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The frequency distributions of spectral lines of nonhydrogenic atoms broadened by local fields of both
electrons and ions in a plasma are calculated in the classical path approximation. The electron collisions are
treated by an impact theory which takes into account deviations from adiabaticity. For the ion effects, the
adiabatic approximation can be used to describe the time-dependent wave functions. The various approxi-
mations employed were examined for self-consistency, and an accuracy of about 20%, in the resulting line
profiles is expected. Good agreement with Wulff’s experimental helium line profiles was obtained while there
are large deviations from the adiabatic theory, especially for the line shifts. Asymptotic distributions for
the line wings are given for astrophysical applications. Here the ion effects can be as important as the
electron effects and lead to large asymmetries, but near the line core electrons usually dominate. Numerical
results are tabulated for 24 neutral helium lines with principal quantum numbers up to five.

1. INTRODUCTION

HE Stark broadening of spectral lines by inter-
actions of radiating atoms or ions with perturbing
electrons and ions affords a sensitive method for
determining plasma densities. When Stark broadening
dominates the Doppler broadening, the line profiles do
not depend critically on the electron and ion velocity
distributions or the temperature; hence, electron densi-
ties can be inferred from line profiles without knowing
the plasma temperature precisely and without invoking
the assumption of local thermal equilibrium.

It is now possible to calculate the contribution of
electrons to the broadening using a recently developed
impact theory!? which takes into account nonadiabatic
effects due to electron collisions. The ion contribution
can be treated in the usual adiabatic approximation.
The theory has already been applied to the broadening
of hydrogen lines,® and good agreement with the
experimental profiles of Bogen? was obtained, except
for the far line wings where experimental errors are
quite large because of the strong continuous back-
ground. In this paper the broadening of nonhydrogenic
lines arising from transitions between states where the
hydrogenic degeneracy has been removed is considered.
Numerical results have been obtained for 24 neutral
helium lines, but the methods employed here can also
be applied to a wide class of spectral lines of other
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atoms. Helium was selected as an example because of
its importance in stellar spectra, and because it is
monatomic and convenient to use in laboratory studies
for plasma density determinations. Also, it has a
relatively simple electronic structure so that the wave
functions can be calculated with fair accuracy.

The line broadening calculation involves three steps.
First, the fluctuating microfields of the ions and
electrons perturb the radiating system and this causes
the wave functions (of the radiator) to be time-
dependent. The perturbed wave functions are calcu-
lated here in the classical path approximation using
time-dependent perturbation theory; i.e., it is shown
that the perturbers can be treated as point charges
moving along their classical trajectories. The validity
of this assumption has been open to question so that
some attention is given to justifying this approach to
the problem. However, the usual assumption of
adiabaticity is not required even when the classical
path approximation is made.

Secondly, one must average over the various possible
perturber configurations. The perturbers are assumed
to be statistically independent, which can be shown to
be a good approximation for nonhydrogenic isolated
lines. At extremely high densities, when overlapping
of different spectral lines occurs, the influence of
collective effects on the microfield distribution is im-
portant as in the case of hydrogen line broadening.

Finally, the observable spectrum follows from a
Fourier transform of the dipole-dipole correlation
function calculated with the time-dependent perturber
wave functions and averaged over the perturber
trajectories.

In the case of the ion broadening the usual quasi-
static approximation fails in certain cases near the
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178 GRIEM, BARANGER,
center of the line and the transition region between the
quasi-static and impact theories must be taken into
account by considering the full time-dependence of
the adiabatic phase integrals. This has been done, using
the Anderson-Talman® method, with the assumption
that the ion perturbations are scalarly additive, which
is equivalent to the binary collision assumption and,
in general, leads to negligible errors since the electron
broadening dominates in the line cores. This is demon-
strated numerically.

For the line profiles of other light neutral atoms,
validity discussions suggest that the errors in the line
broadening calculations are comparable to those due
to uncertainties in the atomic wave functions. The
general method described here is also applicable to
profiles of ion lines with certain modifications that are
described in other publications.®7

The present theory is compared with the results of
earlier calculations which have been the subject of
several recent review papers.’1!

2. GENERAL THEORY OF ELECTRON BROADENING

The electron broadening is calculated in the impact
approximation. A general impact theory which allows
for the possibility of overlapping lines has been de-
veleped previously.'~® Here an alternative derivation
will be given which has several advantages, in particular
that of clarifying the handling of weak collisions. The
electrons are considered as classical particles; further
discussion of this point appears later in this section.
The interaction is

V(t)=er-E(2), (2.1)
where —er is the dipole moment of the atom and E(2)
the total electric field of all the electrons, which is the
sum of the Coulomb fields of all electrons,

E(;):jé E(0), (2.2)
Bi(t)=ex:(Dri(0). (2.3)

The initial states are designated collectively by @, and
individually by «, &- - -. Similarly, b, 3, 8’ are used for
the final states. Except for unimportant factors, the
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line shape is given by

0

Ip(w)=Re 3 dt exp[i(w—wap)t]

aa’BB’a [
X{B o )| o | B7){(er| Ta(1,0) | )
X<BI Tb*(lao) 118,>}3V7

where u, is a component of the dipole moment. The
average is the thermal average over all states of the
electron gas. T is the time development operator in the

(2.4)

interaction representation, which satisfies the
Schrodinger equation
1hdT (4,8))/dt=e oAV ($) e HoUA T (11)).  (2.5)

T* is its complex conjugate, i.e., the transpose of its
Hermitian conjugate.

Equation (2.4) is exact if quenching collisions and
radiation from transitions between the sublevels, « — o’
and 8 — B, are neglected. To make the impact approxi-
mation, one writes

A{T.(t,0)T5*(1,0)} av
= {T.(t+At, 0)T* (1-+At, 0)
—T.(t,0)T5*(#,0)} v
={[Tu(t+At )T *(t+AL, 1) —1]
X[Ta(t,0)T5*(,0) 1} av-

The impact approximation is valid if A/ can be found
such that: (1) Afis so large that the first factor on the
right-hand side of (2.6) is statistically independent of
the second factor, and the two may be averaged
separately; (2) At is so small that the average of the
first factor is very small compared to unity, in which
case it will be shown that it can be written'

exp[i (HOa—Hob)t/h]anb
Xexp[ —i(Hoa— Hop)t/% AL,
¢ap being a time-independent operator which will be

calculated. Then {7T.T%*}.y obeys the differential
equation

(2.6)

2.7)

__{ TaTb*}av: et (Hoa—Hop) t/ﬁd,abe——i(HOa—Hob) th
o XA{ToT5*}av, (2.8)
whose solution is

*® — pt(Hoa—Hob) t/ % p[—i (Hoa—H o) [ #it-dabl t
al b” fav=2¢ € .

(2.9)

Substituting in Eq. (2.4) and performing the time
integration, one obtains the following expression for

12 Eq. (2.4) follows from Eqs. (8) and (10) of reference 1, or
from Egs. (3) and (9) of reference 3. Note that the operator called
T in references 2, 3, and here, was called U in reference 1.

13 The representation is always assumed to be the a, 8 repre-
sentation. Otherwise, various complex conjugate signs would
have to be inserted. This same assumption was made in reference
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the line shape™:

Iab(w)s_Re Z (Blﬂv[a><a,|ﬂa|5’>

aa’ BB’ e
X{a| (8| [iw—1(Hoa— Hos)/ht+¢ap 1 o) 8).  (2.10)

The contention is that the impact approximation is
valid when

erEr], (2.11)

where er is a typical matrix element of the dipole
moment, E a typical electric field (say, the Holtsmark
normal field strength 2.61 e¢N?%), and 7 a typical cor-
relation time for the time-dependence of the electric
field. The latter is at most equal to the Debye length
divided by the velocity, i.e., the reciprocal of the plasma
frequency w,= (4rNe?/m):. The first condition on Al
can be satisfied by picking it appreciably larger than r.
Equation (2.11) makes it possible to satisfy also the
second condition, since every term, except the first, in

the perturbation expansion of T(i4Afz), with
hwaar =(a| Hoo|a@)—{a’ | Hoo| &), etc.,
{a| Ta(t+At, 1))
1: At
=<a‘a'>—%/ du exp (iwaartt){a| V (u)|a')
J t
1 t+At ul
h2ar J, ' ¢
X exp(iwaar t1Fwar wta){a| V(1) | )
X' |V )|+, (212

can be made small compared to unity most of the time
by proper choice of At justifying the replacement of
the difference Eq. (2.6) by the differential Eq. (2.8).
With this expansion, the average of the first factor on
the right side of Eq. (2.6) is

<a‘ <Bl {Ta(t+At7 t)Tb*(t—f—At) t)‘— 1}?W‘a,)|6’)

o I\"™ Nk t+At
(5 [
1 k=1 % hl arrepgre Sy
um—-1 t+At Wk—1
t t t

Xexpliwaar i+« Fiw...arthm

Ms

m

I

'—’l:w,apnwl— M —iw...,srwk]
X{al V()| [V () [@)
X @IV (wi) |87+ [V (W) [8)*}av (2.13)

The summation involves only even values of m--k;
odd terms average to zero because the perturbation
(2.1) is an odd function of the perturber coordinates.
For long-range forces, because of condition (2.11),

14 This is Eq. (62) of reference 1 and Eq. (10) of reference 3.
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terms with m-+%=2 will be the only important ones
most of the time and others can be neglected. Once in
a while, however, an electron comes very close to the
atom and creates a huge electric field. Then, higher-
order terms are important. But, when this happens,
correlations are not important and the fields of all the
other electrons can be neglected compared to that of the
close one. Hence, in the terms with m-+%,2>4, the total
electric field can be replaced by the field of a single
electron, say electron 1, and the result then be multi-
plied by =, the total number of electrons. This cannot
be done for the lowest-order term, because weak fields
are influenced to some extent by the correlations
between electrons. One can, however, replace one of
the two fields in the second-order term by the field of
electron 1 and multiply by #; this amounts to saying
that all electrons are equivalent, a triviality. But the
second field must remain the total field.

The thermal average is performed in two steps.
First, the position and velocity of electron 1 at a
certain time are fixed and the average is over the
motions of the other electrons. Second, one averages
over the paths of electron 1 itself. The first step does
not affect the higher-order terms at all, since they
contain only the field of electron 1. It does affect the
second-order terms, however. The problem is: knowing
that electron 1 is at r, with velocity v, at time ¢, what
is the average total electric field at the origin at time ¢'?
The answer is some sort of shielded field which exists
only in the vicinity of electron 1. As a first approxi-
mation, one may assume that the electron moves along
a straight trajectory at constant speed and uses the
Debye shielded field. This is correct for particles which
do not have too high a velocity. For the high-velocity
particles, the Debye sphere is distorted. The effect of
long-range correlations on the electric field autocor-
relation function can be computed by a method of
Rostoker!® that takes into account the distortion of
the Debye sphere. However, because the ¢-matrix
elements depend inversely on the particle velocities
for situations where shielding is important, the low-
velocity part of the electron velocity distribution gives
the dominant contribution to the broadening and the
Debye approximation is valid. In conclusion, one can
use fields of a single electron in the second-order term
too, one of them being a Debye shielded field and the
other unshielded.

To perform the second step of the average, electron
1 is again taken to follow a straight path at constant
speed. The variables are: the impact parameter p; the
speed v; the time of closest approach s; various angles.
The average is given by

0 0 +o0
V-1 / f(v)dv / 2mpdp / vds
0 0 —0

XAT (AL, ) To*(t+AL, 1) — 1},
15 N. Rostoker, Bull. Am. Phys. Soc. 5, 364 (1960).

(2.14)
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where { } indicates from now on the average over
angles; f(v) is the Maxwell distribution and V the
volume of the box, which combines with the factor »
to give N, the electron density. The integrand in (2.13)
is appreciable'® only if all times occur within interval =
of each other and of the time of closest approach,!?
where 7 is again the maximum correlation time. Since
At is much larger than 7, two kinds of collisions can be
distinguished: those for which the time of closest
approach s falls outside of the interval (Z, 4 Af), whose
contribution can be neglected; and those for which
t<s<t+At For the latter, one can set {=—o and
i+ A=+ without appreciably changing the inte-
gral.’” This is analogous to the phase shift limit of the
usual adiabatic theory. Thus, (2.13) can be expressed
in terms of the S matrix!® for a single collision taking
place at time s, S=T (4w, —»),

(@[ Sa|a)=(ale’)

1e ©
——Zalrala) [ B w)dn

—e0

62
—— 2 alrs|a"Xa" || )
2 ova’?
00 ul
X/ dih/ dus eilwaarrurtwarraru)
—0 00

X Ero (1) Eyy(u2) 4+ -+, (2.15)

This is easily seen to be related to the .S matrix for a
collision taking place at time ¢=0 by

(@] Sa(s)|o)y=eiao(a| Sa(0) ). (2.16)

But (2.16) is really independent of s as long as

<s<it+At, because wqao-At is very small. This follows
from the facts that two states @ and o« will give rise
to overlapping lines only if wqo is of the order of the
width of the lines, and that the product of the width
by Atis small as a result of the second condition imposed
earlier on At. Hence s on the right-hand side of (2.16)
can be replaced by ¢. Then the integral over s in (2.14)
can be replaced by Af and one obtains (2.7) with'®

as=N / 0/ (0)dv / Drpdp(Sa(0)S*(0)—1}. (2.17)

The average over angles eliminates all terms containing
an odd number of electric fields. And it must be re-
membered that, in the second-order terms, one of the
fields should be shielded and the other unshielded. If
two unshielded fields are used, the integral over p may

16 The following argument is due to B. Mozer (reference 3).

17 This is true even of the second-order terms because of
shielding.

18 This operator was called T'; in references 2 and 3.

19 This is Eq. (61) of reference 1 and Eq. (7) of reference 3.
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diverge for large p. It is convenient to use two un-
shielded fields and to introduce an equivalent cutoff
in the p integration. It is shown in Appendix X that
the cutoff should be made at 1.1 times the Debye
length, if one uses the Debye shielded field.

Thus, the problem of electron broadening is reduced
to the calculation of the .S matrix for a single scattering.
Here, the electrons have been treated classically, but
Eqgs. (2.10) and (2.17) are also valid when their motion
is treated quantum mechanically,?® provided that the
integral over impact parameters be replaced by a sum
over ] values, and the classical path S matrix by the
appropriate matrix element of the fully quantum
mechanical one. The classical treatment is valid when-
ever a large number of ! values contribute to the
answer.?! This allows one to replace the sum over / by
an integration; it also means that the potentials vary
so smoothly that the matrix elements of the quantum
mechanical S matrix can be calculated in the WKB
approximation, which is equivalent to using classical
trajectories. If in addition, straight trajectories are to
be used, the interaction energy must be small compared
to the energy of the electrons. Both these conditions
are realized in the applications to neutral helium lines
that will be given here. In the case of lines emitted by
ions, it may be necessary to use hyperbolic classical
trajectories to take into account the Coulomb inter-
action. This has been done for a number of cases where
it was found that the effect can either increase or
decrease the broadening.®? For ionized helium lines,®
the corrections are small for temperatures from
5000-80 000 °K and densities from 10'5-10 cm™3.

3. ELECTRON BROADENING OF ISOLATED LINES

Equation (2.10) is the general result to be used in all
cases where electron broadening is treated by the
impact approximation. It applies to overlapping as
well as isolated lines. In many of the applications to
helium lines the line is isolated and the only degeneracy
is that associated with the magnetic quantum numbers;
moreover, the final state is usually much less polarizable
than the initial state, so that its interaction with the
electrons can be neglected. Then S3*(0) can be replaced
by unity in Eq. (2.17), and the resulting ¢, is just a

20 M. Baranger, Phys. Rev. 112, 855 (1958).

21 In the recent article by H. Margenau and M. Lewis, reference
10, some doubts were expressed about the validity of the classical
path treatment even under these conditions. The conclusion, as
expressed in Eq. (2.11) of this reference, is essentially that the
classical treatment is not valid whenever the impact approxi-
mation holds. That this must be erroneous is clear since, in simple
cases [E. Lindholm, dissertation, Uppsala (1942); M. Baranger,
Phys. Rev. 111, 481 (1958); H. R. Griem and K. Y. Shen, Phys.
Rev. 122, 1490 (1961)7], the identity of the classical impact and
quantum mechanical impact treatments is easily established. The
fallacy resides in Eq. (2.6) of reference 10 which is needlessly
restrictive and where d should be replaced by 7. The condition
(2.9a) in this reference is also unnecessary, since the problem at
hand is not that of calculating the precise angle by which the
electron is scattered, but only the effect that the presence of the
electron has upon light.
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multiple of the unit matrix because of spherical sym-
metry. The sums over o, 8, 3" in Eq. (2.10) also give
a multiple of the unit matrix in «, «’. Hence, the line
shape is Lorentzian as in Anderson’s impact theory.?
When normalized to S I (w)dw=1it is

I.(0)=—(1/7) Re[tw—iwapt{a|Pa|a) ]
= (w/m)[ (0—wap—d)*+w* ],
w=—Re(a|dq|a),
d=—Im{a|¢.|a),

and from Eq. (2.17)

(3.1
with

(3.2)

(a!¢a|a)=N/vf(v)dv/21rpdp{<alSa(O)—1|a>}- (3.3)

According to Eq. (2.15) without the fourth and higher-
order terms, one has

{a]Sa(0)=1]a)}=—{— 2 {a|r. |} |r.]0)

ora’

62
a2
0 uy
X/ dulf dtts expli (WaarthsFwaraths) |
X E15(11) Evy(the)+- - } (3.4)

With Eq. (2.3) and 71,(#)=p1,+v1.%, this can be
written

e4
(alSu0)= 1) = == % @lr. ||

ova

00 u1l
X/ dM1/ dug exp]:i(waa'ul—l—walaug)j

P1aP1y V1,01 U1
_ e, (35)
[71(us) | ®]71(u2) | ®
T - et
\
\ —A(2)
15} \\ A
\ ——B{z)
\ o
\ 47

Az), B(z) —
B

o
@

F16. 1. The functions 4 (2) and B(z) and their
asymptotic representations.

22 P. W. Anderson, Phys. Rev. 76, 647 (1949).
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¥16. 2. The functions a(z) and b(z) and their
asymptotic representations.

because terms containing pi,v1, will average out. For
c#v, p1p1» and vy,0;, also give zero in the average.
Using {piop1) =3¢, (o0} =3¢, and |ra|?=pHos,
one has with the definitions Zeo'=weqep/v and x=vu/p,

e?

sty =—(
{{e|Sa—1]|a)}= g;z;

2
) £ felrelae 72l
+o0 z1
X / dxy / dxy €xp[iZae (X1—%2) ]

1+x1x2
X +...
(1421422}

E—j(;;) = Galr el le)

X[A (zaa’)+’£B(zaa’):|+ e,

As shown in Appendix Y, the integrations over x; and
%2 can be expressed in terms of Bessel functions:

(3.6)

A(@)=2[K¢(Jz])+Ke(|2])], 3.7
and the principal value integral (P)
2z = A(Z)

B(s)=—p / i, (3.8)
7 Jo 223"

where Ko(2) and K;(z) vanish exponentially for large
z values.® A(z) and B(z), which are needed for the
following numerical integrations, and their asymptotic
approximations are exhibited in Fig. 1. Note also that
A(2) is an even function and B(z) an odd function of
z. The integration over p involves the functions

© A(z") , 3 © B(z")
a(z):/2 = dz, b(z)——/z .

’
23 Basset, Proc. Cambridge Phil. Soc. 6, 11 (1889); see also
G. N. Watson, Teory of Bessel Functions (Cambridge University
Press, New York, 1952), 2nd ed., p. 78,

&, (3.9)
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which are shown in Iig. 2. (See Appendix Y for mathe-
matical details.)

With these definitions the contribution of weak
collisions, for which terms of higher than second order
are negligible, to the ¢-matrix element can be written

(| pa| @)= — (47/3) (e2/7):N
dv
X/—;}—f(v) :Z, [(alrs|a’)|?

X[a’(zaa’min) +ib(zaq’min)], (310)

where Zpa™P=waq'pmin/v corresponds to a minimum
impact parameter, at which the perturbation theory
breaks down. The effect of strong collisions can be
estimated by the Lorentz term (assuming complete
interruption of the radiation)

(alq‘)a[a')s%—-N/dv F@)vrpmin? (v). (3.11)

In the high-temperature limit (2z,™— 0), Egs.
(Y15) and (Y16) may be used and one obtains with
ao="72/me?

(@] dal@)ee=(a|pa] @)s
{a]7s]a)|?

(3 Zro g [

X [In(] zaq™n| 1) im/2],

(3.12)

where the signs of the contributions to the shift are
determined by those of the wqq. In this case

[A (ztxa’

the condition for the validity of the perturbation theory
is particularly simple, namely

l {<a[Sa(Pmin)*1 Ia>} I

2/ 7 o\?
SESE
3\mvpmin/ oo’ Qo

20 B o\?
z—( ) at=~1. (3.13)
3 MVPmin

(Here, @ is the principal quantum number of the upper
state.) The minimum impact parameter is accordingly
inversely proportional to the velocity, and the strong
collision term in Eq. (3.12) is entirely negligible, i.e.,
perturbation theory gives the exact answer in the high-
temperature limit.

Also for the opposite extreme (low-temperature
limit) an exact result is available from the adiabatic
impact theory, which can be worked out to all orders

min) ~ 1’ B(Zaa,min) zo],

{af7e]a’)|®
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(see the following section):

oY
([l

Qo
In the intermediate range (the usual situation), ap-
propriate estimates for the strong collision term and
the limiting impact parameter must be used. One
possible set of equations which properly reduce to both
limits is

el galai=—N / dof (v){rvpmm"’%—j—:(%)z

Qo

)?(v%)av(lii\/\?). (3.14)

X2

ca’

[a(zmrmm+z'b<z—zwmm>1}, (3.15)

where pmin=Zaa'™"8/wqe is defined by

l{<alSa(pmin)—1{a>}{

~Gl(=

(a|rq|a’) 2B (zaa,min))T

+(z]&
=T @I~ @

Here for the widths, the strong and weak collision
terms of Egs. (3.10) and (3.11) are preserved, and
agreement with the limiting cases is achieved by
choosing different cutoffs in width and shift and by
the choice of the numerical value of Eq. (3.16), which
defines the impact parameter at which the perturbation
theory fails.
An alternative cutoff procedure is to use

elreledr’, )

Qo

1

Qo

(3.16)

(lpelau= =N [ do 1] (mopa

4wt h
o (2) g [
3o \m/ oo’

(|rsa)|®

Qo

[0(sua™)

+(%)%ib(zm'mi")]}, (3.17)

and an equation like (3.16) with (3/4)% replaced by
v3/2, which, however, only reduce to the adiabatic
limit (using again 3T'(3)=1.339. .- ~%). Here a single
cutoff in the real and imaginary parts is employed, but
an ad hoc correction factor (4/3)#=~1.21 had to be
inserted in the strong collision term and the shift.

The deviation of the correction factor in Eq. (3.17)
from unity may be considered as an indication of the
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uncertainties introduced by the schematic treatment
of the strong collisions, i.e., the second set of equations
exhibits more clearly the limitations inherent in this
treatment. The largest differences between the two
proposed procedures are expected at high velocities,
because they both reduce to the adiabatic theory result
for small velocities. But for large velocities the width
is dominated by the weak collision term, which depends
only logarithmically on the cutoff, and therefore Eqgs.
(3.15) and (3.17) give practically the same widths.
Only the shift is seriously affected; it is a factor 1.21
too large in the second case. However, in this limit, the
shift is smaller than the width, and if the shift is
expressed dimensionlessly in terms of the width the
two procedures should only deviate by <209%. This
was borne out by comparing numerical results for the
24 helium lines. Further insight into the errors intro-
duced by the use of cutoffs may be gained by subjecting
calculated widths and shifts to a quantum mechanical
dispersion relation.?*

It may be surprising that sufficient accuracy is
obtained from a perturbation treatment in which only
the first nonvanishing term is considered. The ex-
planation is that because of the long-range nature of
the interaction for high electron velocities, most of
the broadening is due to the distant collisions whose
contribution is accurately described by the second-order
term in the perturbation solution of the Schrodinger
equation. Strong collisions usually only account for
approximately 209, of the electron broadening, and
the uncertainty in the strong collision term (probably
good to within a factor 2) should therefore produce
errors of about 109, in terms of the total width. For
smaller electron velocities strong collisions are more
important. However, this does not lead to large errors
because the cutoff procedure was chosen in such a way
as to yield the adiabatic result, which is correct to all
orders. This is quite different from cases where the line
broadening is due to interactions with neutral per-
turbers. Then the short-range forces cause the strong
collisions to dominate, and no satisfactory results can
be obtained from just the leading term in the per-
turbation expansion.

At high electron densities and in case of closely
spaced levels, the above equations will tend to over-
estimate the broadening and shift because screening
was neglected. But under such conditions, one can use
the ¢-matrix elements for hydrogen,® which were derived
taking into account the Debye screening. These ¢-
matrix elements [Eq. (29) of reference 3] should
accordingly be used instead of those given by Eqgs.
(3.12), (3.15), or (3.17) in cases for which the latter
yield larger results, that is, for densities larger than
N max defined by

(30 ™) ~ I (0/ Waa'pmin) # 10 (p/pmin), (3.18)

2 H. R. Griem and C. S. Shen, following paper [Phys. Rev.
125, 196 (1962)7].
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since the ¢ matrix depends logarithmically on the
cutoff in both instances. With pp= (kT/4me2N)* and
(1/v)av= 2m/7kT)* (the ¢-matrix elements are in-
versely proportional to the velocity) this yields the
critical density

(3.19)

N imax M0 o/ 2%

For typical values of the splitting wqor=10™ sec™?, the
¢-matrix elements which were derived taking into
account the splitting but neglecting the Debye-
screening are therefore applicable for electron densities
below Nmax=2X10"¥ cm™, i.e., almost in the whole
range in which isolated lines can be observed. That
these formulas only yield diagonal elements is no
serious restriction because off-diagonal elements are
of interest only in case of overlapping lines, i.e., small
splittings and high densities, where the hydrogen
formula is valid. It is interesting to note that Eq. (3.19)
is equivalent to saying that at the critical density the
plasma frequency is comparable to the splitting.

4. ION AND ELECTRON BROADENING OF
ISOLATED LINES

The ion velocities are usually small enough that the
adiabatic approximation is valid. In the general
formula for the profile of a spectral line due to dipole
radiation (2.4), the average over the perturbers of the
T.T%* operators splits into two factors, if electron and
ion perturbations are independent. The ion factor is
given in terms of the usual phase integral

t

{Ta(t,0)To*(1,0)} ions= { exp[—i f Awab(t’)dt’] } (4.1)

0

where Awgp 1s the instantaneous shift due to the ion
field. According to the previous section, the electron
contribution is

{ Ta (t,O) Tb* (t;o) }electrons =€exp (‘f)abt)
=exp[— (w+id)t]. (4.2)

(¢as 1s never affected by the ion field because this causes
in case of quadratic Stark effect only shifts much smaller
than the splitting of the interacting levels, and because
in case of linear Stark effect ¢, is independent of the
splitting.?)

The phase integral in Eq. (4.1) can be calculated
provided that two approximations are made; namely,
(1) the individual ion perturbations do not overlap in
time so that they are scalarly additive, i.e., Awgp is a
sum of contributions from single ions,

Awas ()= [Awas(t)];,

and (2) the adiabatic approximation is also valid near
the line center where the usual statistical theory fails.
The first approximation does not cause serious errors
because in the line center, where the impact approxi-
mation is valid, the binary collision assumption also
applies as the interactions are weak; while on the line
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wing the assumption of scalar additivity does not change
the asymptotic behavior of the true field distribution,
because this behavior is due to a single ion coming very
close. In the intermediate regime, the assumption of
scalar additivity breaks down, but here the profile is
dominated by electron broadening.

The adiabatic assumption is always valid for the ion
broadening of isolated lines. Therefore, omitting the
dipole matrix elements, one can write

1 @
I(w)=- Rel/ dt exp[i(w—d)—w!
~iT P, (49)

where P;(t) is the phase integral for the jth ion. With
the time-independent perturbation theory result (aver-
aged over the magnetic quantum numbers, i.e., neg-
lecting the small splitting of the levels with different
m by the ion field),

27Cs 1 fh\2
Awgp= = <_> Z

rt 3r'\m/ oo wya

1 |(@lrla)

Qo

2
’

this is, using 72=p2+*(t—1;)%, given by
13
P;(t)= / Away(1)d
0
wCy4 v(t—1;) ot
= ———[tan‘l( ) +tan! (——)
P p; Pi

p(t—t;) pivt;
1 i j ] U :| (4.4)
PPV (E—1)* pf0M?

Because of the assumptions of scalar additivity and
statistical independence the ion contribution becomes
in the usual way?®

{exp[—i X; P;(t) ]} ={exp[—iP1() ]}
= (H{exp[—iP1 () ]=1})" —

exp(NV{exp[—iP:1(t)]—1}), (4.5)

7 being the total number of ions, N the ion density,
and V the volume. The average can be expressed by

2mv / di [ pudpi(exp[ —iP 1(‘)]'1)(2’”’ / dtl/ ? ldm>—l

=21er_1/dt1/dp1 pi(exp[—iP1(H)]—1), (4.6)
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so that finally

{exp[—1 25 Pi(0) |} =exp[27va/

—x0

o0

diy

00

X / dmm(expt—wl(t)]—n]. 47)

One then introduces

o= wiy,
(4r/3)pn’N=1,
v=(o—d)/w, a=(QrCy/wpn")};

rzpl/pm) T=Wt1 a=wpm/7),

(4.8)

and in terms of these quantities the profile is given by

1 00
j(x,e0)=— / dr expliar—r+g(r,a,0)], (4.9)
0

T
where

3 * o
g(ra0)=— f rdr / dal exp[~ tad—
20 Jo o 273

X (tan—1<r;6) +tan™! (%) +(_r;():~;(:l:i—6);
oro

+m)]—1}. (4.10)

For small ion velocities the function j(x,a,0) reduces
to25

1 ]
limj(x,0,0) =— Re/ dr
7> T 0

Xexp[ivr—7r—#T (Hart]. (4.11)

This is not the exact quasi-static theory result,
because in this limit the assumption of scalar additivity
is not valid, and also because of the difficulty with the
magnetic quantum numbers. However, as was indi-
cated, this does not lead to serious errors. The correct
quasi-static approximation is obtained by averaging
the impact profiles over the static shifts due to the
instantaneous ion field, using the proper statistical
distribution function

Iu )_w © W (F)dF @12)
e _w/o wH[o—d— Qn/&)CFT

25 The derivation follows again reference 5. A useful integral,

T eiTol2
0 sinmg I'(1+g)’
is obtained from H. Jensen, Z. Physik 80, 448 (1933).

® d .
x—ﬁ;(l——e‘”)=
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which gives, with the Holtsmark distribution function,

Wu(B)=Wu(F/Fo)=FW(F),

Fo=2.61eN%,
and
(4.13)
(27/e®)CiF =wa?,
w [ W (B)dB
I]{(w) = / bl
wJo i+ (0—d—walB?)?
or finally in dimensionless variables
1 o Wa(B)dB
jH(x,a)=—/ —_—. (4.14)
wJo 1+ (x—atB?)?

As indicated in Appendix Z, Egs. (4.9), (4.11), and
(4.14) reduce to the asymptotic wing formulas for
large x. This is as expected, because then both the quasi-
static and the nearest-neighbor approximations are valid
for ions, and the distinction between scalar or vector
addition of the individual ion fields is accordingly
irrelevant.

For large ion velocities one has the phase shift
limit?6%" (see, e.g., reference 11)

o«

1
limj(x,0,0) =~ Re/ dr
>0 0

™

Xexpliar—i3 (r/2)T (e 37r], (4.15)

i.e., a dispersion profile whose width in units of the
electron width (in the x scale) is

w,=14+3(7/2)T (})ad % 3=1+1.36a%%3 (4.16)

and whose shift due to ions, also in the x scale, is

do=(3V3/8) (r/2)IT (§)ad %}

=42.3608% % (4.17)

(The sign is determined by that of @ and Cy.)

Debye shielding of ion fields by electrons and ion-ion
correlations are much less important for the neutral
helium lines considered in this section than for hydrogen
lines. First of all, because of the second-order Stark
effect, only relatively large ion field strengths are of
interest, whose probability is not much affected by
correlations and shielding. In addition, at high densities
where these effects might be of interest, helium lines
can only be observed at much higher temperatures
than hydrogen lines. Finally, the ions contribute here
a much smaller part of the broadening, so that neg-
lecting the two effects is not expected to reduce the
accuracy of the theoretical profiles significantly except,
perhaps, near the intensity maxima.

2 . Lindholm, Arkiv. mat. astron. Fysik 28B, No. 3 (1941)
and dissertation, Uppsala, 1942 (unpublished).
27 H. M. Foley, Phys. Rev. 69, 616 (1946).
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5. FORBIDDEN LINES

If the splitting between neighboring levels is of the
same order as the corresponding ¢-matrix elements, or
if the instantaneous shifts due to the ions are of similar
magnitude, forbidden components will be excited. In
the neighborhood of a forbidden component denoted by
1 and after expansion and normalization, Eq. (2.10)
becomes

—ii il | Pal®
I8(w)= ¢ (wi2+¢“2)-l( Lol B R
T mwol i
+2 Re(#o#i*)¢i0wi)’ 5.0)
| o 2piiwio

with the abbreviations

BluclaP)=p;, (a?|¢|laP)=g¢x,
wi=w— (@@ |Hoo|a®)—(8| Hos|8)) /%,

W= W= Wo.

Eq. (5.1) holds for |w;|<|wol, i.e., in the neighborhood
of the forbidden component. The contribution of the
allowed component (7=0) is not included here and it
was assumed that the forbidden line is weak compared
to the allowed line ([uo|>>|us|, |wio|>>|dpi|) and that
all ¢-matrix elements are real. The latter assumption
is nota serious restriction because forbidden components
only appear at high densities, where the hydrogenic
approximation for the ¢ matrix is applicable.

The ion effects on such lines can be calculated using
the quasi-static theory, which is generally valid at high
densities. The hydrogenic ¢ matrix and uo are practically
independent of the ion field strength in the case con-
sidered here, and the observable profile of a forbidden
line is therefore

(5.2)

Ii(w)= / dF W(F)I ()

2

_ —¢ii /‘ dF W (F) ( ui(F) bio
T wd(F) +¢'ﬁ2\ Ko wio(F)
L2 Re[ poms '(F)]¢sowe(F))' 5.3)
[ 10| 2Piswio (F)

If several forbidden components exist, they will
usually be so closely spaced that they show a linear
Stark effect. Then the components shifted towards the
allowed line will be the most important, and I#!(w) in
the integrand of (5.3) will increase rapidly with field
strength until all components merge at a maximum
field strength Fin.x given by '

IeF muZm‘l o lhin(O) !

(with zy;= (@@ |z]|a®)).
The quantity which is most critically affected by the
ion field is |u:(F)/uo|?, whose mean value can be esti-

2

(5.4)
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mated using the asymptotic Holtsmark distribution
Was(F)=2welNFH, (5.5)
Eq. (5.4), and the standard quadratic Stark effect

result,
pi(F) 2 Fmax ezo:FF |?
< > ~ / dFW (F)|—
Mo av 0 hwio(o)
‘ 0i |}
=47tV (5.6)
ihc’-’zo(o)

For densities at which the forbidden components are
sufficiently weak, the maximum field strength is always
much larger than the mean field strength

F=8.8eNt. (5.7)

Therefore, the probability of fields greater than Fix
which produce a linear Stark effect in the allowed
component is very small; so that the cutoff in the above
integral is not critical.

The mean values of the other relevant quantities,
now assuming linear Stark effect and neglecting the
shift of the allowed line, are

(@i(F))ov=0,(0) +TeziiFF,
(wio(F))av=wio(0)+7 ez,
Reuoui(F)Yay  €20iF
" on(0)’

(5.8)

o

Using these relations and (5.7) for &V, (5.3) may finally
be approximated by

Ii(w)~ :&{ [wi(0)+7ezisF P2}
T

ezoll |3 i
e - ;
8.8%w;0(0) wi0(0)+7% ez
n 262{0,'F'¢vio[wi (0) +ﬁ‘1ezi,-ﬁ'_] :| (59)
Fwi0(0)pis[ wio (0) +7 ez F]

(The strongest forbidden component will be that for
which w;0(0) and ez;:F'/% have different signs.) Hydrogen
wave functions can be used for all the matrix elements
with adequate accuracy or—for the forbidden com-
ponents showing a linear Stark effect—the linear com-
binations which diagonalize the z matrix.

The last term in (5.9) will often be negligible. Then
one can say that the first term represents the excitation
of the forbidden components by the quasi-static action
of the ions, and the second term represents their de-
excitation by electron impacts. The second term
increases somewhat faster with the electron density
than the first term, i.e., electron effects become more
and more important at high densities.

2
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When the intensities of the forbidden lines approach
that of the allowed lines, the approximations made in
this section are no longer valid. For example, the
profile of the Her 3965A line was computed?® using the
complete impact profile described by Eq. (2.10), folded
into the ion field-strength distribution, and the result
agreed with Wulff’s experiment?® within ~209,. [These
calculations were made for the electron density 3.2 1016
cm~® quoted by Wulff, but only one interacting state was
considered in the ¢-matrix elements. New calculations
with more interacting states (up to five) give best
agreement for an electron density 2.5X10'% cm=2.] In
this case the forbidden component has practically
always a linear Stark effect, and for high field strengths
also the allowed component. If this transition to linear
Stark effect occurs already for relatively small field
strength, the theory developed for hydrogen lines® must
be applied, and the profile will correspond to that of a
hydrogen line with the same upper state, except for
trivial factors due to the difference in wavelengths and
the fact that usually the .S states do not merge.

6. NUMERICAL RESULTS AND USE OF TABLES

The electron impact widths and shifts using Egs.
(3.15) and (3.16) were calculated with an IBM-704
computer. Broadening and shift of both the upper and
lower states were taken into account with a maximum
of five interacting states by adding the widths and
subtracting the shifts of upper and lower states. Also
calculated were the parameters « and ¢ [see Eq. (4.8)],
which characterize the ion broadening. (For ¢ the mean
value of #¥ was employed, assuming electron and ion
kinetic temperatures to be the same.) All quantities
are tabulated (Table I) for electron densities N’ which
were chosen to be smaller than the densities for which
the various allowed lines overlap. (These N’ are almost
always smaller than N .. defined by (3.19), i.e., Debye
shielding is usually negligible in the electron broaden-
ing.) For electron densities NV smaller than V' the widths
of lines without forbidden components are obtained by
multiplying the tabulated values with N/N’, the
asymmetry parameters ¢ by multiplying with (V/N')}
and the parameters ¢ by multiplying with (V/N’)3. If
other than helium ions dominate the ion broadening, ¢
must be multiplied by the square root of the foreign
ion to helium mass ratio. The electron impact shifts
follow directly from the tabulated shift-width ratios,
which are positive if the line has a red shift. Also given
for comparison is the adiabatic theory result for the
widths.

For many cases, the linewidths obtained with the
adiabatic approximation are not too different from those
derived from the generalized impact theory, but

2 H. R. Griem and A. C. Kolb, Proceedings of the Fourth
International Conference on [onization Phenomena in Gases,
Uppsala, Sweden, August 17-21, 1959 (North-Holland Publishing
Company, Amsterdam, 1960).

20 H, Wulff, Z. Physik 150, 614 (1958).
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TasLE I. Calculated line broadening parameters: electron impact (half) half-widths w, adiabatic widths w’, relative shifts d/w, and
ion broadening parameters « and logies. [The widths are in A for electron densities N’ in cm~® and the static Stark coefficients C and
C’ are in units of cm™ per (100 kv/cm)2.]

N T [°K] 5000 10 000 20 000 40 000 80 000
Line\
11§—41p w 1.91 1.78 1.60 1.40 1.18
522.2A w’ 1.76 1.97 2.22 2.49 2.80
N’'=108 d/w —0.64 —0.54 —0.44 —0.36 —0.30
C=+439.4 « 0.84 0.89 0.96 1.06 1.21
loge 2.23 2.05 1.86 1.65 1.42
11§-31P w 0.458 0.433 0.398 0.356 0.308
537.1A w’ 0.412 0.462 0.519 0.582 0.654
N’'=10'8 d/w —0.67 —0.55 —0.44 —0.35 —0.28
C=+44.10 a 0.47 0.49 0.52 0.57 0.63
loge 1.59 1.41 1.23 1.03 0.81
11§—-21P w 1.21 1.62 2.03 2.36 2.52
584.4A @’ 0.53 0.59 0.66 0.74 0.83
N'=10%» d/w —0.65 —0.28 —0.04 -+0.08 +0.12
C=-+0.0046 a 0.16 0.13 0.11 0.10 0.09
logo 1.27 1.25 1.19 1.11 0.98
235—43p w 33.2 35.8 36.2 34.7 31.7
3188A w’ 20.4 22.9 25.7 28.8 32.4
N'=108 d/w +0.70 +0.49 +0.36 +0.27 4-0.21
C=—-6.83 a 0.40 0.38 0.38 0.39 0.41
C'=-6.2 logo 1.90 1.78 1.64 1.47 1.28
23§-33pP w 10.6 11.7 12.3 12.2 11.7
3889A w’ 6.44 7.23 8.12 9.11 10.2
N'=10 d/w +0.73 +0.50 +0.34 +0.24 +0.17
C=—0.67 a 0.22 0.21 0.20 0.20 0.21
C’'=-0.71 loge 1.23 1.13 0.99 0.84 0.67
215—-4P w 110 102 92.5 80.9 68.2
3965A w’ 102 114 128 144 161
N’'=1018 d/w —0.65 —0.54 —0.45 —0.37 —0.31
C=439.4 @ 0.84 0.89 0.96 1.06 1.21
=437.3 logo 2.23 2.05 1.86 1.65 1.42
23P—-53§ w 82.9 98.4 108 111 105
4121A w’ 59.4 66.7 74.8 84.0 94.3
N’'=10 d/w +1.38 +1.14 +0.91 +0.73 +4-0.59
C=-—15.7 a 0.55 0.49 0.45 0.45 0.46
loge 2.08 2.00 1.89 1.75 1.58
21P-51S W 148 168 176 172 158
4438A w’ 101 114 128 143 161
N’'=1018 d/w +1.23 +0.99 +0.79 +0.64 +0.52
=-28.1 a 0.62 0.56 0.54 0.55 0.59
loge 2.26 2.17 2.04 1.88 1.69
23P—43§S w 35.5 43.0 49.0 51.9 51.2
4713A w’ 26.6 29.8 33.5 37.6 42.2
N’'=108 d/w +1.49 +1.25 +1.02 -+0.82 +0.66
C=-3.14 a 0.38 0.33 0.30 0.28 0.29
C'=-29 logo 1.59 1.52 1.43 1.30 1.15
215-31pP w 40.1 37.9 35.2 319 28.0
5016A w’ 36.1 40.6 45.5 51.1 57.4
N’'=108 d/w —0.69 —0.58 —0.49 —0.40 —0.33
C= +4.14 « 0.47 0.49 0.52 0.56 0.62
=+443 logo 1.59 1.41 1.23 1.04 0.83
21P—4185 w 65.0 75.5 81.7 82.3 71.9
5048A w’ 45.8 51.4 57.7 64.8 72.8
N'=101 d/w +1.32 +1.09 +0.88 +0.71 +0.58
C=-5.79 @ 0.43 0.38 0.36 0.36 0.37
C'=-35.2 logo 1.79 1.71 1.59 1.44 1.27
23P—-33D w 16.5 17.6 18.1 18.0 17.3
S876A w’ 10.2 11.5 12.9 14.4 16.2
N'=10'8 d/w —0.60 —0.33 —-0.13 -0.02 --0.03
C=+4-0.39 « 0.20 0.19 0.18 0.18 0.19

=+40.67 loge 1.07 0.94 0.81 0.65 0.48
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TaBLE I (continued).
\ T[°K] 5000 10 000 20 000 40 000 80 000
Line
21p-31D w 44.6 40.5 36.6 32.9 29.0
6678A w’ 449 50.4 56.5 63.5 71.3
N'=10'8 d/w +0.65 +40.60 +0.56 -+0.51 +0.45
C=-243 « 0.45 0.48 0.52 0.56 0.62
C'=-2.6 logo 1.39 1.19 1.00 0.80 0.60
23p—-33§ w 18.2 22.5 26.5 29.3 30.3
7065A w’ 144 16.1 18.1 20.3 22.8
N'=108 d/w +1.59 +1.37 +1.14 +0.91 +0.72
=-0.37 @ 0.23 0.20 0.18 0.16 0.16
C'=-0.25 logo 0.95 0.89 0.81 0.70 0.57
21p-31§ w 32.5 38.9 43.6 45.8 449
7281A w’ 23.9 26.8 30.0 33.7 379
N’'=10'8 d/w +1.43 +1.20 +0.98 +0.78 +0.63
C=-0.72 a 0.26 0.23 0.21 0.20 0.21
logo 1.17 1.10 1.00 0.87 0./1
33P—-53S w 80.8 97.3 109 112 108
12 850A w0’ 56.0 62.9 70.5 79.2 89.0
N'=10v d/w +1.33 +1.07 +0.85 +0.67 +0.54
C=-15.0 « 0.30 0.26 0.24 0.23 0.24
loge 1.42 1.34 1.24 1.10 0.93
31Pp—-518 w 147 166 174 170 157
13477A w’ 102 114 128 145 163
N'=107 d/w +1.21 +0.99 +0.79 +0.64 +0.52
C=-32.2 @ 0.36 0.33 0.32 0.33 0.35
logo 1.63 1.53 1.40 1.24 1.05
315—41p w 161 152 140 125 108
15 088A w 149 167 187 210 236
N'=10" d/w —0.70 —0.60 —0.52 —0.44 —0.37
C=+440.1 a 0.48 0.50 0.53 0.57 0.64
loges 1.57 1.39 1.21 1.01 0.79
31D—41p w0 257 240 218 191 162
18 561A w’ 231 260 291 327 367
N'=10"7 d/w —0.66 —0.56 —0.46 —0.39 —0.33
C=+441.8 a 0.47 0.50 0.53 0.59 0.67
logo 1.59 1.41 1.22 1.01 0.79
33D—43p w 129 140 143 139 128
19 548A w 79.6 89.3 100 113 126
N'=10v d/w +0.75 +0.53 +0.38 +0.28 +0.21
C=-17.23 «a 0.23 0.22 0.21 0.22 0.23
logo 1.25 1.13 0.99 0.83 0.64
33P—43§ w 75.4 95.8 112 121 121
21 127A w' 45.4 51.0 57.2 64.2 721
N'=10v d/w +1.18 +0.96 +0.78 +0.62 +0.50
C=-248 @ 0.17 0.14 0.13 0.12 0.12
logo 0.95 0.90 0.82 0.70 0.55
31p—418 w 152 170 179 178 168
21 138A w’ 115 129 144 162 182
N'=10v7 d/w +1.20 +1.01 +0.83 +0.67 +0.55
=-99 « 0.29 0.27 0.25 0.25 0.27
logo 1.25 1.15 1.02 0.87 0.69
41p—518 w 252 269 273 262 239
46 066A w’ 196 220 247 277 311
N’'=101¢ d/w +1.07 +0.89 +0.73 +0.59 +0.49
C=-67.5 « 0.27 0.25 0.25 0.26 0.28
logos 1.13 1.00 0.86 0.69 0.50
43P 538 w 128 159 181 188 182
46 950A w’ 52.6 59.0 66.2 74.3 83.6
N'=10 d/w -}-0.81 -1-0.67 -}-0.55 -}-0.44 -1-0.36
C=-8.9 @ 0.10 0.08 0.08 0.08 0.08
loge 0.82 0.76 0.67 0.53 0.37
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deviations by a factor of 2 or 3 in both directions occur
occasionally. The adiabatic widths mcrease mono-
tonically with temperature, while the widths calculated
here often have a maximum for intermediate tempera-
tures, so that their temperature dependence is even
smaller than the 7% dependence in the adiabatic
approximation. It is for this reason that densities can
be determined when the temperature is not known
precisely and even when one is not sure about the
existence of local equilibrium. The ratios of shifts and
widths are always smaller than the adiabatic theory
result V3, usually by a factor of 2 or more, especially
at higher temperatures.

In the first column of Table I the calculated and the
available measured® values (averaged over the polari-
zations) of the quadratic Stark effect coefficients C and
C’ are compared to provide a check on the accuracy
of the atomic wave functions used in the line broadening
calculations. The agreement is usually within 109.
This error causes slightly smaller uncertainties in the
linewidths and shifts.

That errors of this order must be expected can also
be seen from Table II, where atomic matrix elements
obtained from wvarious approximations are given.
Hartree-Fock calculations®™ were only available for
states with principal quantum number 2. For higher
states, hydrogen-like wave functions had to be used,
in which either the charge or the principal quantum
number® was adjusted to give the measured bound
state energies. Matrix elements involving states with
different principal quantum numbers given only a small
contribution to the line broadening so that they could
be approximated by the hydrogenic values.

In Table III the reduced line profiles j(x,0,0) (time-
dependent ion fields) and jg(x,@) (quasi-static ion
fields) from Egs. (4.9) and (4.14) are presented for all
values of @ and o of interest. If o is larger than the
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TasLE I1. Squares of radial matrix elements in atomic units for
the singlet (in parentheses) and the triplet system of neutral
helium calculated with various approximations.

Effect.
Hartree- quantum Effect. Hydro- Adopted
Fock number charge gen value
2S|7|2P))2 21.03 19.32 23.55 27 21.0
(25.56) (25.22)  (26.16) (25.6)
((3S|7|3P))2 125.2 146.4 162 134
(152.0) (158.5) (154)
((3P|7|3D))? 102.7 101.7 101.25 101
(100.0) (100.9) (101)
((4S|r|4P))2? 432.2 498.4 540 459
(505.8) (529.8) (514)
((4P|r|4Dy)? 435.9 433.0 432 432
(428.1) (437.8) (432)
(55| r|5P))? 1103 1263 1170
(1270) (1328) (1290)

largest tabulated value omax, then ju(¥,a) can be used;
and if ¢ is smaller than the smallest tabulated values,
the impact approximation becomes applicable for ions,
i.e., Egs. (4.16) and (4.17) may be used to evaluate the
total width and shift of the resulting dispersion profile.
For larger x values than those in the table, the wing
formulas derived in Appendix Z can be employed, i.e.,
Egs. (Z10) or (Z11) and (Z12).

At low densities ion broadening is only important on
the line wings, where the scalar additivity assumption
is not critical. At high densities the whole profile is
seriously affected, but jz(x,a) can then be applied
which makes use of the quasi-static approximation for
the ions without the assumption of binary collisions
and scalar additivity. In order to show that the quasi-
static assumption causes no significant errors for larger
o values, the function j(x,a,0) [from (4.11)] is also
tabulated in Table III. It deviates from both 7 (%,0,0max)
and jg(x,a) by less than ~109, for <0.3, which may
be taken as an indication of the errors in the complete
line profiles due to the scalar additivity approximation
made in the calculation of the time-dependent ion

Reduced line profiles j(x,a,0) and ju (x,a) for various values of the ion broadening parameters « and o.
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% Landolt-Bérnstein, Zahlenwerte und Funktionen I.1 (Springer-Verlag, Berlin, 1950).
3t E. Trefftz, A. Schiiter, K. H. Dettmar, and K. Jorgens, Z. Astrophys. 44, 1 (1957).
2D, R. Bates and A. Damgaard, Phil. Trans. Roy. Soc. London A242, 10 (1942).
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TaBLE IV. Analysis of the arc experiment.

Electron density N

Wavelength Half-width w [A] Shift d [A] (1016 cm=3]
[A] measured calculated measured calculated Nex Neot' Nex"
3889 0.37 0.34 0.25 0.15 2.7 4.3 3.5
5016 0.91 0.99 0.65 0.73 2.3 1.9 1.6
4713 1.5 1.4 1.5 1.4 2.6 4.2 34
4121 3.1 3.3 2.8 3.0 2.4 3.9 3.2
5048 2.3 2.3 2.1 2.3 2.5 3.7 3.0

broadening. [For a>0.3, one can practically always
use jg(x,a).]

Line profiles on an absolute wavelength scale can be
obtained from the reduced profiles by multiplying the
« values with the electron impact width w, dividing the
intensities by w, and finally shifting the whole profile
by the electron impact shift d. A numerical accuracy
close to 209, is expected for all the lines listed in Table
I, if the densities are below N’, and if forbidden com-
ponents are treated as indicated in the preceding section.
The schematic treatment of close electron collisions,
the uncertainties in the wave functions, and the ap-
proximations in the treatment of the ions contribute
comparable amounts to this error.

7. COMPARISON WITH EXPERIMENT

Measurements of profiles of neutral helium lines have
been made with pulsed arcs?® and with explosive-driven
shock tubes.® In the arc experiment the electron density
could be estimated from the volume and initial pressure,
and the temperature was measured to be 7'=30 000°K

0.25

Experiment

020} - Theory

Q.5

0.0

I(AN)

0.05

0.0C;

«— AXA)

F1c. 3. Profile of the Her 4713A line at N=2.5X 10 cm™3
and 7'=30 000°K.

3 G. E. Seay, Los Alamos Scientific Laboratory Report LAMS-
2125, 1957 (unpublished).

from the relative intensities of the Helr 4686 A and the
Her 4713A lines, using the value for the electron
density. '

Table IV summaries the results of the arc experiment
for five isolated lines. The second and fourth columns
give the measured half-widths and shifts. From the
measured widths the corresponding electron densities
Nex (column 6) were computed from the present theory
taking into account both ions and electrons. This was
done by an iteration procedure where the ions were
neglected as a first approximation. For comparison,
the densities N’ obtained from the adiabatic theory
for electron broadening neglecting the ions are listed in
column 7. In column 8 the density N’/ obtained from
the adiabatic impact approximation for both ions and
electrons is given. It can be seen that the densities de-
termined from the present theory only deviate by
#+109, from their mean value of 2.5X 10 cm™3, i.e., are
consistent with each other within the errors of theory and
experiment. (The densities obtained from the adiabatic
approximation show deviations of up to a factor of 1.5
from their mean value.) The shift was then computed
for this new density and agrees within the experimental
accuracy with the measured shifts. It should be noted
that the ratio of the shift to width is considerably
smaller than the adiabatic prediction of V3. For com-
pleteness the half-widths are computed for N =2.5X101¢
cm~? and tabulated in column 3.

The N from this theory are smaller than the origi-
nally quoted®® electron density N=3.2)X10' cm=.
This is consistent with the measured profile of the
Herr 4686 A line which also corresponds to a smaller
electron density if electron broadening is not neglected.®

Complete profiles of one isolated line and one line
with a forbidden component were calculated for
N=25X10"% cm— and 7=30000°K, and are com-
pared with Wulff’s measured profiles in Figs. 3 and 4
without translation of the wavelength scale, i.e., the
shift was calculated. The agreement is again as good
as can be expected, even for the forbidden component
in the second example. The deviation on the line wings
may be due to errors in the determination of the con-
tinuum background. No attempt was made to show
profiles from previous theories, because they disagree
with the measured profiles far outside the experimental
error.

The shock-tube data of Seay® also show large dis-



STARK BROADENING OF

crepancies between the observed helium profiles and
those calculated from the usual adiabatic theories,
particularly in the shifts which are smaller than ex-
pected from the Lindholm-Foley analysis.?6:?” Because
of experimental difficulties associated with uncertainties
due to the time resolution and self-absorption, the
shock-tube measurements at the present time are not
as accurate as the arc data. However, with improved
time resolution and with independent density measure-
ments (from the continuum, the broadening of hydro-
genic lines, interferometric determinations,* and shock
velocities), the shock tube holds promise of a spectro-
scopic precision comparable to that of the pulsed arc
(which burns for milliseconds compared with the
microsecond time scale of the shock-tube experiments)
because the errors due to the short time scale can be
less than those due to spatial inhomogeneities in arcs.
Because of these spatial inhomogeneities it is unlikely
that the measured widths, shifts, and electron densities
in the arc are accurate to better than 209, whereas
the accuracy in recent measurements of hydrogen and
neutral and ionized helium line profiles with electro-
magnetic shock tubes?® seems to be at least twice as
good as far as the widths are concerned.

8. RELATIONSHIP WITH EARLIER THEORIES

The comparison of the present work with the usual
Lindholm-Foley?6:#" adiabatic theory of electron
broadening has already been discussed in Sections 3
and 6.

A theory of the electron width has been given by
Rudkjobing 8 It is an impact theory, but he considers
only collisions where the electrons are scattered elasti-
cally by the Hartree potential of the atom. Hence his
widths are much too small since, as was seen in Sec. 3,
the greater part of the width usually comes from in-
elastic collisions. Even for elastic collisions alone, his
is an underestimate due to his neglect of polarization.

For some years, a standard work on helium lines has
been that of Kivel.3” His width includes only inelastic
collisions and is given by w=4%Nvo;, where o; is the
total electron inelastic cross section computed with the
quantum mechanical Born approximation. This should
be correct if the Born approximation is valid. The use
of the Born approximation is equivalent to the use of
perturbation theory in Sec. 3 for calculating ¢,. It is
not valid for small impact parameters, hence the intro-
duction in Sec. 3 of punin and its definition by Eq. (3.16).
Kivel’s width is obtained from (3.15) by setting pmin
equal to A, the de Broglie wavelength divided by 2,
the explanation being that the main effect of quantum
mechanics is to quantize the angular momentum of

# R. Alpher and D. R. White, Phys. Fluids 2, 162 (1959).

% H. F. Berg, A. W. Ali, R. Lincke, and H. R. Griem, this issue
[Phys. Rev. 125, 199 (1962)].

36 M. Rudkjobing, Ann. Astrophys. 12, 229 (1949).

37 B. Kivel, Phys. Rev. 98, 1055 (1955).

NEUTRAL He LINES IN PLASMA

191

the electron, thus making impact parameters smaller
than A meaningless. If pmin as defined by Eq. (3.16)
turns out to be much smaller than X, the classical path
theory is wrong and Kivel’s width should be used. If
pmin 18 of order A, both theories give the same result.
And if pumin is much larger than X, Kivel’s use of the
Born approximation is improper and Egs. (3.15)-(3.16)
should be used. For neutral atoms, it turns out that
Pmin 18 always larger than A in the high-velocity limit,
as shown by Eq. (3.13), and also in the adiabatic limit
if the perturber energies are larger than the energy
differences of interacting levels. Hence the classical
path theory is always good, as was already pointed
out in reference 3, and Kivel’s widths are too large,
although not by an order of magnitude.

In the case of lines emitted by ions, the situation is
a little different, but the result®? is again that, in
practical cases, the classical path theory is wvalid.
Actually, the calculation of ¢; by quantum mechanical
perturbation theory is often valid too, provided one
replaces the plane waves of the Born approximation
by Coulomb wave functions, but then it gives the same
result as the classical path approximation. The reason
is that Coulomb effects decrease the contribution of
small impact parameters and effectively introduce a
pmin Which is always larger than X.

In a similar manner, Kivel’s shift is the standard
quantum mechanical answer given by second-order
time-independent perturbation theory, and should be
correct provided that perturbation theory hold for all
impact parameters that make an important contri-
bution. This is just the condition under which the
high-velocity limit, Eq. (3.12), was derived, hence
Kivel’s shift should be identical with the imaginary
part of Eq. (3.12), and it is. The foregoing comparison
of the present work with Kivel’s constitutes one more
demonstration of the equivalence of the 'classical and
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quantum mechanical theories in their common domain
of validity.?!

Some work very similar in spirit to the present one
is due to Vainshtein and Sobel’man.?® Unfortunately,
their improper handling of the m degeneracy and their
wrong choice of the interaction potential [see their
Eq. (9)]invalidate all their numerical results. They also
treat the ions by the impact theory, which is often a
bad approximation for laboratory plasmas. One might
mention an interesting way of performing the cutoff
at small p [see their Eq. (15)7], which is more elegant
than the one used here but also involves more numerical
work, without ensuring a significant improvement in
accuracy. Finally, Vainshtein and Sobel’man suggest
that one should use the shifts rather than the widths
for the determination of electron densities. This sug-
gestion is based on the notion that the calculation of
widths, which are caused mainly by inelastic collisions,
requires a quantum mechanical treatment of the
electron motion, while it is not so important for the
shifts, which are due mostly to elastic collisions. They
question the validity of their semiclassical calculations
and feel that nothing short of a full quantum mechanical
analysis will be adequate [see in particular the dis-
cussion following their Eq. (19)7]. However, it should
be pointed out again that the theory they are develop-
ing is actually identical to the quantum mechanical
one under appropriate conditions, and that both shifts
and widths are correctly given by the semiclassical
theory, even when there are collision-induced tran-
sitions. Furthermore, the numerical accuracy in com-
puting the widths is greater than for the shifts (which
can be very small), so that greater reliability in diag-
nostic determinations is expected from a calculation of
the width or of the whole profile. (For a further dis-
cussion of this point, see reference 24.)

APPENDIX X

The equivalent cutoff is critical only when the
exponentials in Eq. (2.15) are approximately unity,
i.e., when the levels a, o/, --- are degenerate or near-
degenerate. Otherwise, the exponentials themselves
provide convergence for large p. They will therefore be
ignored here. The average over angles of E1,(%#1) E1, (142)
is equal to 3E;(%:)-Ei(u;). In the second-order term
of Eq. (2.15), the integral over #, can be extended all
the way to + o if one inserts a factor 3. Therefore, the
equivalent cutoff is defined by

-+ oo +0
/ oip / duy / dits Ero () - Ex (1)
Pc +c0 +-00
- / pdp / dus / dius By()-Ex(us),  (X1)

38 1. A. Vainshtein and I. I. Sobel’'man, Optics and Spectroscopy
(USSR) VI, 440 (1959).
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where the subscript s indicates a shielded field, all other
fields being unshielded. The impact parameter e is
supposed to be very small compared to the Debye
length pp. It cannot be taken zero, because the integral
would diverge. Since the time of closest approach is
zero, one has

El(ul) . E1 (M2>
= &2 (0> vPuus) (0P +v%00,%) =% (0% vus?) 74
Els (%1) . El(%z)
=Ei(u1) - E1 (u2) (14 (0*+2*u:2)*/pp ]
Xexp[— (o*+7%u1*)*/pp ].

After some elementary integrations, (X1) becomes

(X2)

+w0 -+
/ ”‘i”/ dur (p+0Pu?) Y1+ (o +1*u) /o]
€ —o0 )
Xexp[— (p+vu) /ppJ=— In(p,/e).  (X3)
v

The integral over u; can be done by parts and yields
(2/vppp)K1(p/pp). Then the integral over p can be
performed and (X3) reduces to

Ko(e/pp)=1In(pc/e).

Using the first term in the expansion of K, for small
argument

Ko(e/pp)>~In(2pp/ve),

yields for the value of the equivalent cutoff

(X4)

y=1.781, (X5)

pe=2pp/v=1.123pp.

APPENDIX Y

In this Appendix the integrals appearing in the cal-
culation of width and shift are evaluated. According to
Eqg. (3.6) one has

S =A(E)+iB()
1|:/.+oo dxl eill’l 1 dx2 e—izw
2 —0 (1+x12)% —~00 (1+x22)%
+© dx1 xlei”l 1 dxz xze"im
+ / : ] (Y1)
o (IFxd)t ) (I4a)?
where A (z) and B(z) are real functions.

On decomposing the exponentials the real part
becomes

®  coszx 2
o (14228

COoszx Coszxy

=< Ow o xz)%dx)2+<diz : o xmdx)z. (Y2)

® x singx 2
dx

A(z)=( . EH—xQ)%
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With the relations®

© coszx dne K V3
and
d * coszx d
— —dx=—(|3| K.1(|3]))=—3Ko(|2]), (Y4)
dz Jo (1422} dz

one obtains finally Eq. (3.7).
To evaluate the imaginary part B(x), one considers

the function
+o f (z')dz
L(z)= /

Z—“‘Z

(Y5)

where the path of integration is the real axis, except
for a small detour above the singularity of f(z') at
2/=0. Now f(2) is obviously analytic in the upper half
plane because |ei**t| is always smaller than |e*=2|, x,
being the upper limit of the integration over x. There-
fore the path of integration can be closed above and,
for z in the upper half plane, Cauchy’s theorem gives

L(z)=2mif(2).

But, for z tending to the real axis, one can also write
L(z) as the sum of a principal-value integral and of the
contribution from a small semicircle around the pole

(Y6a)

Lz)=P / /¢ )~+mf(z) (Y6b)

e 23

From the comparison of these two expressions it follows
for real z that

te f(z")ds’
f<7>-7 /_ -

Now A(z), i.e., the real part of f(z), is obviously
even, and taking the imaginary part of (Y7) yields

1 + ’
B(z)=-P / A

T w 2—3

1 = A(3)
=P / R

T Jw z+¢

(Y7)

T )y 22—2"
2z A(F) '

=— dz, (Y8)
™ 0 z2— Z'2

which is Eq. (3.8).

¥ G. N. Watson, 7'%eory of Bessel Functions (Cambridge Uni-
versity Press, New York, 1952), 2nd ed., p. 172
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By two partial integrations, (3.8) can be brought
into a form more suitable for numerical integration:

1 0
B(Z)=—/ [(z4+2) In|z+2'| 4+ (z—2") In|z—2| ]

X[2K2(5")— 82" Ko(2)K1(z")+45"2 (K2 (2))

+K2(z")1ds. (Y9)
This formula was used to compute B(z) for >0.2. For
smaller arguments the following version of (3.8) proved
to be more convenient

1 ptord@() AG) AGz—2)
Blz)=— -
) /_w Ijz—z' AQ) z—3

]dz’ . (Y10)
™.
The second term has the same singularity as the first
term, but integrates out to zero, because 4 (z) is an
even function.

In order to extrapolate the numerical integrations

for B(32) to zero, it was necessary to obtain the derivative
[B’(2)];=0 from (Y1).

dx, %1 1 dxs

+o0
B —
( )= |:/;ao (1422t ), (1+x22)%

dxy 1 dxy X9

+w0
ﬁf_w ()t ), (1)t

dxg X2

+e dx1 Xy 1
+/ 3 3
e (1Fxd) ) (14a?)}

+o dxl X1 L dxe x22 ]
/-m (A+a?)i ) (14t
1|: +o 2y +o dx
2 /_ (1+x2>2/_w (1+a2)?
+© g In[a+ (14224 ]d
_/ # Infa+ (1%} x]:o. (Y11)
e (1422}

One might suspect this result because it involves an
infinite integral, namely

1 %02 dxs
/_w (422!

However, the contribution to B’(0) from the lower

Xo w
Inaeo+ (14 2%———] .
[ ot (14221 e B
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limit of this integral,

1 " deyx x

lim ~/ (ln[—x+(1+x2)é]+~ )

w0 ) J_ (42t (14-x2)*
=11l

—1 -+’ 1
3 lim [——:I (ln———H)
T, z'—0 (1+xl2)% . 2x2

11 1
z,z'—0 x .’)C’ 20{32

1 lim

vanishes and (Y11) is indeed correct.

The functions a(z) and 6(z) defined by Eq. (3.9)
were calculated numerically from A4 (z) and B(z). It is
possible to obtain 4(0) in closed form by writing

°°B(z) dz +°°A(z') ¥
/ /oo Z—'Z
A(z’)

dz
=—hm[ /
x 0 o B z—m

Interchanging the order of integration gives
1 oo 0 dz

b(e)=- lim[ dz' A (%) Re/ —_
0 —% €

2(z—3’ —1in)
1 e 1
=— Iim/ dz’ A() Re( )

a0 J_ 2 +in

X[ln (z—3'—1in)— Inz]

1 te n 7
=—lim ds' A (z')( ) tan*l( > (Y13)
. 52 e—z

(All the other terms give no contribution to the integral
over 2'.) Taking the limit e — 0 leads to
o0

n n
dz’ A(%) tan—l(——). (Y14)
o 22492 —2

b(

(Y12)

1
b(0)="—lim

a ™0

For small %, all the contribution arises from 2’ near
zero so that A(z') can be replaced by 4(0)=1. The
remaining integral is elementary and gives finally

b(0)=m/2. (Y15)

It can also be shown that a(z) diverges logarithmi-
cally for small z, i.e.,

ae)= [

For large z the asymptotic behavior of 4(z) and B(z)
(the adiabatic limit) follows from (3.7) and (Y1),
respectively, as

A (z)~w|z]e ]

dz —1In(1/]2]). (Y16)

B(z)~m/4z. (Y17)
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The corresponding relations for a(z) and b(2) are
a(z)~ (m/2)e 25 b(z)~m/4z.

APPENDIX Z

(Y18)

With the Holtsmark result® for the field strength
distribution function

2 ]
W)= / sin(on) exp(—ndyndn,  (21)

the reduced profile of an isolated line in the quasi-static
approximation for ions follows from Eq. (4.14) after
inverting the order of integrations as

2 00
jH(x,a)=—2/ dn n exp(—n?)
0

™
» B sin(Bn)
X / d8 (@2
o L+ [e— @B
This can also be written
|a|——8/3 0 )
Ju (@) =—— / dnn exp(—7?) Im/ g
w2 0 o
Beiﬁﬂ
X 5 ) : —, (23)
(A4+1) (4 +—iB) (A-~+1iB) (A-—1iB)
where A and A_ are defined by
Ay = a| 02| > £ (24)

with 6= —1 for x/a>0, §=+1 for x/a<0. Then one
has

Ay = |a|H(R,%iR), (25)
with Ry and R_ given by
Ry _=[=8|x|+ (1+a2)P/V2. (Z06)

In terms of these quantities the profile is

) ( ) 1 © a~2
JaX,0) = ——" —n}
2#2/0 R_

0 Beiﬁv
XIm / df——————
o (B+idy)(B+id-)
1 1
x(— : —wfﬂ). @7
B—id, B—iAd_

A contour integration encircling the simple poles at
144 and i4_ yields

a|_% ©
julxa)= / dy n exp[—ni—Ripla| =]
T Jo
Xsin(R_n|a|=?). (Z8)

9 J, Holtsmark, Ann. Physik 58, 577 (1919).




STARK BROADENING OF NEUTRAL He LINES

Asymptotic formulae for the line wing can be ob-
tained by expanding exp(—%?) and integrating term
by term:

1 =
Ju(@e)==2 (=)

T n=1

XP (FGBn+1)) || sin[F(3n+1) (tan™"(R_/Ry)) ]
T'(n) (14-a2) GrtDIs '

(29)
The first two terms are

1 15 a
(1422 8vm (1+4a2)78

jH (x’a) =

7
Xsin[; tan~'(—8|x|+ (1+x2)%)j|. (Z10)
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For large « one has finally

15a N 1 3a
7 ~. } YY) | ... 711
iu(e) e 8(2m)kx4 ; ma? At  (@11)
if x/a>0 and
J ()1 /ma?, (212)

if x/a<0. Here the ion effects are not important.

That Eqgs. (Z11) and (Z12) agree with the first two
terms of the wing expansion of Eq. (4.11), which
involved the scalar additivity assumption, can be seen
by expanding exp[ —#I'(})ari] in this equation and
integrating term by term. Up to this order also the
time-dependent theory yields the same result, which
can be shown by expanding the phase integral in a
power series of the time if one notices that the first-order
term gives the quasi-static approximation, Eq. (4.11).



