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The divergences of the Green's functions of electrons and photons in a classical gravitational field are
investigated and are found to be removable by the introduction of suitable counter terms into the Lagrangian.
These counter terms are obtained by rewriting the conventional renormalization technique in a generally
covariant way. It is shown that infinite renormalization constants identical to those appearing in con-
ventional quantum electrodynamics are sufficient for the removal of all divergences also when a gravitational
field is present. No other renormalization is necessary. The segregation of the divergences is accomplished by
making use of the transformation properties of the Green s functions under (i) general coordinate trans-
formations, (ii) Vierbein rotations, and (iii) gauge transformations.

INTRODUCTION

HE investigation of the Green's functions of elec-
trons and photons interacting with a given

classical gravitational field is of interest to the quanti-
zation program for general relativity for the following
reasons.

Let us suppose that Feynman's method of path-
integration is applicable to the quantization of the
gravitational field interacting with a system of electrons
and photons. The Green's function of an electron in this
case is given by'

G(*,y) =~' G(x,ylg, .)DLg"]

yexp i ( g)~g&"R„„d'x WL—g] II dg„„(x).
Pi&i &

Here the function G(x,ylg„„) is the Green's function for
an electron interacting with the quantized electro-
magnetic field in a given classical gravitational field

g„.(x). Dgg„„] is a functional of the same g„„(x) which
appears as a, denominator in the definition of G(x,yl g),
namely,

the behavior of G(x,ylg„„) and remove the divergences
from it.' Because of the derivative coupling of the
gravitational field with the electron and photon fields, it
will be expected that there occur an infinite number of
different kinds of divergent diagrams in the course of the
calculation of the S matrix. This unfavorable situation
suggests that there may be serious barriers to the
renormalization of quantum electrodynamics in a given
classical gravitational fieM.

It is the purpose of the present paper to show that no
such obstacles exist. The renormalization constants
Z~=Z2=Z, Z3 and bm in the conventional quantum
electrodynamics are also sufFicient for removing all the
divergences when a classical gravitational field is
present.

Schwinger's formalism' seems to be the most suitable
approach to the present aim. Under some assumptions
imposed on the gravitational field, it will be shown that
the Green's functions of an electron and a photon in a
classical gravitational field can be given together with
the equations which should be satisfied by these Green's
functions.

Ke shall see that these equations are the generally
covariant substitutes of the familiar equations for
Green's functions originally given by Schwinger. ' The

DLg„,]= exp t L(ggAg„, )d4x

X g Ldy(x)@(y)dA„(.)].
ttt s X, tetr Z

L is the Lagrangian density of the electron-photon sys-
tem in the g„„field. Finally WLg] is the weight function
in the functional space which should be chosen so that
G(x,y) will have a correct transformation character
under changes of the integration variables.

For the evaluation of G(x,y) we must, first of all, know

*This work was supported by the U. S. Air Force Ofhce of
Scientific Research.

f On leave of absence from Osaka University, Osaka, Japan.' N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory
of Quantized Fields, English translation (Interscience Publishers,
Inc. , New York, 1959), Chap. /.

'S. Deser /Revs. Modern Phys. 29, 417 (1957)j has con-
jectured, on the basis of the Feynman functional integral, that the
divergences of field theory should disappear, owing to a smearing
of the Green s-function singularities, when account is taken of the
quantized gravitational field itself. Although this seems to be a
reasonable conjecture it should nevertheless be noted that when
the functional integration is performed in the order indicated here,
one cannot avoid dealing with the divergences arising from the
electron-photon couphng, since they come first. The explanation
of this paradoxical situation is not clear, although it would not be
surprising if such a mathematically ill-defined object as a func-
tional integral should depend, in value, on the precise manner
(e.g. , order) in which the integration is performed. In any case,
since the renormalization described in the present paper is carried
out in a completely covariant manner, the end result should be the
same whether renormalizations are performed before or after the
integration over the metric variables.' I. Schwinger, Proc. Natl. Acad. Sci. (U. S.) 37, 452 (1951).

4 Although the metric field is not determined by dynamical laws
but is here an externally given c-number function, one should not
infer from this that general covariance is lost in the present dis-
cussion. The equations of the following sections hold for an arbi-
trary gravitational field in an arbitrary coordinate system pro-
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singular behavior of the operators of the electron-self-
energy type and the vacuum polarization type will be
investigated in detail by expanding these operators in
functional power series in the gravitational potential
Lstrictly speaking, in power series in the deviations of
g„„(x)from the Minkowskian metric ri„„].According to
Dyson's terminology, we shall have an infinite number
of different kinds of primitive divergent diagrams corre-
sponding to each term of the above functional series.
The infinities corresponding to these primitive divergent
diagrams, however, are fortunately not independent of
each other, but should satisfy a set of recurrence
formulae which are derived from the transformation
characters of the operators concerned. Owing to this
fortunate situation it will be seen that all the diver-
gences appearing in the above series can be lumped as a
compact expression containing an infinite constant iden-
tical to one of the well-known constants Z, Z3, and bm.

It is evident that this result is consistent with both
the principle of equivalence and the fact that the
Green's functions of a bare electron and a bare photon
in a classical gravitational field have the same strength
of singularity as those in the case of no gravitational
field.

1, LAGRANGIAN AND FIELD EQUATIONS

In order to describe the electron field by means of a
spinor function f(x) in a general Riemannian manifold
having coordinates x" (p=O, 1, 2, 3), we introduce a
local Lorentz system at each world point x. The four
unit vectors at any world point x indicate the directions
of the four coordinate axes of the local Lorentz frame
defined at the point x and are, in general, functions of x.
They are conventionally denoted by

h„"(x)= the covariant pth component of the kth

vector, (k=O, 1, 2, 3),
h" (x) =a time-like vector,

h', h', h'= a space-like vector.

These four vectors are called "Vierbeine" (four legs). "'

The spinor function P(x) is defined with respect to the
Uierbein at x and is subjected to a transformation only
when the Uierbein is rotated, but behaves like a scalar
function under general transformations of the coordi-
nates x.

The orthonormality properties of the Vierbein are
taken as

h '(x)h '(x)gs" (x) =q"'

where g&"(x) is the contravariant metric tensor in the
given curved space-time while g~' is the Minkowskian

vided an explicit transformation law (the customary one) is
specified for the c-number variables. It is just the use of this
transformation law, in fact, which is crucial for the derivation of
the present results.

T. Levi-Civita, Berlin. Ber. 137 (1929).H. Weyl, Z. Physik 56,
330 (1929).

metric in the local Lorentz frame, having the diagonal
elements (—1, 1, 1, 1).

For the sake of convenience we shall list some
definitions:

g„„(x)= riI, ih„~(x)h„'(x), (completeness),

h,„(x)=g„h„'(x),
h "&(x)=g~"(x)h„"(x).

In what follows, Vierbein components are denoted by
Latin indices, while the Greek indices refer to the general
coordinate system.

The familiar Dirac matrices y~ are transformed to'

qs(x) =q'h, ~(x),

which satisfy the anticommutation relation

Lv" (x) v"(*))+= 2g""(x)

In terms of the quantities introduced above, the
Lagrangian density of the system of electrons and
photons interacting with the given classical gravi-
tational field is written as

L( )=—
L
—f(*)]v{Y"()P.+&.(*)+ A.(*)]+ }4

g(x)]'*—{f"f-a""g"I4+(~,A")'I2}
—iJ"A „if' i g, (1—.1)—

where the following abbreviations have been used:

f„,= B„A, B,A„—,
g= det(g„„),
P=g' 'Y =O' P,

i7„A"=B„A"+F„"„A"
v sg (~vg ps+ sgv p ~ pgsv) ~

8„(x) is the a%nity which is necessary for making the
Lagrangian invariant under x-dependent rotations of
Vierbein and is defined by

&„(x)=-',h, Vt, „b ',p']= sb "(x),V„p,(x)],
(1.2)

V'„hg, „——B„kj,„—F„&„hj,p,

iJ"(x) is a given charge-current vector density (c
number) satisfying the equation of continuity

a„Js(x)=O,

and g and g are anticommuting fictitious sources of the
electron 6eld which will be put equal to zero after all of
the calculations have been finished.

The equations for the electron and photon fields are
derived from (1.1):

i ( g) lpga" (x){8„—+B„+ieA „}+m]P= ri, (1.3)

i~.L( a) Vv"]+i(—g)V v—"(~,+ieA.)—
+i( g) 'pm= ~—, -(1.4)

i ( g) '*[a,A—~+R—~,A-~]=Js+e( g) *P~Q, (1—.5)-
Thc boldface Icttrr is used to denote the x-dependent y matiiy.
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where I:I, stands for the D'Alembertian operator in the where X(x) is an arbitrary scalar c-number function
curved space-time and is defined by satisfying

Q,A~=—V'V,A~,

V',=—covariant derivative,

R„„=a„r„,—a,r„„+r„„r„~,—r„„r,~„.

These equations are covariant or invariant under the
following four groups of transformations4:

(i) The general coordinate transformation group

x& ~ x'&=function of x,

hi, „(x)-+ h'i, „(x')= (Bx"/Bx"')hi„(x),

4 (*)~ 4'(x') =f(x),
A„(x) -+ A'„(x') = (Bx"/(Ix&')A„(x),

g ~ iI'(x') = iI(x)8(x' x')/a(x" xa'),

ax" 8(x' x')
J~(x) ~ J'~(x') = J"(x)

(Ix" 8(x" x")

(ii) The Vierbein rotation group

x~= no change,

hp„(x) ~ h'g„„(x) =ap'(x)hi„(x),

with the restriction

g„l ( )gxn (x)~ km ~
l n

In case of the infinitesimal transformation, we have

ap'(x) =bi, '+i(eg'(x)

&i i(x) = «~(x), —
~= infinitesimal parameter,

for which the field quantities are to be transformed as
follows:

Q,X= V~V', X=0.

(iv) Charge conjugation:

%~4'= —C 'It

g~g'= —C 'g,

q'=qC,

Here the matrix C is independent of x and has the
following properties:

C~kg—1— (~k) F

C~= —C,
CtC= 1.

The invariance under charge conjugation leads to the
fact that Furry's theorem continues to be valid even in
the presence of a gravitational field. More precisely, the
contribution from any Feynman diagram vanishes re-

gardless of the number of external gravitational lines if

the diagram has no external electron lines but has an
odd number of external photon lines.

2. GREEN'S FUNCTIONS

The definition of the electron and photon Green's

functions needs the following assumptions as its basis:
(i) The Riemann tensor Rq„„vanishes rapidly for

both
x'~ +~:at any x,

x~ ~~:at any@'.

where S is

y.'( )=y, (*)s,.—(.),
y'=Sg,
q'=gS ',

q~ ~ T"(x)=y~(x)+~.&rr'h" (x),

x, A„, g„„,J&=not changed,

~-e(x) =(I+s~»(x)b'~'j)-e

(ii) The given g„.(x) is a suitably well-behaved func-

tion all over the world and the hypersurfaces so=con-
stant. are space-like. These characters are to be retained
under any general transformation of coordinates.

(iii) The electron charge (—e) vanishes suKciently
gradually for x0 —+ ~ ~.

By virtue of the postulate (i), it will be convenient to
adopt a coordinate system in which

The proof of the invariance of the Lagrangian density
under these transformations is straightforward and
familiar.

(iii) The gauge transformation group:

P ~ P~ —e
—iex(z)P

P~—eiexP

q ~ q'=e—""g,

g —+ g'=e"~g,

A„+A„'=A„+B„X,—

This choice of coordinate system, together with postu-
late (iii) makes it possible to define the conventional
creation and destruction operators for free electrons and

photons at x'= +. In addition, we can establish a
complete set of eigenvectors for the free Hamiltonian at
x'= ~ ~.

The postulate (ii) enables us to establish the Heisen-

berg-Pauli scheme for the present system in a generally
covariant way (even though this scheme is not mani-

festly covariant). Furthermore, the above three postu-
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lates make it possible to define the T product and to
represent formally any Heisenberg operator in terms of
the incoming-field representation. Consequently they
allow us to establish the formal S matrix.

Because of the existence of the external fields g„„(x)
and J&(x), the vacuum state 0'p at x = —~ is not
generally the same as the vacuum state at x'=+ ~.
Accordingly in order to discuss the net effect of any
operator F of the incoming-representation, the following
quantity is of importance

(F):—(%p U(po, x )F(x)U(x, po)4p)/(Pp*s&p),

where +0 means the vacuum state at x'= —~, and U
is the well-known U matrix giving the connection be-
tween any Heisenberg operator Fz&(x) and the corre-
sponding incoming operator F(x):

F (x) = U-'(x" —~)F(x)U(xP —~)
lim U(xP —~)= 1

+ie'( —
g) l Z (x,zz) [—g(u)]''G(u, y) du

—i(—g) 'Lo.g"'(x)+&"'(x)]g"(x,y)

=8'(x—y), (2.4)

+ie-"( g)l —P»(x,u)[ g(u)]~—g, „(u,y)du

The one-electron and one-photon Green's functions
are defined as follows:

G(* y) —=[~8 (*))/~ (y)].-o= (4 (*),lt(y)),

c'„„(x,y) =—8(A„(x))/5J"(y) = 5(A .(y))/8J (x)
= (A.(*),A (y))—(A. (x))(A .(y))= B..(y,x).

The equations which are satisfied by G and & are

(—g)'[V"(~.+JI.+ (A.( )))+ ]G(,y)

lim U(x', —po) =S.
Qp~+OO

In what follows, we shall make use of the following
abbreviation:

(A(x),a(y) . )
—= (Vo*T[5A ( ) B(y) ]@o)/(+o'5&'o), (2.2)

which can be rewritten as

= (+o*ST[A~(x)&H(y) ]+p)/(+p*s+o) (2 2)'

Let us regard the field equations (1.3)—(1.5) as q-

number equations of the Heisenberg picture and take
the "expectation value" of these equations in the sense
of (2.2)'. Keeping in mind the following relations':

(op*Sop) = (ep*SA„(x)„ep)
8J~(x) = (ep*T[SA„(x)]1,),

—z(—g)*'[ .g"'+&"'](A.(x))
+e(—g)l Tr[y" (x)G(x,x)]=J"(x). (2.6)

The mass operator Z in (2.4) and the polarization
operator P in (2.5) are defined by

Z(x, y) = iy'(x) G(x,u)[—g(u)]l

Xi'"(u,y; n)g„, (x,n)[—g(n)]'dudn, (2 7)

P&'(x,y) = i Tr —(y"(x)G(x,u)[—g(u)]l

XI'"(u,n; y)[—g(z)]~G(n, x)}dudz, (2.8)

=S~„S4(x-y), (2.5)

where (A„) is a function of J satisfying the equation

o„(+p*s+p)= (+,*Scuzz(x)+p)bzl(x)dx,

8„(Op*5%'p) = 8zl (x) (4'p*spH (x)%'p)dx,

(2 3) where the vertex operator I' is

SG-'(x,y)
I'"(x,y; s) =

L
—g(-))' ~(A. ( ))

G '(x,y) is defined by

(2 9)

G(x,u) [—g(u)]*'G '(u, y) L
—g(y)]'du

we can derive the equations for the one-electron and
one-Photon Green's functions, resPectively, from (1.3) [ g (x)]-' G

—i(x «)[ g (zz)]lG(u y)dzz
and (1.5). The relations (2.3) were first introduced by
Schwinger' and are easily verified if we take into con-
sideration the following expressions:

S=g T1i—a,„,(x;)d'x~x,",
8;„z(x)= .+iJ"A„+ig+igzi In the present case G ' and F turn out to be

z We must be careful about the Position of eP and 8zf in the G—i(x y)
—z{~y(x)(g yg +ze(A (x)))yzzz}

definition (2.3), because of the anticommuting character of q
and g. X64(x—y

—
g y) *+iezZ x,y, 2.10
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(as well as similar relations for Z and I') and

1731

y" (x)5 (x—y)|'(x—s)
F (x,y;s)=

L
—g(y) j'L—a(s)1'

ie 8Z (x,y)

L
—a(s))' ~(A (s))

—=V"(x)~(x—y)~(x—s)/[ —a(y)3'5 —g(s)j*'

+e'A" (x y. s), (2.11)

respectively. The derivation of these relations is es-

sentially given in Schwinger's paper' and will not be
repeated here.

3. TRANSFORMATION PROPERTIES OF THE
GREEN'S FUNCTIONS

(i) Vierbein Rotations

Equations (2.4)—(2.6) are form-invariant under the
transformation

&8
,

&8
h. '( )- h."( ) "( )d = o (3.3)

8h» (s) 8hz„(s)

(and similar relations for (A) and P»).
Since e«= —e&k is completely arbitrary, (3.5) leads to

iIg 5g
h„'(s) = -h„"(s),

8h»(s) 5h, „(s)

which shows that g is a functional of g„,=h»hi„zt~' but
does not explicitly depend on h». The same is also true
for P"I' and (A„).

(ii) Gauge Transformations

The gauge transformation which leaves Eqs. (2.4)—
(2.6) invariant is defined by

(A „(x))—+ (A'„(x))= (A „(x))+B„X(x),
G(x,y) G'(x,y)=e—*''" *'G(x,y) *', ( . )

jlv ts v tuvy

(3.1)
It is seen that 6 ', F, and 2 are transformed in the same
manner as that of 6, while I'I"" is gauge invariant. We
can easily check the consistency of the above law of
transformation with the definitions of g, F, Z, and P.

The argument which led to the relations (3.4) and
(3.5) leads us, in the case of infinitesimal gauge trans-
formations, to the relation

where S(x) is given by

hi, „(x)—+ hi, „(x)+~ei,'(x)hi„(x)
where the arbitrary scalar function X is restricted by

G(x,y) ~ G'(x,y) =5(x)G(x,y)5-'(y), ,X=0.
G '(x,y) —+ G' '(x,y) =5(x)G '(x,y)5 '(y),

I'"(x,y; s) —+ 1"'"(x,y; s) =5(x)1'"(x,y; s)5 '(y),

Z(x,y) Z'(x, y) =5(x)Z(x,y)5- (y),

g„„PI'"(A,)=not changed,

5(x)=1+',~e (x)fy",p'j (3.2)

G'(x, y) =G(x,y,h'(x) )=SG(x,y, h)5 ',

8',.(x,y) =B..(x y,h') =8"(x,y, h),

P'»(x, y) =P»(x,y, h') =P»(x,y, h),

Z'(x, y) =Z(x,y,h') =SZ(x,y, h)5 '.

Inserting (3.1) and (3.2) into (3.3), we have

(3 3)

s {e~i(x) Ev",v')G(xy) —e~i(y) G(»y) L~" ~'j&

It will be easily seen that these transformation laws

are consistent with the definitions of 2, I', and I'. Since
the new Green's functions G', g', and (A') satisfy
equations of the same form as the original ones /except
for.the expticit charzge of h»(x)), and since the boundary
conditions in both cases are the same, we have the
following relations between the new and the original
quantities:

—ie{I,(x)—P, (y))G(x,y) = 6G(x,y, (A))
8„),(s)ds,

S(A„(s))

—ieP, (x) —II, (y) jZ(x,y)

SZ(x,y, (A))
B„X(s)ds

S(A „(.))

ie A&(x=,y; s)P—g(s)]'*B„),(s)ds, (3.7)

where the definition (2.11) of h." has been used.
The relation (3.7) is the basis of Ward's identity.

Applying similar arguments to I' t"", we have

where G has been regarded as a functional of (A „(s))
instead of J".In a similar way we have the important
relation

hG(x, y, h)
ei, i(s)h„'(s)ds (3.4)

()
bP~" x,y, A

Bs 5(A, (s)) ) (3 g)
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(iii) General Coordinate Transformations

Consider the in6nitesimal coordinate transformation

x"—+ x'"=x"+K("(x),

where $"(x)=an arbitrary and inftnitesimal function
of x and ~= small parameter. Under this transformation
the 8 function and $—g(x))' are changed in the same
way:

~ x')
84(x—y),

~ x")

r) (x'
b'( x-y) ~ 8'(x'-y') =

8(x"

8(x' x')
L-g(*)j:-L-g'( ')j-:=, , L-g(*)j:

8(x" . x")

G(x,y) —+ G'(x', y') =G(x,y),

Z(*,y) Z'(x', y') =Z(x,y),

Keeping in mind the above-mentioned fact, we can
prove that the covariance of the basic equations for the
Green's functions is guaranteed by the following trans-
formation laws:

After the coordinate transformation has been made,
the new equations for the transformed Green's functions
still have the same features as the original equations
apart from the diGerence in the explicit forms of hI, „
and (A„). Therefore, the transformed Z' should have
the form

Z'(x', y')

e n m

II h' ~;., (y ')II (A '.;(s,'))
n, mM Q ~~ ~ j=l j=l

Xf., ((h), . ,h ),( t, ,u );
(

/ I
pr) ' )vt))))x )y )yt )

' ' ')ys )sl )' ' )s))) j

xIId'y IId's, .

Noticing the fact that the primes on yl'- .y„',
s&'. .s„' can be removed (since these are dummy inte-
gration variables), we have the following relation:

Z'(x,y) —Z(x,y)

Bs'"
I'~(x; y; s) ~ 1"s(x',y', s') = I'"(x,y; s),

Bs

y
8 (xy) 8 (* y)=, , 8 .(xy)

Bx'" By'"

Bx' " By'"
P~"(x,y) ~ 8""(x',y') = —— P"(x,y).

Bx~ By'

(3.9)

=KP(x)BZ( yx, h, (A))/8 x+sPK(y)BZ/By~

5Z 6Z
+ 5h«„(s)+ 8(A„(s)) Ch=0, (3.11)

She„(s) 8A „(s)

where
8$"(s) c)h«„

She„(s)—=h's„(s) —h«„(s) = —K h„„(s)—Kg" (s)
Bs" Bs

em
= Z

n, m=O g, ~m~

7L m

II h.;.;(y )II&A .;(s ))
j=l j=l

xf...((h" h.),( " .);(. . ');
xyy&r''' y~ »)) ')')s~)

It is easily shown that these laws are compatible with
the definitions of I', Z, I', etc.

The relationships (3.9) between original and trans-
formed quantities give us important information. Let
us, for example, consider the mass operator Z(x,y)
which, as is easily seen from the equations (2.4), (2.'I),
and (2.9), is a functional of hs„(x) and (A „(x)).Z can
be represented as a functional Taylor series in h~„and
(A„) in the following way':

Z(x,y; h, (A))

RA.())=&A. ())-&A.())
c)p(s)

(A p(s)) —«p(s) 8p(A„(s)).

Similarly,

~k"(x) ~&"(y)
I""(x,y)+K s" (x,y)

B B
=KP(x) I' "+KP(y)

Bx~ Bye

bI'~" bP~"
Sg„(s)+ S(A„(s)) ds, (3.12)

kg" (s) ~&A.(s))

with the definition

X II d'y; II d's;. (3.10)
j=l j=l

8 The coefBcient f„, is a function of x, y, ~ ~ s„and has a set of
contravariant indices ()s) .y ), (v). ~ v~) together with a set of
Vierbein indices (k) k„).For the sake of convenience in printing,
this unpreferable notation eras adopted.

r)g))

5g„„(x)= K g„—K g
—K$8g

8$ Bx

These relations will play a basic role in the segregation
of the singular parts of Z and E&".
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4. THE SINGULAR PARTS OF X, F, AND P

The differential equation (2.4) can be changed into
an integral equation by introducing the Green's function
Go defined by

(—g)'[Y"(B.+&.)+ lG'(*y) =b'( —y), (41)

with the same boundary condition as that for the ordi-
nary S~(x—y).

Namely, (2.4) becomes

G(*,y) =G (.,y)+. G (., )[-g( )3-:~"(&.(.))

XG(u,y)du ie'—G'(x,u)

X[—g(u) jlZ(u v)[—g(v) jlG(v y)dudv. (4.2)

In a similar way the Green's function 8o„„definecl by

—t[—g(x)1'[&.g"'(x)+&"'(x)38'"(x,y)
=b'(x —y)~.", (4 3)

T

I f4

I
I

/

l

/y
I

l
/

l

I'
IN

I
l

I

FIG. 1. Diagram representing some typical term of G .

+-«S'(x—u)~~[q, ~& j
8

X {4)„a,i, (u) —et i,y,„(u)}

(«= small parameter) and expand, for example, (4.1)
with respect to the parameter f(, we are able to obtain
G as a power series in I(. The first few terms of G'
obtained in this way are, for example,

G'(x,y) =SF(x y) «S—~(x—y) rt'&a—s„(y)

8+t«S (x u)aro(u)rr S (u —y)dtt
81"

allows us to rewrite (2.5) and (2.6) as

8"(x,y) =8'"(x,y) te' —8'.,(*,u)L —g(u)]'
where

XS~(u y)du+ . ,
—(4.6)

and
XI'"(u,v) [—g(v) j-:8., (v,y)dudv, (4.4)

and S~ is defined by

t(pe„+srt)S'(x) =P(x)

{A,(x))= 8",.(*,y)I"(y)dy —e 8'"(x»)

X[—g(y) O' T [v"(y)G(y y)7dy.

The method of iteration gives G, 8, and (A) as ex-

pansions in series with respect to the charge, each term
of which corresponds to a Feynman-diagram in which
each internal electron and photon line stand for G' and
8', respectively in place of the conventional S~ and D~.

As is well known, ' " Green's functions in a curved
manifold defined by (4.1) and (4.3) have singularities
on the light cone" of exactly the same type as those in
a flat manifold. The postulate (ii) mentioned in Sec. 2

is therefore necessary for the definition of the T product
in a generally covariant manner.

In general, the analytic form of G' and 8" is very hard
to obtain. However, if we put

ht, „(x)=stt, „+«ag,„(x),
h'o(x) =q'o «a"(x)+—

' B.S. DeWitt and R. W. Brehme, Ann. Phys. 9, 220 (1960)."J.Hadamard, Lectures ort Cauctty's Problem in Lirtear Partial
Digererttiat Equatiorts (Yale University Press, New Haven, Con-
necticut, 1923)."Consider a fixed point A and any other point 8, for which the
geodesic distance o (B,A) between B and A vanishes. The light
cone at the point A is defined by the set of all the points f8) for
whicha(B, A) 0=

G'(p, p') =
(2sr)4

G'(x, x') e *&*+'&'*'d—x'dx'

turns out to have the asymptotic form

Go(p, p') O(p-') or O(p'-)

for p (and p'))&m. This favorable feature can be easily
seen, for example, in the third term of (4.6), where the

It is seen that G' may be expressed as a sum of terms
each of which can be represented by a diagram of the
type shown in Fig. 1. In Fig. 1, the lines x ~ I, I~ ~,
etc. , correspond to $~(x—u), S~(u—v), etc. At each
vertex there appears an arbitrary number of dashed
lines corresponding to products of aI„.„. These dashed
lines may be called external gravitational lines or, more
simply, "g lines. "

The important fact is that at each vertex there
appears a product of y-matrices and at most one deriva-
tive operating either on an adjacent S~ or on one of
a»'s at this vertex. The fact that we have only one de-
rivative at each vertex of the open polygon is due to
the fact that 8„ is linear in the first derivatives of a~„
and the fact that Eq. (4.1) for G' is of the first differ-
ential order.

Accordingly in the momentum representation
. G'(p, p'), defined by
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FIG. 2. A typical diagram of g'.

asymptotic contribution of the derivative is cancelled
out by that of the last S~.

In a similar way it is easy to see that gs„„ is repre-
sented by a series each term of which corresponds to a
diagram similar to the one shown in Fig. 2. Each vertex
has an arbitrary number of g liet, s and at most one
second-order derivative. The Fourier-transform g'(k, k')
has the asymptotic behavior g'(k, k') —+ 0 (k=') or
0(k' ') for k, k'))m.

It should be noted that since the gravitational field
is nonquantized, G' and &' have no closed diagrams of
the self-energy type, consequently, both Green's func-
tions have no singularities other than those existing on
the light-cone.

Now let us insert these expressions for G' and &' into
the power-series expansions (in e) of G and g. The fact
that g' and G' have the same asymptotic behavior as
D~ and S~ for large momenta enables one to apply
Dyson's criterion" for divergent diagrams to the present
problem. The primitive divergent diagrams in the
present case are:

(i) diagrams of the electron self-energy type, with
or without any number of g lines (linearly divergent);

(ii) diagrams of the vacuum polarization type, with
or without any number of g lines (quadratically
divergent);

(iii) diagrams of the electromagnetic vertex type,
with or without any number of g lines (logarithmically
divergent).

5. SEGREGATION OF DIVERGENCES

Equation (4.3) shows that the Green's function G
can be made free of divergences if the mass operator Z
is regularized by a suitable subtraction method.

In order to separate the divergences involved in Z,
let us put

hs„(x) =les„+sag„(x), (5.1)

and express all quantities depending on hs„)for example
h"s, (—g)r, etc.] as power series in the parameter" K.

The use of such expansions does not conflict with the
fundamental postulate (i) and (ii) in Sec. 2, as long as
we restrict ourselves to classical gravitational fields.

In the case of the quantized gravitational field, how-
ever, the dynamical operator a» at any fixed point x

"F.J. Dyson& Phys. Rev. 75, 1736 (1949).
'3 The small parameter g is chosen to be the same one as the

parameter appearing in the general coordinate transformation in
Sec. 3 (iii).

can presumably take ar'bitrarily large values (i.e. , the
range of its spectrum), thus destroying the convergence
of such expansions. For the classical field, on the other
hand, the maximum value of as„(x) can be restricted
by choosing suitable initia, values for h» even in the
case where the gravitational 6eld is produced by the
electron-photon system (for example, by the expectation
value of the energy-momentum tensor of these fields)
according to the Einstein equation.

Since the mass operator Z(x,y) or Z*(x,y) =Z(x,y)
X(—g(y)]l is a functional of J" and hs„or A„(x) and
hI, „, it is reasonable to expand it in a double functional
series"

oo I(' g n m

n, mM Q ~~ t j=]. j=i

Xb„...{(kl, k„),(il, , il „);

It will be seen later that for our present discussion Z*
is more convenient than Z.

In (5.2), the coefficient b„,„is a sum of complicated
products of S~, D~ and the charge e and the constant
Dirac matrices y, and all the gravitational potentials
a(x)'s have been factored out. Namely,

b„{(kl, ,k.), (yl, .
,P„);

(Pl ' '
&Vm)&X,y, zl, ' ' ' &~» yl, ' ' ',y»&}

= p e b. , 1{(kl, .
,k„),(pl, .

,p„);
l=0

(Vl»' '
Vm)&X&y&zl»' ' ' yl, ' ' ')

&

where b„, , ~ is a complicated product of D", S~, and y
and their derivatives; accordingly it is a function of
relative coordinates;

b. ,-,l{(kl, ,k.), (.1 ); (» ),
x—y sl —y ",s-—y, yl —y, ",y- —y).

Following the conventional line of arguments, let
us introduce the momentum representation:

e *"'Z'(x x')e*'&" dxdx'

I( n~m+l m

Xb, , l{(k,, ),(P„);
(vl& ' ' v»&)&PO&Pl»' 'P»&&71»' ' ' g»j

n m

Xb'Lp' —Q p, —p q, g
0 I

Xdpl dp dpi dq, (5.3)
' The coefficient b„,~ is a function of (g)p, gl '' ')$~) and is a

contravariant tensor under Lorentz transformations &vith contra
variant indices (kl&,k„), (4&.. .4&„), (», . . . „
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where the following notation has been introduced

b-,-, )((ki. ), ( ( .) (», '-),Po,P& P-n(

=(2~) ("+~ ) ) dx, ds), ds, dy&, '''dy

Xb-,-,)((k& ), (~) ) (», ' ),

x—y, »—y, ",s-—y, y) —y, " y- —y)

n fn

XexpI ip—o(x y)—i —P p, (s,—y) —iraq, (y, —y)$,
1 l

Flc. 3. Feynman
Diagram represent-
)&)g bn, m, &(po ''pn
qI ~ g~). Wavy lines—external photon
lines; dashed lines-
g lines; and solid
lines —electron lines.

pg I
I

pg

pt

~ (0)=(2 )
'-(~.(y))e""dy,

a).„(P)= (2n.)
'- a «„(s)e."(Is, -

The coeKcient

b. ,-,)((k, ), (), ); (», ),pop) C-)

In (5.4), the last term is due to the factor f—g(y)]'
in Z*, and 8A and 6a are given by

bA „= «(8—& "/(Is v) A, (s) .
—&(g"(s)8 „A „(s),

(lag. „(s)= u'g. „(s)—a«„(s)
~,g«(s) «(&„(—")a«, «("a„a—,

The deriva. tion of (5.5) and (5.6) was given in Sec. 3.
In the momentum representation of (5.4), the co-

efficient of the arbitrary function $„(k) yields the
relation

b-.-, ~((k), ,k-), (~), . ,~.);

(")»' ' ' v»&)&po»' ' P»&$1»' '' (Im)

m 8
+XV()"— b-, -, ~((k( .), (~) . );

~9'(j))

is represented by the Feynman diagram shown in Fig. 3.
In general, this diagram involves a number of diver-

gent subdiagrams. Let us assume that these divergences, =o gp(, .
) «

(&')

due to the subdiagrams have already been removed by
the subtraction method. Then, from Dyson's criterion
it follows that b„& is linearly divergent for m=0 (no
external photon lines), or logarithmically divergent for
m= I (electromagnetic vertex), or finite for nz&2.

Now 2* should satisfy the following relations:

For the coordinate transformations,

~x ~y Z~xy
Bx" BY"

(vi . ),P„, ,q„)

+(27r)2b +), , )((k), ,k, v), (pi, ,g„,X);

(», ,v-),po, ,p-+,V, ",(-)..„=0,

b(A, (s))+ 8a«„(s) ds
b(W, (.)) be,„(s)

~t"(y),
+&( Z*(x,y) =0; (5.4)

+ Q q" 'b. (((k), ,k„),(«(i, ,X, ,p„);

(vl»' ' ' vm) &PO»' ' ' P»&(Il»' ' ' (Im)

+ P n""'b. )((ki ), (pi );

for the Vierbein rotations,

s ( ~«((x) Ly" y'3~*—~k((y) ~*Ly',y'j)

-(eg.„(s)+&(e&)(s)a„'(s))ds; (5.5)

for the gauge transformations,

v-)Po, P,V(, . 9-) =o, (5.7)

where

g'( j) vth component of the ~th momentum q( j~,

(j=1,2, , e),
g„(k)= (2&r) '

$ (x)e'«*dx

—ieP (x)—I((y)$Z'(x, y) =
SZ":(x,y) and the limit k —& 0 has been taken in the end.

b(,I „(s)) Similar relations can be derived from (5.5) and (5.6).
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For example, (5.6) gives, for the case of m=0, For example, (5.8) gives the relation 8 and C, i.e. ,

()p(0))
ba, o, i{(kil ' ' ' )1 (Iily

' ' ')((n) )pop
' ' ' pn}

8-, {0,(k ),(." );»
= (2~)'C. .i{(ki ),( i" ); &}. (5.12)

=(2-) b. {(k, k.),(. , '.);
&,Po, "P-,e}.=o (5 g)

n

+Z P(i)i
i=n ()po.))-

X{(ki . ) (pi. ) po, p }

+~., o, ){(ki ) (» i )}
—all y=o

n

+Q p(;))P., o, i{j,l(, (ki" ),(pi" )}, (59)
7m

,i){(ki'' )( i )' vPo" P. V}

=Lb-, i, i{(ki, . ), (~i ) vPo" P. Vjv. a-~

+V-, i, ){(ki, ) (p . ); v} (510)

a, p, and y=undetermined finite constants.
Because of the particular structure of b~, ~, i (()is. , a

product of Sv and Dv), we see that the first term of the
right-hand side in (5.9) diverges linearly while the
second term in (5.9) and the first term in (5.10) are
logarithmically divergent.

For the sake of simplicity, let us put"

""'b,o, i{(ki' ' ') (pi ' ') Po ' ' 'P.}
=A„,i{(ki,. k ), ()ii, p, „)}

+ P P(;))8„,{j,(k, , k„),(pi, p„);X}, (5.11)
jM

""&b i i{(ki ),(pi' ' ') v}

=C„,i{(ki, k„),(pi, p„); v},

where A= , 8 and C=log~.
These undetermined infinite constants A, 8, and C

are fixed by the requirement that the singular function
""&Z*should satisfy the relations (5.4)—(5.6)."

'~ A, B, and C are independent of p's. The letters appearing in
( }'s of these constants represent contravariant sufFixes and take
values ranging from 0 to 3.

In order to segregate the singular part of each
bi(, m,

=0 and m = 1), let us put

b-, -,i{(ki" ) (pi ) (». ),Po, .P-,vi,
sing) ~ i'inifa$

n, m, L

where

""'b-,o, {(k ),(p, . p-),po, P.}
be, o, l{(kl' ' ')

p (Pl ' ' ' ))Po) ' ' ' Pn}all v=0

(2') A „+i,i{(ki, k„,v), ()((,, p„,X)}
n

+ Q ))"")A,i{(ki, k ), (pi, . X, .p„}=0,
j=1

for sz& 1,
alid

Ai, i{(v),(1)}=o

The latter relation, which comes from (5.7) for ii=0,
combined with the former recurrence formula leads to
the conclusion

~o, i~o,
A. , i{(ki, k„),(p, , p„)}=0,(N&1).

(5.13)

The singular part of Z* corresponding to An E turns
out, in the coordinate representation, to be

Singg 8(& y)
(2ir) '

X(2ir)'(Q e'Ao i)dpdp'
l=0

= (2~)'b'(& —y)(Z e'A, ).
lM

(5.14)

The simplicity of this result is due to the fact that we
have made use of Z* instead of Z.

The relation satisfied by 8„,& is

n" B-,i{j (ki, . k-), (pi, . p.) l}

+pi)" B,i{j;(ki, k.),(pi, X, . )I ); p}

+(2m') 8 +i, &{j; (ki, . k, v), (pi, ~ ~ p„,p)}=0

(j=0, 1, I). (5.15)

This relation gives 8„+i,&{j; ( ),( ),p} (j=0,
1, . I) in terms of 8„,& but does not give any informa-
tion about 8„+i,){j;( ), ( . ); p}, j=N+1. This co-
efficient is given by a relation which follows from (5.5)

In particular, for n=0 (no gravitational interaction)
we have

Bo,i{0;X}= (2ir)'Co, ({0;X},

which is just Ward s identity to order e'. The method
of derivation of Ward's identity developed above seems
to be the most elegant one compared with those so far
published.

Inserting (5.11) into (5.7), we find that the terms
independent of p's satisfy the relation



RENORMALIZATION OF QUANTUM ELECTRODYNAMICS 1737

together with the expression (5.11), i.e.,

—,'I'r sy jB„,if0; (ki, . k„),(tii, p„); I~}

=L(2v) B~i, i(n+1, (ki, ~ k„,i), (tii, ti,k); Ii,}

+LB., i(j; (ki, i, k-), ( i, I -);&}v
j=l

$i—and k interchanged j. (5.16)

Transforming the above expression to the coordinate
representation, we have

s'"g PZ(x, y) = (P e'Mi) b'(x—y)
L=O

i—(Pe'Ni)I y"- +m Ib'(x —y). (5.18)
ax" i

The comparison of (5.18) with (5.14) and (5.12) leads

Ap, i= (27r) '(Mi —imNi),

Bp, i(0; I~}=(2pr) 'Nip"
(5.19)

because of the relation

Relations (5.15) and (5.16) show that all the B„i are
proportional to Bo,L and are completely determined up

to

to this factor.
Let us now consider the second singular part of Z*,

namely,

""Z&*(xsy) = (2v') ' e' ' ""*Kg*(p,p')d'pd'p',

with

lim(sing+ 8+sing+ g}—sing Pgg(x y) (5.20)

singg g(p pI)

=(2')' Q
~, L=O ~t

d'Pi, "d'P- b'LP' Zpsh-
j~

As was already mentioned, the "initial values" of
B„i given by (5.19) are sufficient for the determination
of ""'Z2*. However, the following facts give us the
explicit expression of ""'Z*even though we do not solve
actually the recurrence formulas (5.15) and (5.16):

which tends to

lim ""gZp*(x,y)

X D ag;,„,(P,),
i=1

X P P(;)»., i& j, ; (ki, k.),(tii, p.);&}
j'=0

(a) relation (5.20);
(b) ""gZ* is linear with respect to the first derivative

(or linear with respect to Pi;i (j=0, 1, n);
(c) ""gZ* should satisfy the relations (5.4) and (5.5).

The result obtained in this way is a simple generaliza-
tion of (5.18) in a curved manifold, and is given by

singg g (X y)+singg g (X y)

a

P b'(P' P) *"' "'d'P—d'P'
(2pr)' i=p

(5.12)

In the case of no gravitational interaction, the mass
operator of an electron in the momentum representation
has, in the /th order, the form

(pi, p') = (Xi(P')+y "P~Yi(p') }~(p—P'),

where Xi and Yi are Lorentz-invariant functions of p'
and diverge linearly and logarithmically, respectively.
The singular part of 'Z is defined by

-""Z&(p,p') =b(p —p') (M,+ (7"p,—im)N, },
where Mi and Ni are independent of p and are given by

Mi ——Xi ( m')+im —Yi ( m'), —

X y" (x) +B),(x) I+m b'(x-y).
rex"

The third singular part of ""gZ*, namely that which
comes from the C„,L's, can be also transformed into a
compact form if we take into consideration Ward's
identity (5.12) or the requirement of gauge invariance
(5.6). Thus we arrive at the final expression for the
singular part of Z*:

singg@(X y)

= (Q e' M)i(iIx y) i(Q—e'N—i) {T"(x)[ai,+Bi,(x)
L=0 L=0

+ie(A&(x)))+m}a(x—y), (5.20a)

(d
Nt Yi(—m')+2imI ——X—i(s) I

&ds ).
t'd—2 'I —Y,() I

Eds

where the divergent constants ML and XL are identical
with those evaluated by the Perturbation method in the case

of no gravitational interaction.
The argument we have made so far is also applicable

to the segregation of the singular part of the electro-
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magnetic vertex function:

& (*)S(x—y)S(x—s)
r"(x,y; s)= +e'A"(x,y; s), (2.11)

[—g (y))'L —g(s))'
where

&Z(x,y)
A (.~,, y, -)—

e [—g(s))'~&A. (s)&

~a*(x,y)
(5.21)

e L
—g(s))'[—g(y))'~(A (s)&

It is easily seen from (5.20) and (5.21) that

pingr v(x y
~ s)

= e' ""KA."(xy s)

= —ie~ ""'~*(»)/[—gb))'L —g(s))*'&(A.(s))

which vanishes owing to the delnition of J& introduced
in section 1. Relation (5.25) then follows by a functional
differentiation with respect to J"(y), taking note of the
definitions of 1 and PI"".

By following the line of thought developed in the case
of ""KZ*, and making use of the relations (5.24) and
(5.25), the singular part of Ppv turns out to be

[—g(x))' ""'P""(x,y) L
—g(y))'

=(E e'Li)~, L
—g(x))'

l=o,

X[g""(x)g"'(x)—g""g") ~(x-y). (5.26)
8x'

The constants L&'s which diverge logarithmically are,
like the other divergent constants, the same as those
obtained in the absence of a classical gravitational field.

~(x—y)~(x—s)= —ie'( 2 e'&i) V"(x)
[—g(y))'*[—g(s))'

Accordingly we have

q (x)S(x—y)S(x—s)
1'"(x,y; s) = (1 ie' P—e'1V ()

L
—g(y))*'L —g(s))'*

(5.22) 6. REMOVAL OF DIVERGENCES

The method we are now going to develop is essen-
tially a repetition of the argument given in a previous
paper by the author. "

Let us regard all the quantities so far considered as
unrenormalized ones and make the transformation'~

+e'h. "(x,y; s) fj„jap. (5. 3)

= ~() +~(y)
8x~

Pp" (x y)

)Pp, v )Ppv
gy„(s)+ b(A, (s)) ds, (5.24)

&y,.(s) &(A, (s)&

which follows from the fact that I' is a functional of
g„„and hence depends only on the symmetric
combination

Qpp= +pa+Ovp.

The following relation is also needed:

(~/»") ( L
—g(*))'P""(x,y) }=o, (5.25)

which can be derived as follows. The Lorentz condition

V,(A p(x)) =0,

when substituted into (2.6), leads to

e(8/exp)([ —g(x))~ Tr[q p(x)G(x, x))}=a„Jp(x),

The remaining singular function which must be con-
sidered is the polarization operator ""KPp" (x,y). For the
segregation of ""'I'I""in a generally covariant fashion,
use may be made of relation (3.12) or its equivalent:

~k"(x) ~&"(y)
K Pp" (x y)+K- P»(x,y)

QyP

m~ m'=

3„—+2'„=
e~ e'=

Jp~ J p—

m —6m,

(ZZ, ) ~A„

(ZZ3) ve,

Z3kg—sJu

(6.1)

The new Lagrangian L,
' is not numerically identical

with the original L given by (1.1) because of the term
—Z( —g) l(V'pA'p)'/2. It will be seen that this modifica-
tion of the Lagrangian is essential for the removal of
the singularity of the vacuum polarization.

The transformation (6.1) gives the relationship
between unrenormalized and renormalized Green's
functions

G'(*,y) =~(~'( )&/~. '(y) =Z-'G(', y),
(6 3)8'"(*,y) =~(A.'(*)&/~J'"(y) =Z '9"(*,y),

R. Utiyama, S. Sunaka~va and T. Imamura, Prog. Theor.
Phys. {Kyoto) 8, 77 {1952).

&' The primed letters denote the renormalized quantities.

Z and Z3 are renormalization constants.
Applying this transformation to the Lagrangian

(1.1), we obtain

L'= Z( g)-'P'f —q (x)—(a„yB„+ie'(A„'))+~'+&~}y'
4ZBZ( g)'—f' f' —g""g" (Z/2) (——g)'

&& (V'„A'p)' iZJ'pA „' i- q—'P' iP'q'. —(6.2)—
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and consequently gives

G'—'(x,y) = ZG—'(x,y), —zL —g(x)]'{&.g"'+&"')8' (x y)

I"~(x,y; s) =— bG' '(x,y) (6.4)= Zi'~(x, y; s),
e

I
—g(s)]' ~(» (s))

+z {e"L—g(x)]'P'"'(*,u)L —g(u)]*'

e''Z'(-xy) =ie"y"-(x) G'(x,u)L —g(u)]'I""(u,y; s)
+(Z~ —1)~~L(—g) '(g"'g"—g""g"') &.]&(x—«) )

Xg'„(u,y) du =8„&5(x—y). (6.11)

= Ze'Z (x,y),

XL
—

g (s))lg', „(s,x)duds In order to show that G', g', and (A') are free of
divergences, let us expand all the quantities in power
series in e:

e"P'I'"(x,y) = —ie" Tr {y&(x)G'(x,u) f g(—u) ]*'

Xl""(u,s; y)I —g(v)]lG'(v, x) }dude

G'= Q e'"G„'
n=O

g'= Q e'-g„', Z=1+P e™Z.,
n=O

=Z ezP~" (x y) (6.6) 5zzz= Q e'"(6zzz) „, Zz ——1+Q e'"(Z3)„,
n=2 n=2

The new Lagrangian (6.2) together with the rela-
tions (6.3)—(6.5) gives the equation for G'

zL g(x)]'{—v"(~.+II.+i'(A ~'))+~}G'( yx)

and make use of mathematical induction.
LA]: Gz., ', g&', I'&', and A I,

' are free of singularity for
k=0, 1, . zz, and consider the terms of (6.7) of order
en+' satisfying

+i(—
g) ' Le"Z'(x u) L

—
g (u) ]-*'+Zbzzzb (x—u) zL g(x)]—'{7"(x) (~.+&.)+»)G'-+z(x, y)

+ (Z—1){yI"(8„+8„+ie'(A„'))+zzz)b(x u)]— n

XG'(u, y) du= b(x y), —(6.7)

and the new expression for I"
n—1

+iI —g(x)]l P &'*(x,u) AG'„ I, &(u,y)du

~ (x)S(x—y)S(x—s) SZ'(x,y)
I"~(x,y; s) = Ce

I.—g (y)]'L —g(s)]'- L
—g(s)]'~(A. '(~))

q~(x) S(x-y) S(x—;)
+(Z—1), , (6 g)

L
—g(y)]'I:—g(s)]'

In deriving (6.7) the following relation has been used:

Z(A „'(x)P'(x)P'(y))

= Z(A „'(x))G'(x,y)+ G'(x,y). (6.9)bJ"

The Z factor in the last term of (6.9) disappears because
of the term

—iZJ'~A „'
in (6.2).

In an analogous way we can obtain the equations for
(A„') and g'„.:
—zL- g(x)]'{&.g" +&" )(A, '(x))+z(Z —1)»

X{I—g(*)]'(g"g" —g-g" )&,}(A',)
+e'(—g)' TrLy (x)G'(x,x)]=J' (x), (6.10)

n—I

+g (Zbzzz) z.+zG'„p &(x,y)

+iY'(*) 2 (Z—1)*.(A'. ( )) G'(,y)
i+j+ t=n —2

+{~~(x)(a„+8„)+zn)

X Q (Z—1) I„.~rzG'„z- z(x,y) =0. (6.12)
k=0

Since Z~'* has the structure

{~'*(xy)) ~

=i Q p&(x) G,'(x,u)I —g(u)]''I"'(u, y; s),
i,+j.+L=k

X L
—g(s)]'LB'"(s,x)) I:—gb')]'duds,

it has no divergences arising from divergent sub-
diagrams (or, more precisely, from the factors G, ',
I', ', and g~' involved in Z') by virtue of our assumption

I A] (i.e., i, j, I&zz —1).Accordingly ZI, '* must have the
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following form, in accordance with (5.20)

P'*(x,u)},
=M i,8 (x u—) i—lV i,, {y" (x) (8)+Bi,)+m}b (x u—)

pression (6.8) are written

q~S(x—y)b(x —s)
(I"")-+i= {(Z—1)~i—ilV.-i}

L
—g(y)]'L —g(s)]'

+ Q 1V;y"(A),') 8(x—u)+ (""'"Z*)i.
i+ j~k—1

which becomes
+{iinitei1&p(x y. s) }

iL —g(*)]-'* P P'"'"Z'*(x,u)]gG'~i, ,(u,y)du

+g PMi, +(Zlm)i+2)G'„ i i(x,u)
Ic=o

n—r

+P L(Z—1)i+2—ilVi)Ly" (By+Bi)+m]G'„ i, i

+i
a+ b+c=n—2

L(Z—1).~2—ilV.)y'(A &') bG, '(x,y) .

Therefore, if we choose the indefinite constants Z~,
and 8m~ as follows:

Zl,+2= i/g,

(Zbm) i+, PZ——i(bm) i,+. i (6.13)

= —Mi. , (k=O, 1, u 1), —

then the third term i(—g)'L . .] turns out to be finite:

i(—g)l P {"""2'*(x,u)}kG„, i, (u,y)du.
k 0

Consequently (6.12) becomes

i( g) '{~"(~.+B.)—+m}G'-+i(x,y)

n—1

i( g)l P {""'"2'*(x,u—)}iG—'(u,y)„, ,du, (6.14)

which shows that 6'„+& is actually free of divergences.
In a similar way the terms of order e"+' in the ex-

Inserting this expression into (6.12), the third term
i(—g)&[ ]becomes

(I'")„+,——(" '"A")„,= finite,

owing to the choice of (6.13).
It is not hard to prove that (g„„')„~i is likewise free

of divergences if the renormalization constant Z3 is
defined as

(Zg) i,+2—— iLi,—(k=O, 1, , I—1),

where Li, is given in (5.26). This completes the proof.
The success of the renormalization in the present case

seems not surprising if one takes account of the follow-
ing situations.

As was emphasized in Sec. 4, the singularities of the
Green's functions G' and g' in a curved manifold are
exactly the same as those of S" and D~. Consequently
the singular parts of the kernels Z and I' of the integral
equations (4.2) and (4.4) have the same nature as those
in a Bat space-time. In other words, these singular parts
are proportional to the 5 function or its derivatives (of,
at most second order). This local character of the singu-
lar parts enables one to apply the principle of equiva-
lence which, by a suitable general coordinate trans-
formation, can reduce the present problem to the
conventional one with no gravitational e6ect in the
vicinity of the world point concerned. The result that
the mass renormalization bnz in the curved manifold is
exactly the same as that in a Rat space-time shows that
the identity of the inertial mass with the gravitational
mass is also true for the renormalization part of the
mass.
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