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V/e may solve for it, however, by requiring that the
solution be self-consistent. To do this we note that,
asymptotically N(r, q) must be of the form (3.2) except
that (—Aa) may be replaced by (eq, ,h —ha). We
seek to choose da to use in (3.2) such that e vanishes.
This requires us to solve (2.7) twice with different
values of Aa )say 0, (Q —a), for instance). We
normalize by taking

u(r, Q) = q (r). (3.3)
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(3.4)

where s is arc length and J; denotes integration over
the edge of the box, e is the normal direction to the

Then it is easy to show, by using HI=0 and some
integrations by parts, that if I has the asymptotic
form for (3.2) and

surface, and

po=qp(r), pi=0, l)0

then

Qi= srq

+' ~(rexch)
Pi(x)dx,

—1 ~exch

(3 5)

a,=a+Au, as ——a—isla, (3.7)

for the quartet and doublet scattering lengths,
respectively.

We estimate that of the order of 10 different / values
are necessary in the expansion of I in order to obtain
a good representation of the wave function in the
exchanged channels. The larger the (r,q) box taken,
the more / values are required.

&=QS/(1+S) ~&= —QT/(1+S) (3 6)

In general, the ha used in (3.2) will not equal the Aa
of (3.6); however we may solve for the correct linear
combination of the two solutions so that the two Aa's
are equal and (3.3) is maintained. As (2.7) is a linear
equation we know that if we solve using that set of
boundary conditions, (3.6) will be consistent with (3.2).
When the appropriate exchange combination' of the
solution to (2.7) is formed, we find
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Halpern s method of moments has been applied to the intermediate-coupling reduced Hamiltonian, whose
lowest eigenvalue is a variational upper bound to the ground-state energy of the nucleon in the fixed-source
model of meson theory. The results compare favorably with an earlier intermediate-coupling calculation of
Friedman, I.ee, and Christian, and agree with direct moment-method results. A discussion of the relationship
between the present work and a Tamm-Dancoff approximation for the reduced Hamiltonian is included.

THEORY

'HE (somewhat overworked) Chew' model of
meson theory, consisting of pseudoscalar mesons

gradient-coupled to a static, extended nucleon, leads to
a Hamiltonian of the form

dk[ccha, t(k)a, (k)+V(k)(r, r (u, (k)

components of angular momenta and isotopic spin, is
assumed. As usual, La; (k),a,pt(k')(=6, ;8 p6(k —k'), and
we have set k= c=m= 1. U(k) is the conventional cutoff
function.

Halpern et a/. 2 have solved for the lowest eigenvalue
of the Hamiltonian above by the method of moments,
whose eth order approximation is the lowest root Eo of
the determinantal equation

+~'-'(k)ll (1)

Here a&s
——(k'+1)', V(k)= fk'U(k)/(3~eih)'*, and sum-

mation over repeated indices i, += 1, 2, 3, referring to

1
IIo
HI

+n—I

jv jv2

HI II2
II2

~ ~ ~

jv"
H„

+n+1
H2„1

*This work was done in part at the Computation Center at
Massachusetts Institute of Technology, Cambridge, Massa-

chusettss.

' G. F. Che&v, Phys. Rcv. 94, $748 ($954).

where H, =(0l H& l0), and where
l 0) is th'e "bare"

~ F. R. Halpern, L. Sartori, K. Nishimura, and R. Spitzer, Ann.
Phys. 7, 154 (1959),
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TABLE I. Ground-state energy as a function of coupling constant f and order of calculation I T. he minimizing values of X are
shown when they are less than 6, and the second value of Ep represents the results of Halpern et al.
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nucleon state vector. As s increases, Ep approaches the
exact eigenvalue of the Hamiltonian.

Friedman, Lee, and Christian' had earlier solved the
same problem, using Tomonaga's intermediate-coupling
approximation. This is a variational method, leading
to a reduced Hamiltonian

H2 ——9 V'(k)dk, k =9I

nontrivial approximation (v= 2) for both H and k:

Hp= hp= 1;

Hg ——hg
——0;

H„=Q/u, ta; +I'(A+At) j (3)

whose lowest eigenvalue is an upper bound to the lowest
eigenvalue of H. Here,

H3= 9 V'(k)a&sdk, ks=9I.

dk (usaf'(k),

3=0-,7 a; f(k) =

"(3~)*'. o

.VU(k)k'

~s'*(~s+) )

f(k)k'
dk

It can be easily seen that, for each of the integrals
I„=Js"V'(k)~s"dk appearing in Halpern's calculations
for H;, we can substitute the single integral I in our
evaluation of the various moments h, . This is because
the intermediate-coupling approximation essentially
averages over the momenta of the virtual mesons, but
treats the operators e and ~ correctly.

f'(k)dk=1, Lu...u,s'j=b, ,b.p,

and X is a variational parameter. To solve this problem,
FLC used a coordinate representation for H„and solved

approximately the resulting differential equations.
Although the lowest eigenvalue of H, agrees exactly
with that of H in the two limits of f —+ 0 and f~ ~,
only the former is still correct in the approximation
used by FLC. It is thus of some interest to apply the
method of moments to H„, to compare the results with
those of Halpern and FLC, for intermediate values of f.

We have made use of the results of Halpern' to
evaluate the various moments of H,/0=k for various
values of X, and have then numerically solved the
appropriate determinantal equations, for various orders
of approximation. '

To illustrate the procedure, we examine the first

' M. Friedman, T. D. Lee, and R. Christian, Phys. Rev. 100,
1494 (1955) (referred to as FJ.C).' S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 2, 6 (1947).' We have defined h this way to simplify the calculations. After
solving for the lowest root, ~0, of the determinantal equation we
obtain the energy as ED=060.

TAsz.E II. Ground-state energy as a function of X and n, for
@=0.6. Asterisks indicate minimizing values of X for each n.
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RESULTS

Table I shows a comparison between the results of
the present calculation and that of Halpern5We also
use his form for U(k): U(k)=1k(6, U(k)=0 k&6.j
As an example of the dependence on ), Table II
examines the case of f'=0.6. Clear-cut minimizing
values of A are obtained for the higher values of n.

These diagnostic results encourage us to re-examine
the case reported by FLC: f'=0.712, K=6.13. Our
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best (zz=6) result gives. Eo ———21.69, for X=3—3.5,
compared with the result Es= —20.67, X=3.39 previ-
ously obtained, and represents an improvement of
about S%%u~.
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(6)

The moment method of order 3 requires the solution of
the following cubic determinantal equation:

where C depends on C; and 1. The 2-meson Tamm-
Dancoff state vector has the same form as Eq. (5'),
and the Schrodinger equation for I+s) reduces to a set
of linear equations for the C, ', for which the secular
equation is

APPENDIX

It is interesting to examine the relation between the
moment method calculations reported here and the
Tamm-Dancoff approximation' for the reduced Hamil-
tonian h. The moment method of order n is a variational
approximation employing trial functions of the form

(5')

1 0 9I 9I
0 1 1 (1+19I)
1 1 (1+19I) (1+58I)

(7)

These two equations are of the same degree, and can be
shown directly to be equivalent.

In higher orders, the moment method corresponds to
a restricted Tamm-Dancoff approximation. For ex-
ample, the m=4 stat. e vector again has the simple form

This state vector contains up to e—1 virtual mesons
in the field. The Tamm-Dancoff method also retains a
finite number of mesons, but determines the relative
occupation by solving the Schrodinger equation
(h —e) I+)=0. For the moment method of order 3, for
example, Eq. (5) takes the form

(5")

Since
A (Az)'I 0)= L11(A")'+8a, "a, z] IO), (8)

the two-meson part of the Schrodinger equation cannot
be exactly satisfied. If we consistently retain terms like

(5') and neglect orthogonal terms of the form

Pij5ap+4eij &eap7&&&y]&ia +jp I 0)p (10)
s I. Tamm, J. Phys. (USSR) 9, 449 (1945); S. M. Dancoff,

Phys. Rev. 78, 382 (1950). we obtain the moment method results.


