
requiring the exact conservation, in all physical
processes, of a quantum number, distinguishing
between muon-like and electron-like leptons. The
value of q, cannot be used in this manner, since for a
given mass number it distinguishes only between
lepton and antilepton. There remain q~ and q for this
purpose; q~ has been chosen for the scheme of Table I.
Then s(qv+q~) might be called the electron number,
while ~s(qv —q~) would be the muon number. If vt and
vs are left- and right-handed neutrinos (qv =+1),
respectively, then e and p+ must be associated with
these as shown in the table, in view of the experimental
data. It now follows that the electric charge q is given by

(8.1)

One obtains the curious (but not a priori objectionable)
result that the usual formal charge conjugation does
not change the sign of q, while space reAection does.

To obtain a realistic theory, one eventually will have
to remove the p —e mass degeneracy through a parity
nonconserving interaction'. Lepton conservation (or
electric charge conservation, if one prefers) will prevent

'In this connection, the large value of &n„/m, raises an
interesting problem;

the radiative decay of a muon into an, electron and
photons. The quantum numbers, M a,nd q„, should not
remain exactly conserved, as can be seen for example
from the process

E-+ —& P++ rs.

An equally plausible scheme results from using q,
rather than q~ in order to distinguish between p, and e.
In Table I this only switches the labels e, p+, and
simultaneously the labels p, , e+. It interchanges the
physical roles of q, and q~, as well as the sign of (8.1).
Further rearrangements can be made if one gives up
some conservation laws among the new quantum
numbers. '
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Exact Numerical Solution of a Three-Body Ground-State Problem*
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The appropriate Schrodinger equation is solved numerically to give the wave function for the ground-state
H problem. An ordinary, Gaussian, two-body force without a hard core is used. We outline how our method
can be applied (including the Pauli exclusion principle) to the zero-energy scattering problem.

I. INTRODUCTION

'HE purpose of this paper is to describe our
calculation of the H' ground-state energy and

wave function. We calculate them by using an IBM
7090 to solve the appropriate Schrodinger equation
for the three-body wave function. The only unrealistic
aspect of this calculation is the simplified potential
used. The two-body interaction is taken to be an
ordinary, central force without a hard core. The
inclusion of more complex forces results' in coupled
sets of equations of the type we solve herein. As the
speed of computing machines increase, it should be

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

t Now at Department of Physics, University of California,
San Diego, La Jolla, California.

f. Now at Department of Physics, University of Washington,
Seattle, Washington.

' M. Verde, Handblch der I'hysi k, edited by S. Flugge
(Springer-Verlag, Berlin-Gottingen-Heidelberg, 1957), Vol. 39,
p. 144.

possible to solve three-body problems with realistic
forces exactly numerically.

We outline how our methods may be applied to the
calculation of the three-body scattering lengths. This
calculation is much more extensive than the ground-
state problem, and while it appears feasible on existing
computing machines, we have not performed it. If
this calculation were performed, even using a simplified
potential, one might expect, in view of the arguments'
that m-d scattering is not sensitive to the refined
details of the two-nucleon potential, that at least the
quartet scattering length would be good enough to
indicate unambiguously the correct set of experimental
scattering lengths. '

The exact wave functions calculated herein should
be useful in testing the applicability of variational
techniques to the solution of three-body Schrodinger
equations.

2 R. S. Christian and J. L. Gammel, Phys. Rev. 91, 100 {1953).' E. O. Wollan, C. G. Shull, and W. E, Koehler, Phys. Rev. 83,
700 (1951).
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The methods employed in this paper are also
applicable to e —I and t,+—I problems.

If one considers a potential with a hard core, then
clearly the expansion of the potential does not exist.
In that case one could impose regularity on the x= &1
planes by usingII. CALCULATION OF THE GROUND-STATE

WAVE FUNCTION
v = —rqx%/1n(1 —x'), (2.2)

instead of N. The regularity of 4 then becomes simply
v=0 for x=~1. The criterion as to whether or not
(2.2) is useful calculationally is the smallness of the
shift in the eigenvalues of the differenc approximation
to

8'm 4 x' x' —
8zv

(1—x') —— 1——+
c)x' x 2 ln(1 —x') ()x

6 x' x'
+—1——+ w+J(3+1)w=0 (2.3)

x' 3 ln(1 —xs)

The specific problem which we solve is the single
bound state of a system of three particles. The inter-
action between all three is the same and it is an
ordinary, central force. It is a Gaussian with a standard
range parameter P=1.60 f and a depth of 51.5 Mev.
Using P = 1.60 f and fitting the deuteron binding
energy (2.226 Mev) we obtain a triplet potential depth
of 63.71 Mev (5&

——1.466), and a triplet eGective range'
of about 1.8f. Assuming that S,=0.9, we obtain a
singlet effective range of about 2.5 f. We have picked
our well depth in the three-body problem to be about
—;(v,+v.).

In the ground-state problem the space wave function
is symmetric and hence the Pauli exclusion principle
does not effect the solution with the simpliied potential
we are using. In the scattering problem this is not so
even with the simpli6ed potential. As we are considering
the ground-state problem, only S states will occur.
Thus we may treat the much simpler three-body
problem in a plane. This simplification is also valid
for zero-energy scattering. The Schrodinger equation
for this problem is'

from the analytical result, l an integer. This equation
ari.ses from transforming Legendre's equation through
the use of (2.2). We find, for instance, that the lowest
value of l is shifted from zero to approximately 0.012
when a mesh spacing of Ax=0.04 is used. We expect
that results using this mesh spacing would be good to
about 1%%u~.

Let us now expand'

u= P ui(r, q)P((x).
L=0

steps of two

(2.4)

82Q 82Q 8 BQ
+ + (r '+q-—') (1 —x') —V—(r,q,x)u

Br2 BQ2 Bx 8$
Substituting (2.4) into (2.1), multiplying by P&(x),
and integrating over x from —1 to +1, we obtain

where r= (K3/2) times the distance between particles
1 and 2, q is the distance between particle 3 and the
center of mass of 1 and 2, x is the cosine of the angle 8
between q and the line joining 1 and 2, t is time, and V
the potential energy. The quantity Q is rq times the
wave function %. To obtain a physically acceptable
solution, 4 must be regular everywhere. Hence I, is
zero if r or q is zero and Q is 6nite on the singular
planes x= ~1.

In order to impose regularity on the x= &1 planes,
we expand Q in terms of the regnlar Legendre poly-
nomials, Pi(x). It is to be noted that only the even
ones occur in our problem as V(r, q,x)=V(r,q,

—x).

Pi(x) V(r,q,x) Q u( (r,q)
L' =0

steps of two

PP(x)dx=0. (2.5)&&Pp (x)dx

If we also expand the potential as

(2.6)V(r, q,x) = P Vs(r, q)Ps(x),
A=0

steps of two

then we get'

BQ
+i—=0, (2.1) 8'u) (i'ut c)ui

c)& + —l(l+1) (r-'+q ')ui+i
Bt

O'QL O'QL

. + —l(l+1)(r '+q ')ui+i
Br2 Bg2 Bt

L' =0 A; = I L —L't
steps of two steps of two

(2J+1)~ l (&'—s+i)~ I (&'+s—i)~:(i+i—i')
Vs(r, q)u( (r,q) =0, (2.7)

(i+&+&+1)~&(('+(+e)

' J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949l.
See, for instance, J. M. Blatt and V. F. Weisskopf, Theore(eca/ Nuclear Physics (John Wiley 8r Sons, Inc. , New York, 1952).
E. T. Whittaker and G. N. Watson, A Course of 3fodern Analysis (Cambridge University Press, New York, f921'), 4th ed. , p.

331, Example 11.
This expansion was 6rst used in some unpublished work by G. Breit and S. Shore at the University of Wisconsin a decade ago.

See also, P. J. Luke, R. E. Meyerott, W. W. Clendenin, and S. Geltman, Phys. Rev. 85, 393, 401 (1952), who have demonstrated
the practicability of a procedure very similar to the one described in the present paper.
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where
Ap= 1, 2 = [1 3 5 (2m —1)]/rIs!. (2.8)

In the process of imposing the boundary condition
of regularity at @=&1,we have reduced the original
three-dimensional partial differential equation (2.1)
to a system of coupled two-dimensional partial
differential equations. As many fewer values of I, will
be- required than values of x would have been, this
transformation also effects a considerable saving in
the amount of computational labor.

As the ground-state wave function falls to zero very
quickly, we may solve our problem in a box in which
we assume u(R, q) =0 for R the maximum value of r
and sI(r, Q) =0 for Q the maximum value of q. If the
box is chosen sufFiciently large, there will be only a
negligible effect on the energy eigenvalue.

In order to solve Eqs. (2.7) we use a modification of
a scheme previously developed by one of us. ' We
consider t= —in2r for real positive value of r, that is
imaginary time. If we guess a solution to (2.7) and
then expand it in eigenfunctions y, (r, q, x) with cor-
responding eigenvalues E;, then each error component
changes in "time" like exp( —u'E, r). Thus every state
of positive energy tends to zero as t tends to infinity.
The ground state (single state of negative energy in
this problem), on the other hand, increases exponen-

tially in "time. " As a result of this energy separation
between the ground state and the next level, we may
easily obtain as large a fraction of ground state relative
to the other states as we wish. ' In our solution the N~

are advanced simultaneously in time by the method
of reference 8. The vs~ with /'/l are treated as source
terms. We solve for u~ starting with t=0 and going to
t=L. We assume that n~

——0 for l&L. We use linear

l5

oo IO

FIG. 2. l =0 component of the bound-state wave function, +.
This is the dominant contribution to the wave function.

extrapolation from the two previous "times" to
calculate the u~, l'&l, in the source terms and we use
the I& just calculated for I'(l. One could iterate at
each time step to obtain a completely consistent set of
u~, thus avoiding reliance on linear extrapolation, but
the results of reference 8, indicate that this added
refinement of the numerical method is not necessary
here for the accuracy we seek. We find that a mesh

spacing of Dr=7/64 f' and Aq=7/64 f for r and q less
than about 5~ f and Ar=~ f and hq= ~ f for r and q
greater than about 5~ f is adequate to reduce the
error in the energy of the ground state to about 0.05
Mev. We 6nd that enclosing the problem in a box
R=Q=10 f does not change the eigenvalue by more
than 0.01 Mev, or so.

In order to calculate the ground-state energy we
note that

o l0
IZI-

LLI

I

X(r) = P $u)(r Ar) N((r 2—Ar)]'/— —
r, q, l

g [N((r) N((r —Ar)]'—~
r, q, l

exp (crsEpAr) (2.9)

I l I l I l I

48 50 52 54 56

-Yo (Mev)

58

rapidly for Ar small. For 67. not zero, the exponential
is only approximate, but' the proper function is known
so we may solve for Eo from the asymptotic value of
X(r). Requiring X(r) to converge to about one part in
10', we obtained (for Vp ———51.5 Mev):

FIG. 1. Dependence of the triton binding energy on
the Gaussian depth parameter. L 0

Eo —9.080 —9.396 —9.416.

Approximately 30 iterations were required to obtain
this accuracy. The rapid convergence in I. is to be

' G. A. Baker, Jr. , Quart. Appl. Math. 17, 314 (1939); 17, 440
(1960); G. A. Baker, Jr. and T. A. Oliphant, ibid 17, 361 (1960). .

9 For a general discussion of the error analysis of methods of
this type, see, for instance, G. E. Forsythe and W. R. Wasow,
Finite-Difference Methods for Partial Digerenti al Equations
(John Wiley Ik Sons, New York, 1960).
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noted. These values are probably too low rather than
too high due to Dr, and hq not being small enough.

In Fig. 1 we have plotted Eo for an l, of 4 for
various nucleon-nucleon well depths. In Figs. 2—4 we
have given contour plots of the triton ground-state
wave function.

IO

IO

q 5

OO IO

j.'LG, 3. t= 2 component of the bound-state wave function, +.

III. THE ZERO-ENERGY SCATTERING PROBLEM

The zero-energy scattering problem may be solved

by an extension of the method described in the previous
section for the ground-state problem. We have not
carried it out, but shall describe how it can be done.
The procedure for ending the wave function requires
one basic modification from that for finding the
ground-state wave function. When we are solving the
zero-energy scattering problem, any small amount of
the ground-state wave function in our solution must
be regarded as an error term. However as we saw, this
error term grows in "time" and does not decay. Ke
may correct this situation in the following way. We
allow the ground-state error term to grow until it
dominates the whole error term. When successive X(r),
Eq. (2.9), agree to, for instance, 5 decimal places we
fit the wave function u~ with

A &(r,q)+B&(r q)X (3 1)

and replace I& by 2 &, i ts "asymptotic" value. This
procedure approximately removes the divergent state.
We have tried it and find that it is sufFiciently good
that the occurrence of one such state is not troublesome.

We remark that, since we obtain an exact solution
by this method we may antisymmetrize the wave
function in accordance with the Pauli exclusion
principle after we have found it, rather than trying to
maintain antisymmetry at every step of the solution
as is necessary with approximate solutions.

q 5

OO IO

I'tc. 4. l=4 component of the bound-state wave function, 4'.
It can be seen that the I,=2 and /=4 wave functions are quite
similar which indicates that the wave function is not well
determined; however, this was not found to be critical in the
determination of the binding energy.

here r,„,h and q,„,h are the r and q that result from
exchanging particle 3 with 1 or 2, a is the scattering
length, and p(r) is the ground-state wave function for
the two-particle bound system (deuteron). The
quantity hu will be seen to be related to the difference
in doublet and quartet scattering lengths when the
appropriately exchanged solutions of (2.7) are con-
sidered. The proper, ordinary central potential for this
problem is the triplet potential as any smaller potential
would close the entrance and exit channels and thereby
disallow any n-d type scattering.

The procedure for solving the three-body scattering
problem with ordinary central forces is to guess a
wave function and advance it in "time" until, taking
appropriate measures with regard to divergent state,
all the error components in the original guess have

.been eliminated. One can solve the problem in a large
box (we estimate about 8=15, Q='15f) subject to
boundary conditions (3.2). If the strength of the
triplet potential is adjusted so that y(R)=0 instead
of y(~)=0, the boundary conditions are somewhat

simplified. If one knew (Aa)/(Q —a), one could at
once impose consistent boundary conditions and solve
for the wave function. We, however, do not, as this is
part of the solution we geek,

The following boundary conditions are appropriate
for the zero-energy, three distinguishable-particle
scattering problem:

u(r, q) ~ (q
—a) p(r) as q~ ~, r finite;

u(r, q)~rq( ~u)p(r, x,h)—/q, „,zrexog as qgxgQ~ ", (3.2)

rexgh ~»te;
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V/e may solve for it, however, by requiring that the
solution be self-consistent. To do this we note that,
asymptotically N(r, q) must be of the form (3.2) except
that (—Aa) may be replaced by (eq, ,h —ha). We
seek to choose da to use in (3.2) such that e vanishes.
This requires us to solve (2.7) twice with different
values of Aa )say 0, (Q —a), for instance). We
normalize by taking

u(r, Q) = q (r). (3.3)

BN Dpi .

S=g —pi —s ds,
Bs 8s

Bu c)Pi)
ulds-,

l=s e c)u ci'is J

(3.4)

where s is arc length and J; denotes integration over
the edge of the box, e is the normal direction to the

Then it is easy to show, by using HI=0 and some
integrations by parts, that if I has the asymptotic
form for (3.2) and

surface, and

po=qp(r), pi=0, l)0

then

Qi= srq

+' ~(rexch)
Pi(x)dx,

—1 ~exch

(3 5)

a,=a+Au, as ——a—isla, (3.7)

for the quartet and doublet scattering lengths,
respectively.

We estimate that of the order of 10 different / values
are necessary in the expansion of I in order to obtain
a good representation of the wave function in the
exchanged channels. The larger the (r,q) box taken,
the more / values are required.

&=QS/(1+S) ~&= —QT/(1+S) (3 6)

In general, the ha used in (3.2) will not equal the Aa
of (3.6); however we may solve for the correct linear
combination of the two solutions so that the two Aa's
are equal and (3.3) is maintained. As (2.7) is a linear
equation we know that if we solve using that set of
boundary conditions, (3.6) will be consistent with (3.2).
When the appropriate exchange combination' of the
solution to (2.7) is formed, we find
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Ground-State Energy of the Nucleon*
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Halpern s method of moments has been applied to the intermediate-coupling reduced Hamiltonian, whose
lowest eigenvalue is a variational upper bound to the ground-state energy of the nucleon in the fixed-source
model of meson theory. The results compare favorably with an earlier intermediate-coupling calculation of
Friedman, I.ee, and Christian, and agree with direct moment-method results. A discussion of the relationship
between the present work and a Tamm-Dancoff approximation for the reduced Hamiltonian is included.

THEORY

'HE (somewhat overworked) Chew' model of
meson theory, consisting of pseudoscalar mesons

gradient-coupled to a static, extended nucleon, leads to
a Hamiltonian of the form

dk[ccha, t(k)a, (k)+V(k)(r, r (u, (k)

components of angular momenta and isotopic spin, is
assumed. As usual, La; (k),a,pt(k')(=6, ;8 p6(k —k'), and
we have set k= c=m= 1. U(k) is the conventional cutoff
function.

Halpern et a/. 2 have solved for the lowest eigenvalue
of the Hamiltonian above by the method of moments,
whose eth order approximation is the lowest root Eo of
the determinantal equation

+~'-'(k)ll (1)

Here a&s
——(k'+1)', V(k)= fk'U(k)/(3~eih)'*, and sum-

mation over repeated indices i, += 1, 2, 3, referring to

1
IIo
HI

+n—I

jv jv2

HI II2
II2

~ ~ ~

jv"
H„

+n+1
H2„1

*This work was done in part at the Computation Center at
Massachusetts Institute of Technology, Cambridge, Massa-

chusettss.

' G. F. Che&v, Phys. Rcv. 94, $748 ($954).

where H, =(0l H& l0), and where
l 0) is th'e "bare"

~ F. R. Halpern, L. Sartori, K. Nishimura, and R. Spitzer, Ann.
Phys. 7, 154 (1959),


