= 10'~
C= —32.2

3 'S—O'P
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E'= 10"
C=+40.1

3 'D —O'P
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E'= 10"
C=+41.8

3 3D—43P
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N'= 10'~
C= —7.23
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E'=10'~
C= —2.48
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1V'= 10'7
C= —9.9
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X'= 10"
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0.33
1.24

125
210—0.44

0.57
1.01

191
327—0.39

0.59
1.01

139
113
+0.28

0.22
0.83

121
64.2

+0.62
0.12
0.70

178
162
+0.67

0.25
0.87

262
277
+0.59

0.26
0.69

188
74.3

+0.44
0.()8
0.53

80 000

29.0
71.3

+0.45
0.62
0.60

30.3
22.8

+0.72
0.16
0.57

44.9
37.9

+0.63
0.21
O. ii

108
89.0

+0.54
0.24
0.93

157
163
+0.52

0.35
1.05

108
236—0.37

0.64
0.79

162
367—0.33

0.67
0.79

128
126
+0.21

0.23
0.64

121
72.1

+0.50
0,12
0.55

168
182
+0.55

0.27
0.69

239
311
+0.49

0.28
0.50

182
83.6

- f-0.36
O.ON

0.37



S l'ARK BROADEN I NG OF NEUTRAL He LINES IN PLASMA

dcv1satlo11s by a factor of 2 or 3 111 both directions occur
occasionally. The adiabatic widths increase mono-
tonically with temperature, while the widths calculated
here often have a maximum for intermediate tempera-
tures, so that their temperature dependence is even
smaller than the T"' dependence in the adiabatic
approximation. It is for this reason that densities can
be determined when the temperature is not known
precisely and even when one is not sure about the
existence of local equilibrium. The ratios of shifts and
widths are always smaller than the adiabatic theory
result K3, usually by a factor of 2 or more, especially
at higher temperatures.

In the erst column of Table I the calculated and the
available measured" values (averaged over the polari-
zations) of the quadratic Stark effect coefficients C and
C' are compared to provide a check on the accuracy
of the atomic wave functions used in the line broadening
calculations. The agreement is usually within 10/~.
This error causes slightly smaller uncertainties in the
linewidths and shifts.

That errors of this order must be expected can also
be seen from Table II, where atomic matrix elements
obtained from various approximations are given.
Hartree-Fock calculations" were only available for
states with principal quantum number 2. For higher
states, hydrogen-like wave functions had to be used,
in which either the charge or the principal quantum
number" was adjusted to give the measured bound
state energies. Matrix elements involving states with
diGerent principal quantum numbers given only a small
contribution to the line broadening so that they could
be approximated by the hydrogenic values.

In Table III the reduced line profiles j(x,n, o) (time-
dependent ion fields) and j (rxl, ) rr(quasi-static ion
fields) from Eqs. (4.9) and (4.14) are presented for all
values of o, and 0. of interest. If o. is larger than the

TABLE II. Squares of radial matrix elements in atomic units for
the singlet (in parentheses) and the triplet system of neutral
helium calculated with various approximations.

(&2s~. ~2P))»

(&3s].(3z&)2

(&3P (r )3D&)2

(&4S[r ]4m&)2

(&4P ) r (4D&&2

{&ssl.l »))2

Hartree-
Fock

21.03
(2s.s6)

Effect.
quantum
number

19.32
(25 22)
125.2

(1s2.o)
102.7

(100.0)
432.2

(505.8)
435.9

(428.1)
1103

(127O)

Effect.
charge

23.55
(26.16)
146.4

(is8.s)
101.7

(ioo.9)
498.4

(S29.8)
433.0

(437.8)
1263

(1328)

Hydro-
gen

27

162

101.25

540

432

1350

Adopted
value

21.0
(2s.6)
134

(is4)
101

(ioi)
459

(s14)
432

(432)
11?0

(129O)

largest tabulated value o,„, then jrr(x, n) can be used;
and if 0 is smaller than the smallest tabulated values,
the impact approximation becomes applicable for ions,
i.e., Eqs. (4.16) and (4.17) may be used to evaluate the
total width and shift of the resulting dispersion profile.
For larger x values than those in the table, the wing
formulas derived in Appendix Z can be employed, i.e.,
Eqs. (Z10) or (Z11) and (Z12).

At low densities ion broadening is only important on
the line wings, where the scalar additivity assumption
is not critical. At high densities the whole profile is
seriously affected, but jar(x,u) can then be applied
which makes use of the quasi-static approximation for
the ions without the assumption of binary collisions
and scalar additivity. In order to show that the quasi-
static assumption causes no significant errors for larger
o values, the function j(x,n, ~) )from (4.11)j is also
tabulated in Table III. It deviates from both j( nx,o, )
and jIr (x,cr) by less than 10% for n(0.3, which may
be taken as an indication of the errors in the complete
line profiles due to the scalar additivity approximation
made in the calculation of the time-dependent ion

TABLE III. Reduced line pro61es j(x,o,,o) and j&&(x,n) for various values of the ion broadening parameters u and 0..

Qx —2.0 —1.5
a rg

—1.0 —0.7 —0.5 —0.3 —0.2 —0.1 0.0 0.1 0.2 0.3 0.5 0.7 1.0 1.5 2.0 2.5 3.0 4.0 5.0

0.1 1.0

JH

0.2 0.6
1.0

jH

0,052 0.073 0.111 0.148 0.173 0.200 0.214 0.226 0.239 0.251 0.259 0.265 0.261 0.242 0.204 0.142 0.096
0.049 0.072 0.114 0.153 0.186 0.221 0.238 0.254 0.267 0.277 0.282 0.283 0.270 0.244 0.199 0.132 0.089
0.050 0.073 0.115 0.154 0.186 0.218 0.235 0.247 0.260 0.270 0.274 0,274 0.263 0.240 0.198 0.134 0.092

0.044 0.058 0,083 0.103 0.121 0.141 0.150 0.161 0.172 0, 182 0.194 0.204 0.219 0.223 0.211 0.171 0.127
0.039 0.056 0.084 0.110 O. 130 0, 153 0.166 0.180 O.193 0.205 0.217 0.227 0.238 0.231 0.215 0.167 0.121
0.038 0.054 0.083 0.110 0.134 0.162 0.177 0, 195 0.207 0.222 0.234 0.243 0.253 0.248 0.221 0.163 0.115
0.039 0.056 0.088 0.116 0.143 0.169 0.183 0.196 0.208 0.220 0,228 0.234 0.238 0,228 0.206 0.156 0.114

0.3 0.3
0.6
1.0

gH

0.041 0.055
0,036 0.049
0.032 0.045
0.030 0.042
0.032 0.045

0.075
0.071
0.067
0.062
0.069

0.091
0.089
0.087
0.082
0.091

0.105 0.122
0.104 0.121
0.103 0.123
0.098 0.118
0.109 0.131

0.130 0.139
0.130 0.139
0.133 0.144
0.130 0.142
0.143 0.155

O. 147 0.155
0.149 0, 158
0.155 0.163
0.154 0.170
0.166 0.178

O. 162 0.171
0.167 0.175
0.172 0.183
0.183 o.195
0.188 0.195

0.186
0.192
0.201
0.214
0.204

0.199
0.207
0.214
0.225
0.206

0.212
0.219
0.218
0.222
0.197

0.206
0.198
0.190
0.184
0.164

0.166
0.158
0.145
0.139
0.128 0.100 0.078 0.047 0.030

0.4 jH 0.026 0.038 0.056 0.073 0.086 0.104 0.113 0.123 0.131 0.141 0.150 0.157 0.170 0.175 0.176 0, 160 0.134 0.110 0.090 0.058 0.036

0.5 jH 0.022 0.032 0.047 0.058 0.072 0.090 0.094 0.102 0.110 0.117 0.127 0.133 0.144 0.154 0.156 0.148 0.130 0.113 0.096 0.065 0.040

"I-andolt-Bornstein, Zuhlenmerte Nnd Fgnktionen I.1 (Springer-Verlag, Berlin, 1950).
3' E. Yrefftz, A. Schuter, K. H. Dettmar, and K. Jorgens, Z. Astrophys. 44, 1 (1957)."D. R. Bates and A. Damgaard, Phil. Trans. Roy. Soc. London A242, 10 (1942).
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TAsT.K IV. Analysis of the arc experiment.

Wavelength
I A]

3889
5016
4713
4121
5048

0.37
0.91
1.5
3.1
2.3

0.34
0.99
1.4
3.3
2.3

Half-width u LA]
measured calculated

0.25
0.65
1.5
2.8
2.1

0.15
0.73
1.4
3.0
2.3

Shift d LA]
measured calculated

2.7
2.3
2.6
2.4
2.5

4.3
1.9
4.2
3.9
3.7

3.5
1.6
3.4
3.2
3.0

Electron density E
L10" cm ']

Ã,„'

7. COMPARISON WITH EXPERIMENT

Measurements of profiles of neutral helium lines have
been made with pulsed arcs" and with explosive-driven
shock tubes. "In the arc experiment the electron density
could be estimated from the volume and initial pressure,
and the temperature was measured to be T= 30 000'K

0.25

0.20

Experiment

O.I5

O.IO0

0.05

0.00
IO 0

hX(A)

-5

FiG. 3. Profile of the Her 4713A line at %=2.5)&10' cm '
and T=30 000'K.

G. E. Seay, Los Alamos Scientific Laboratory Report LAMS-
2125, 1957 (unpublished).

broadening. LFor n)0.3, one can practically always
use j&(x,n).j

Line profiles on an absolute wavelength scale can be
obtained from the reduced profiles by multiplying the
x values with the electron impact width m, dividing the
intensities by z, and finally shifting the whole profile
by the electron impact shift d. A numerical accuracy
close to 20% is expected for all the lines listed in Table
I, if the densities are below X', and if forbidden com-
ponents are treated as indicated in the preceding section.
The schematic treatment of close electron collisions,
the uncertainties in the wave functions, and the ap-
proximations in the treatment of the ions contribute
comparable amounts to this error.

from the relative intensities of the Hen 4686 A and the
HeI 4713A lines, using the value for the electron
density.

Table IV summaries the results of the arc experiment
for five isolated lines. The second and fourth columns
give the measured half-widths and shifts. From the
measured widths the corresponding electron densities
lV,„(column 6) were computed from the present theory
taking into account both ions and electrons. This was
done by an iteration procedure where the ions were
neglected as a first approximation. For comparison,
the densities E, ' obtained from the adiabatic theory
for electron broadening neglecting the ions are listed in
column 7. In column 8 the density E, "obtained from
the adiabatic impact approximation for both ions and
electrons is given. It can be seen that the densities de-
termined from the present theory only deviate by
&10%from their mean value of 2.5&(10"cm ', i.e., are
consistent with each other within the errors of theory and
experiment. (The densities obtained from the adiabatic
approximation show deviations of up to a factor of 1.5
from their mean value. ) The shift was then computed
for this new density and agrees within the experimental
accuracy with the measured shifts. It should be noted
that the ratio of the shift to width is considerably
smaller than the adiabatic prediction of V3. For com-
pleteness the half-widths are computed for Ã = 2.5 g 10"
cm ' and tabulated in column 3.

The X, from this theory are smaller than the origi-
nally quoted" electron density E=3.2X 10" cm '.
This is consistent with the measured profile of the
Herr 4686 A line which also corresponds to a smaller
electron density if electron broadening is not neglected. '

Complete profiles of one isolated line and one line
with a forbidden component were calculated for
3 =2.5)&10" cm ' and T=30000'K, and are com-
pared with KuM's measured profiles in Figs. 3 and 4
without translation of the wavelength scale, i.e., the
shift was calculated. The agreement is again as good
as can be expected, even for the forbidden component
in the second example. The deviation on the line wings
may be due to errors in the determination of the con-
tinuum background. No attempt was made to show
profiles from previous theories, because they disagree
with the measured profiles far outside the experimental
error.

The shock-tube data of Seay" also show large dis-
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crepancies between the observed helium profiles and
those calculated from the usual adiabatic theories,
particularly in the shifts which are smaller than ex-
pected from the I.indholm-Foley analysis. ""Because
of experimental difficulties associated with uncertainties
due to the time resolution and self-absorption, the
shock-tube measurements at the present time are not
as accurate as the arc data, However, with improved
time resolution and with independent density measure-
ments (from the continuum, the broadening of hydro-
genic lines, interferometric determinations, "and shock
velocities), the shock tube holds promise of a spectro-
scopic precision comparable to that of the pulsed arc
(which burns for milliseconds compared with the
microsecond time scale of the shock-tube experiments)
because the errors due to the short time scale can be
less than those due to spatial inhomogeneities in arcs.
Because of these spatial inhomogeneities it is unlikely
that the measured widths, shifts, and electron densities
in the arc are accurate to better than 20%, whereas
the accuracy in recent measurements of hydrogen and
neutral and ionized helium line profiles with electro-
magnetic shock tubes" seems to be at least twice as
good as far as the widths are concerned.

8. RELATIONSHIP WITH EARLIER THEORIES

The comparison of the present work with the usual
I.indholm-Foley ' adiabatic theory of electron
broadening has already been discussed in Sections 3
and 6.

A theory of the electron width has been given by
Rudkjobing. "It is an impact theory, but he considers
only collisions where the electrons are scattered elasti-
cally by the Hartree potential of the atom. Hence his
widths are much too small since, as was seen in Sec. 3,
the greater part of the width usually comes from in-
elastic collisions. Even for elastic collisions alone, his
is an underestimate due to his neglect of polarization.

For some years, a standard work on helium lines has
been that of Kivel. '7 His width includes only inelastic
collisions and is given by w=-, Svo-;, where 0.; is the
total electron inelastic cross section computed with the
quantum mechanical Born approximation. This should
be correct if the Born approximation is valid. The use
of the Born approximation is equivalent to the use of.

perturbation theory in Sec. 3 for calculating P, . It is
not valid for small impact parameters, hence the intro-
duction in Sec. 3 of p,„;„and its definition by Eq. (3.16).
Kivels width is obtained from (3.15) by setting p
equal to X, the de Broglie wavelength divided by 2x,
the explanation being that the main effect of quantum
mechanics is to quantize the angular momentum of

0.20

O.I5-

Experiment

Theory

O.IO-

0.05-

the electron, thus making impact parameters smaller
than K meaningless. If p„„„asdefined by Eq. (3.16)
turns out to be much smaller than A. , the classical path
theory is wrong and Kivel's width should be used. If
p;„ is of order X, both theories give the same result.
And if p;„ is much larger than 'A, Kivel's use of the
Born approximation is improper and Eqs. (3.15)-(3.16)
should be used. For neutral atoms, it turns out that
p;„ is always larger than P in the high-velocity limit,
as shown by Eq. (3.13), and also in the adiabatic limit
if the perturber energies are larger than the energy
differences of interacting levels. Hence the classical
path theory is always good, as was already pointed
out in reference 3, and Kivel's widths are too large,
although not by an order of magnitude.

In the case of lines emitted by ions, the situation is
a little different, but the result" is again that, in
practical cases, the classical path theory is valid.
Actually, the calculation of 0-; by quantum mechanical
perturbation theory is often valid too, provided one
replaces the plane waves of the Born approximation
by Coulomb wave functions, but then it gives the same
result as the classical path approximation. The reason
is th'at Coulomb effects decrease the contribution of
small impact parameters and effectively introduce a
p;„which is always larger than X.

In a similar manner, Kivel's shift is the standard
quantum mechanical answer given by second-order
time-independent perturbation theory, and should be
correct provided that perturbation theory hold for all
impact parameters that make an important contri-
bution. This is just the condition under which the
high-velocity limit, Eq. (3.12), was derived, hence
Kivel's shift should be identical with the imaginary
part of Eq. (3.12), and it is. The foregoing comparison
of the present work with Kivel's constitutes one more
demonstration of the equivalence of the 'classical and

'" R. Alpher and D. R. White, Phys. Fluids 2, 162 (1959).' H. F. Berg, A. %V. Ali, R. Linc', and H. R. Griem, this issue
LPhys. Rev. 125, 199 (1962l].

'"' M. Rudkjobing, Ann. Astrophys. 12, 229 (1949)."B.Kivel, Phys. Rev. 98, 105$ (1955).
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and T=30000'K.
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A+, ——[n( i(RpaiR ),

with R+ and 8 given by

R+ =[~a[x[+(1+x2) j-:/VZ.

(Z5)

(Z6)

1
b(0) =—lim

y
—+p

+"
ds' A (s') tan '[ [. (Y14)

s'+& 5-s'i
In terms of these quantities the profile is

he contribution arises from s' nearFor small q, all the con s' near
that A(s') can be replaced y

r and ives finallyremaining integral is elementary an gi

b(0) =~/2.

j~(x,n) =—

XIm

dg y exp( —gl)

dp—
(P+iA, )(P+iA )

It can also be shown that. a(s) diverges logarithmi-
cally for small s, i.e.,

"A(s')
ln(1/[s[).

s'

t P iA+ P iA- —~

~

the simple poles atA contour integration encirc ing
iA+ and iA yields

A (s)-s-[s[s—'~'~; B(s)-~/4s. (Y17')

totic behavior of A (s) and B(s)For large s the asymp o
(the adiabatic limit) follows from, 3. an
respectively, as

.7a(x,n)= — yy exd exp[ rpi R~rp [n [
'j- —-

)&sin(R g[n[ —:).
"J.Holtsmark, Ann. PhysIk SS, 577 1919).

(Z8)
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~ n=1

F(-,'(3N+1)) ~n
~

" ' sing-,'(3n+1)(tan '(R /R+))]
X-

p(rz) (1+x&)(3~+))/&
(Z9)

7
&&sin —tan —'(—8~x~+(1+x')') . (Z10)

2

The first two terms are

1 15 Q

n. (1+x') 8~m (1+x')"'j&(x,n) =

Asymptotic formulae for the line wing can be ob-
tained by expanding exp( —q') and integrating term
by term:

For large x one has finally

15n1 1 3Q
je(x,n)= + + = +—-+ .

, (Z11)
8 (2~) ***"'

if x/n)0 and
j(x,n) 1/ex', (Z12)

if x/n(0 He. re the ion eGects are not important.
Tha, t Eqs. (Z11) and (Z12) agree with the first two

terms of the wing expansion of Eq. (4.11), which
involved the scalar additivity assumption, can be seen
by expanding expL —i'I'(4)nr'] in this equation and
integrating term by term. Up to this order also the
time-dependent theory yields the same result, which
can be shown by expanding the phase integral in a
power series of the time if one notices that the first-order
term gives the quasi-static approximation, Eq. (4.11).


