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Theory of Ferromagnetism and the Ordering of Electronic Energy Levels
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Consider a system of E electrons in one dimension subject to an arbitrary symmetric potential,
U(x&, .~,xz), and let E(S) be the lowest energy belonging to the total spin value S. We have proved the
following theorem: E{$)&E(S') if S&S'. Hence, the ground state is unmagnetized. The theorem also holds
in two or three dimensions (although it is possible to have degeneracies) provided U(x&,y&,si; ~ ~; x~,yes, s&)
is separately symmetric in the x;, y;, and z;. The potential need not be separable, however. Our theorem has
strong implications in the theory of ferromagnetism because it is generally assumed that for certain re-
pulsive potentials, the ground state is magnetized. If such be the case, it is a very delicate matter, for a
plausible theory must not be so general as to give ferromagnetism in one dimension, nor in three dimensions
with a separately symmetric potential.

INTRODUCTION

HIS paper consists mainly in the enunciation and
proof of a theorem about the ordering of the

energy levels of a system of interacting fermions. As
such, our primary concern is with mathematics. %ithout
striving to be pedantic, we have endeavored to con-
struct the proof with care and rigor.

Ke take advantage of the symmetry properties of
electron wave functions belonging to various values of
total spin-angular-momentum S. In certain cases we
are able to order the ground-state energies belonging to
the various spins without any explicit numerical calcu-
lations. This circumvents the great difficulties of the
iV-body problem, such as the applicability of perturba-
tion theory, etc.

Our theorem is not without some theoretical conse-
quences. Notably, whenever it is applicable, there can
be no ferromagnetism unless one postulates explicitly
spin- or velocity-dependent forces. (The theorem does
not apply to electrons in a three-dimensional lattice
interacting with Coulomb or central forces; but con-
versely, correct theories of ferromagnetism should not
predict ferromagnetism for interactions which are
covered by the theorem. ) However, as the mathematics
stand quite independently of such applications, we
shall defer further considerations of the physical conse-
quences of this work to the end of the paper (Sec. IV).

In Sec. I we shall state and prove the theorem for a
one-dimensional electron system. In order to pass to
higher dimensions, it will be necessary to prove further
theorems on one-dimensional systems which have no
direct relevance to fermions. These will be discussed in

Sec. II. Section III will contain the proof of our theorem
for certain specialized problems in two or more dimen-

sions. Ke have added an Appendix on an analogous

theorem for certain one-dimensional chains of three-

dimensional atoms; the proof uses a different technique
from that in Sec. I, insomuch as we switch to the delta
function (or lattice gas) representa, tion and use second
quantizati~)».

As a, preliminary, we sllould like to recall a ~vell-

known theol eITl on (.he tlvo-fcl. mioll pl oblem, proved

r'+= C ~(rr, rs)((++)$, (3)

where 4» is antisymmetric. In both cases the symmetry
property of 4 is determined by the Pauli principle
which states that 3f~+ must be antisymmetric.

Now if the ground-state wave function were 5= 1,
consider the trial function obtained by taking the abso-
lute value of C~,

o'p=—l~ IL(+—)—(—+)3,
which has S=O and satisfies the Pauli principle. 4~ is

the spatial part of the 5= 1 ground-state function. It is

rea, dily verified that the variational energy of 0% is the
same as that of the supposed ground state, t'0' (we
shall return to a proof of this in Sec. I). Thus, by

'I'he authors believe this theorem is due to F,. P. . Wigner.'-fi' [2)rs = 1.
3 We shall use the notation q~8$ for a function with a definite 5

and M value; "~P if it has only a, definite 5 valu«; and, i~/ il it lias
only a, definite .!ll va. lue.

many years ago. ' Consider the general two-particle
Hamiltonian' (in any number of dimensions)

&=pP+ys'+ V(ri, r2),

where V is any symmetric potential. That is to say, the
particles may interact with each other and/or with an
external potential, the only proviso being that no spin-
or velocity-dependent forces are present. The boundary
conditions can be anything so long a,s they are homo-
geneous. Since the total spin 5 is a good quantum
number, the ground state is either 5=0 or 5=1.The
theorem states that the ground state always has 5=0,
a statement borne out by the hydrogen molecule, for
example.

Since V is real (hence the necessity for excluding
velocity-dependent forces) the eigenfunctions of H are
real. An eigenstate ~8%' with 5=0 must be of the form'

o'+=& s, (rr, r.)f(+—) —(—+)],
where 48„ is a symmetric real function and where we
have used an obvious notation for the spin part of the
wave function. Alternatively, a state with S=1 (and
M= 1, for example) must be of the form
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fc~lNctto 0&4 a6$1/RENPE) 1t follows that thele 1s always an
S=O eigenfunction having an energy at least as low as
the lowest S= 1 function. In fact, as we shall show later,
the trial function given above cannot be an eigenfunc-
tion unless V is pathologic (e.g. , a repulsive core in one
dimension). Thus, if L~'(5) denotes the lowest energy
belonging to a given S value, E(0) &E(1) for two
particles.

This paper is an extension of the two-particle theorem
to an arbitrary number of particles. We are able to do
it completely for one dimension, and in certain cases for
higher dimensions. The general result is L'(5) &E(5+1).

I. THE ONE-DIMENSIONAL SYSTEM

We start with the general Hamiltonian'

N g2

H = —P +V(xi, ,»),
i=i gg

where V is real and symmetric in the X variables
x&, ,xN. Otherwise, it is completely arbitrary. The
boundary conditions may be any of the following:

(i) If the particles are in a "box" (i.e., 0&x~&L),
then 4=0 if any x;=0 or I.;

(ii) the same as (i) except tha, t 8+/Bx;=0 if any
x;=0 or I.;

(iii) if —~ &x,&~ or 0&x;&~, then we restrict
ourselves to square integrable (bound state) wave
functions, assuming these exist. Periodic boundary
conditions are excluded, for they require a slight
modincation of the theorem and a somewhat lengthier
analysis.

Although H does not contain the spins explicitly,
every eigenfunction belongs to a definite S value, which
may take on any of the values X/2, (1V/2) —1, , 0,
or ~. If we denote the lowest or ground-state energy
belonging to a given S value by E(5), then the theorem
to be proved is

Theorem I. If S&S', thee E(5)&E(S') Nnless V is
pathologic, ie which case E(S)&E(5').

The term pathologic potential will be de6ned in the
sequel.

In order to prove this theorem it is first necessary to
characterize the spatial part of a wave function of
space and spin. To this end, let »%' be a wave function
satisfying the Pauli principle and having a definite spin
azimuthal quantum number M. (That is, 5, jr@'=M i',
where S,=P;=P S.'.) Then is+ may be expanded in the
complete set of spin functions having the M value in
question. The coe%cients of the expansion will be
spatial functions. Thus

M+ Ej Aj(&lq' ' 'px)Gj
where G;M is a spin function of which a typical one is

G ~= (—— ——++ ++)
E—p

where the notation is meant to imply that C is anti-
symmetric in the variables x&, . , x~ aed in the
variables x~~, , xN.

(d) Given any spatial function having the symmetry
properties of (9) above, it may be used to generate a
nonvanishing Pauli function such as is% =—P„(—)i'

X (pC) (pGiM), where the summation is over all permu-
tations p of the E particles. If C is an eigenfunction of
H, then so is M%'.

The next question to consider is what further condi-
tion must we impose on jjC' in order that ss+ have a
definite 5 value (i.e., 5' iss+=5(5+1) ass%' and
S, sj O'=M sj @). For simplicity, let us take M&0
(i.e., p&lV/2), in which case theSvalueof +inEq. (6)
could be any of M, M+1, ~, S/2, or a mixture of
these. Suppose we wish S=M. Then, a necessary and
sufhcient condition is 5~ js 4=0 whereS~=P PS+'.
The operator S+ acts on the G;M functions; acting on
G~ it generates G~M+' among others. But other G; 's

also generate G&M+' and if one sets equal to zero the
coefficient of G~M+' in S~ M 0', one finds

(e) A necessary and sufhcient condition that ~%
be is~@ is that is~C (the coeKcient of Gi~) be of the
form (9) and that the bar cannot be moved to the left.
By this is meant that »MC cannot be antisymmetrized
with respect to the variables x„, . , xN. In other
words~

N

(1—g E ) sr'=—0 (10)

where P„,; is the simple transposition permutation of
sy and xg.

(f) If the bar can be moved to the left once, but not
twice, then + is, in general, a mixture of +'M% and
MM%, and so forth.

(g) If M&0, we can always lower the M value of 4
by S M%'=const M ~4/0, and hence the bar can
always be moved to the right. In other words, if a
function is of the form (9), the bar can always be moved
to the right if p&X/2, but it cannot always be moved
to the left. This is a known result of the theory of the

p -=- (W/2) —M

(i.e., particles 1—p have spins down, the rest being up).
Since ~~%' is a Pauli function and since the various G„"I
are obtained from each other by a permutation of the
spin variables, it follows that the sjC j are related to
each other by a permutation of x~, ., xN. Moreover,
the following is easily verified:

(a) If any, jCj=—0, then all,&Cj—=0.
(b) If 4' is an eigenfunction of H with energy L'",

then so is each jjC j separately.
(c) AC i (henceforth to be denoted simply by ~) is

nonvanishing and is of the form

~=C'(~i, *~l son+i )»)~ P= (&/2) —M) (9)
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permutation group which we have proved by recourse
to the more generally known theory of angular
momentum.

(h) Any function satisfying (9) and (10) may be
used to generate a nonvanishing ~Is@ as in (d) above.
These remarks tell us that the higher the S value of
8C, the more antisymmetric it must be. For instance,
a totally antisymmetric function always belongs to
S=X/2, but to any M&1V/2.

Now since S and S~ commute with H, E(S) is
degenerate with respect to M value; i.e., H»~%'
=E(S) ia. @ implies there exists P+ with the same
eigenvalue, where j can take all 2S+1 values between
S and —S. XVe shall therefore prove Theorem I in the
following manner: Let E(M) and ia@ be the lowest
eigenvalue and eigenfunction, respectively, of H be-
longing to a given M value &0. We shall show that ia@
is 3r~@ and hence that E(M) =E(S).We shall further
show that E(M) &E(M+1) unless V is pathologic. In
other words, we shall show that the lowest eigenfunction
of H of the form (9) also satisfies Eq (10)..

Let R be the full domain, all 0(x;(I.Lassuming we
use boundary condition (i) or (ii) for example), and
define R~QR by

E».. 0&F1& &x„&1.
alld

0&x 1« . . x~&J.
Consider the Schrodinger equation in R»,.

(12)

with boundary conditions:

q =0 on the boundary of R». (13)

Ke can now define the term "'pathologic potential. "
It is a potential with a sufficiently strong infinity to
cause yp to vanish inside E». An in6nite repulsive core
is an example. Thus there is, in general, no ground-
state degeneracy, but even if there is, one of the eigen-
functions satisfies (14).

Let I' be a perniutation of the variables xi, ., x„
and Q a permutation of the variables x„+i, , x~, and
define PQ(R,ir) as the domain defined by the appro-
priate permutation of the variables in condition (11).
All the domains PQ(R,v) are disjoint, except possibly
for the boundaries, and together span R. Let p be any
solution to (12) and (13) and define the function C

everywhere in E by

C=(—)'(—)'PQ~ in PQ(R~).

Because of the boundary conditions, (13), it is easily
verified that C is continuous and has a continuous de-
rivative everywhere in R, and hence satisfies

HC =EC in E.

Conversely, any eigenfunction of H in R that satisfies
Eq. (9) satisfies (12) and (13) in Rir. Thus if &po is the
ground state of (12) and (13), C, as defined by (15),
is the ground state of H belonging to M.

Now consider

q, k =P+1
q&k

(Except for a totally symmetric Gaussian factor, this
is the solution to the problem of noninteracting one-
dimensional electrons in a harmonic oscillator poten-
tial. ) The function ia~y clearly satisfies (9), (10), and
(14). It is easily verified that if ia.ef and ia.e'g are any
two functions having different S values but the same
M value, then

oi'f ii'g= P!(&'—P)! oi for g,

It is well known that the ground-state functioi1 (pp of
Eqs. (12) and (13) satisfies

q ()&0 in E». (14)

For suppose (14) were not satisfied and consider
&p= [ ooo). Now (oo) p)= (yo) go) and H y=Eq every-'
where except where pp vanishes, at which points q is
continuous but has discontinuous derivatives. Thus
Hq =E&p+o functions, the latter occurring when
vanishes. Hence

o (Ho)=E v o =E(o
I v).

(p=-,'iV —M) (18)

Therefore y satisfies the same boundary conditions as
pp and has the same variational energy. This implies
that among the ground states of (12) and (13) (assum-
ing the possibility of a degeneracy) there is at least
one satisfying (14).The following are also true, although
the proof is tedious:

(i) If V is bounded, then in fact qoWO inside Rji.
(j) There can be no degeneracy unless &po=0 inside

+».

and further the right-hand side of (18) vanishes if
S~S'. Since»»x and the ground state of H belonging
to M, orq, are both non-negative in Ror, Eq. (18) im-
plies that »q is not orthogonal to»»x in E. If the
ground state of (12) and (13) is nondegenerate, then
»p can belong to only one S value and this S value
must therefore be S=M. If one wants S=M+1 or
higher, it is necessary to go at least to the first-excited
state of (12) and (13). In case of degeneracy, at least
one of the ground-state functions belongs to S=M.

This completes the proof of Theorem I.
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II. GENERALIZATION OF THEOREM I, AND
THE "POURING PRINCIPLE"

Thus far we have considered eigenfunctions of II
which have the symmetry property (9), the only al-
lowed symmetry class for constructing a Pauli function
of space and spin. But there are other symmetry classes
with their corresponding eigenfunctions —the totally
symmetric function, for example. The latter is a Bose
function and plays no role for fermions, unless only two
pa, rticles are involved.

The most widely known classification of symmetry
classes is due to Young; but we shall find it convenient
to use a slightly modified version of his scheme. 4 It is
well known that every function of 2 variables can be
written as the sum of an antisymmetric and a sym-
metric function which a fortiori are orthogonal to each
other. Thus,

(19)

FIG. 1. The tab-
leaux corresponding
to several di6erent
symmetry classes for
eight particles. By
the pouring principle
E(a) &E(c) and E(b))E(c), but one can-
not say whether (a)
or (b) has the lower
energy. Note that
(c} happens to be
the conjugate of (a).

(c)

(b)

The operator 1—p» is said to antisymmetrize g, while
the opera, tor 1+p» symmetrizes it. If p is a function
of xr, . , x&, the operator 1—p» antisymmetrizes it
with respect to the variables x~, x2, the operator
(1—pts —pss)(1 —prs) antisymmetrizes it with respect
to xr, xs, xs, and so forth. It is quite possible that @
may be antisymmetrized with respect to x& and x2, but
not with respect to xr, xs, xs, (xr —xs)xs is an example
of such a function.

Now consider a function g of the variables xr, . . ., xy
which is of the form

4&(xlp
' '

I

' 'xi' nr ns I
—xN——nr —ns+1) )xx—nr I

x&—»+4 ' ~x~) ~ (20)

or any of its permutations, by which we mean that it is
separately antisymmetric in the eI variables x&,+&,

~ . , x~ and in the e2 variables x~ „, „,+~, , x~ „,
and so forth, where e~&e2& . . The bars are to be
regarded as unmovable leftwards'; e.g., @ cannot be
antisymmetrized with respect to xz „„~,x&. The
function &f is said to belong to the symmetry class
characterized by the numbers e&, ss2, etc. For example,
a totally symmetric function has S "boxes" with one
variable in each, whereas an antisymmetric function
has 1 "box" containing all X variables. It is possible to
prove the following properties of g:

(a) Any bar may always be moved to the right (i.e.,
the antisymmetrization procedure which would move
the bar to the right gives a nonvanishing result) if the
number of variables to the right of the bar is greater
than the number to the left.

(b) The largest group of variables with respect to

'See, for example, D. E. Rutherford, Substitutiona/ Analysis
(Edinburgh University Press, Edinburgh, 1948). Young's scheme
proceeds by symmetrization, instead of antisymmetrization as
used here.

s We have departed slightly from the notation in Eq. (9). For-
merly the bar was regarded as possibly movable leftwards.

which g may be antisymmetrized is nr. From among the
remainder, the largest group would be e2, and so forth.

(c) If p and P belong to two different symmetry
classes, they are orthogonal.

(d) For a function of the form (20), the antisym-
metrization operator which moves a bar to the right
has as its unique inverse the operator which moves the
bar to the left. Therefore, if P is obtained from p by
moving a bar to the right, it is said to belong to the
same class as @.

From these remarks we see that by a combination
of antisymmetrization and orthogonalization, one can
reduce an arbitrary function to a sum of orthogonal
functions, each belonging to a different symmetry class.
The function in each symmetry class itself is decom-
posable into a sum of functions of the form (20) and its
permutations, although this last decomposition is not
unique.

There is a convenient pictorial representation for the
symmetry classes called taMeaN illustrated in Fig. i.
One draws a column of e~ boxes. To the right of it, and
starting at the same height, one places a column of e2
boxes, and so forth. A function of the form (20) is fur-
ther designated by inserting the appropriate variables
in the appropriate column, the order of the variables in
any column being immaterial. It will be seen that the
lengths of the rows decrease from top to bottom; it is
therefore possible to de6ne the conjugate to a symmetry
class to be the one in which rows are replaced by
columns. Thus (a) and (c) in Fig. 1 are conjugate. Ke
shall return to this later, however.

Returning to the problem at hand, it will be appreci-
ated that since H is permutation-invariant, every eigen-
function not only belongs to a definite symmetry class,
but is of the form (20). Theorem I, then, tells us about
the order of the ground-state energies of functions of
the one- and two-column class. Under certain circum-
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stances it is possible to extend this theorem to more
than two-column classes. To do this we need one more
concept, which we shall call the "pouring principle. "

Def'nition If. a and P are two different symmet. ry
classes, it is possible to pour a into p if the bars in the a
function can be moved to the right Lsubject to (a)
abovej so that one gets a function antisymmetric in
the same groups of variables as the P function. More
formally, if the n tableau has the columns e&&~s2&,
and the P tableau has the columns ni'&nz'&. , then
we require that ni&ni', ' (ni —ni')+nz&nz', (ni —ni'

+nz —nz')+nz&nz ' etc. , where any missing columns
are to be regarded as having sr=0. If n can be poured
into p, we denote this fact by a —v~ p.

Thus, in Fig. 1, (a) can be poured into (c) and (b)
into (c), but neither (a) nor (b) can be poured into the
other. Note that if a can be poured into P, then the
conjugate of P can be poured into conjugate of a. Ke
can now state the extension of Theorem I in one
dimension.

Theorem II. Let a aizd P be two symmetry classes and
let E(a) and E(p) be the respect~ve ground state en-ergies

of eigenfunctions of H in the two classes If a. can be

poured in p, then E(a))E(p) unless V is pathologic, in
which case E(a)&E(P).

The proof is exactly the same as for Theorem I. One
antisymmetrizes the o. function until it matches the
bars of the P function (a process which does not change
the energy of the a function). Next one defines the
fundamental region in analogy with (11) above and
shows that the ground-state function in this region
is positive, and is therefore not orthogonal to a deter-
minantal function which is positive in this region and is
known to belong to the P class.

Corollary: Consider'

N Q2 M

+V(&i, ,'";yi, ,y,v). (21)
i 1 pl~.2 i=1 gy.2

If V is symmetric in the x variables, then every eigen-
function belongs to some symmetry class under per-
mutation of these variables. Theorem II obviously is
true for this more general problem. If, moreover, V is
also separately symmetric in the y variables, although
of no particular symmetry under the interchange of an
x with a y, then every eigenfunction falls into some sym-
metry class o. in the x variables and some class e' in
the y variables. If two functions are characterized by
(a,a') and (P,P'), respectively, then E(a,a')) E(P,P') if
a can be poured into P and a'into P'.

III. SEPARATELY SYMMETRIC POTENTIAL
IN HIGHER DIMENSIONS

Ke shall now turn to the proof of the extension of
Theorem I to higher dimensions when the potential is
separately symmetric. Only two dimensions will be ex-
plicitly considered, for the extension to three dimensions
is a corollary. The general fermion Hamiltonian is of

the form (21) with M=X and V is a symmetric func-
tion of the pairs x~, y~, etc. A separately symmetric
potential is one for which V is, in addition, separately
symmetric in the x variables, and in the y variables.
The theorem to be proved is:

Theorem III. If V is separately symmetric and ifS)S', theiz E(5)&E(5'). (Note that Theorem III is
not quite so strong as Theorem I, because the equalities
can occur without pathologic potentials. )

Before discussing Theorem III, it is necessary to con-
sider the "Kronecker product" of two tableaux. Sup-
pose we have a function of the x's and the y's which is
of a definite symmetry class n in the x's and a definite
class o.' in the y's. Let us consider this function together
with all the functions derived from it by permutations,
and let us ask if there is some linear combination of
these functions which is of a definite symmetry class,
p, in the iV pairs of variables (x;,y,). If so, which p
classes can be generated and how many independent P
functions are there? LBy independent P functions we
mean functions which cannot be obtained from each
other by permutations of the (x;,y,) pairs. ) This ques-
tion is analogous to the problem in the theory of angular
momentum of combining J~ and J2 to give a resultant J.
There the answer is given simply by the Clebsch-
Gordan theorem: All Ji+Jz) J&~Ji—Jz~ may be
produced once and only once. Unfortunately, there is
no such simple rule for tableaux except in two special
cases: when P is symmetric, or antisymmetric (i.e.,
one row, or one column).

I.emma I. To generate a totally antisymmetric func-
tion in the pairs x;y;, it is required that the x and y
tableaux a and a'be conjugates. (To generate a totally
symmetric function in the pairs, the x tableau must be
the same as the y tableau. )

This is a well-known result from the theory of permu-
tation groups. 4

As we saw in Sec. I, the spatial part of a Pauli
(antisymmetric) function of definite 5 must be of the
two-column type, where ni=(1V/2)+5 and nz ——(1V/2)—S. Sy Lemma I we are led to believe that spin func-
tions of a given S are of the conjugate two-row type.

&x
This is indeed the case. There are

~
different Gzr

kp
functions, and these will be seen to generate all two-row
tableaux in which the first row is (E/2)+M or longer.
Because the sr'; in Eq. (6) are all derivable from each
other, they will not all be linearly independent. The
6;'s therefore appear only in certain definite linear
combinations; if q is of the two-column type, these
linear combinations can be shown to be of the conjugate
two-row type.

Any Pauli eigenfunction of H of definite S value is
thus seen to be the triple Kronecker product of a func-
tion belonging to the n and n' class in the x and y vari-
ables, respectively, and of a two-row function of the spin
variables. The resultant must be a one-column function
in the triplets (x;,y;,s;), where s; is the spin variable. The
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problem can be viewed in two ways: a Kronecker
product of e and 0.' must be of the appropriate two-
column type; or a Kronecker product of n and the
two-row spin function must be conjugate to 0.'.

To prove Theorem III, we take the latter view. Let o.
and 0.' be the tableaux of the spatial function, giving
the lowest energy for a given S value and suppose 0,

'

is (c) of Fig. 1, so that the (x;,s,) class, which we shall
denote by P, is (a) of Fig. 1. A typical representative,
X., would have each of the pairs (x,,s,) in some box of
the (a) tableau and each of the y; in some box of the
(c) tableau. Suppose x has (xi,si), , (xq, sq) in the
first column, (x6,ss) and (x7,s7) in the second, and
(xs,s8) in the third. It will be seen that x may be re-
garded as a five-particle one-dimensional Pauli function
in the first five pairs, or as a two-particle Pauli function
in the next two pairs.

Now, to prove Theorem III we need the following
lemma:

Lemma II.Let y be an eigenfunction with the follow-
ing properties: (1) it is of the o. and n' symmetry classes
in the x and y variables, respectively, and is in fact
formed from the lowest eigenfunction of II having these
classes; (2) in the (x,s) pairs, it is antisymmetric in the
same sets of variables as a function of class P, the con-
jugate of n', but it is not necessarily itself of t;he class P;
(3) considered as a function of each of the sets of (x,s)
pairs in which it is antisymmetric, it has a definite S
value (i.e., each column has a definite S value). These
5 values we shall call SI, S2, . Let S be any total
S value for all the particles which can be compounded
from S&, S2, - by the usual Clebsch-Gordan rule.
Then E(S)&E(n,n').

Proof By applyin. g the appropriate S~ and S
operators of each column the appropriate number of
times to y, we can generate functions having all possible
M values in each column and which still have the same
energy as p. These functions are then to be added to-
gether with the appropriate coe%cients to generate a
new function, pQO having the required total S value.
8x has the same energy as x. Since the total S' operator
commutes with all permutations, 8z may be written as
the sum of functions belonging to de6nite symmetry
classes and all having the given S value. One of these
tableaux may be P itself, in which case the lemma is
proved. If not, then since 8x is already antisymmetric
in the same sets of variables as the P tableau, at least
one of the component tableaux, say p, must be such
that y —i'—+P. To make a Pauli function out of this

component we should need a function whose y class is
y+, the conjugate of y. But y+ satisfies n' —"~y+, and
therefore E(n,p+)&E(n,n'). Thus, if we carry out the
same procedure again with the ground-state function
of the (a,y+) class, we shall be able to construct a Pauli
function having the S value in question and with an
energy lower than E(n,n').

Corollary. The ground-state function of a given S

value has the properties of x above, and, moreover,
belongs to the symmetry class P in the (x,s) variables.

Proof. If not, then by the procedure of the above
proof, we should either be able to lower the energy by
changing the y tableau, or else we should end up with
the function 8x having the properties stated in the
corollary.

Now we consider the proof of Theorem III. The
lowest eigenfunction having a given S/0 value is the
sum of permutations of a function 8X having the
properties stated in the corollary and therefore has the
S values Si, S2, etc. , in each column of P, the (x,s)
tableau. There are three cases to be considered:

(1) If S is not the minimum that can be compounded
of S~, S2, etc., then we can construct a function of spin
S—1 and with at least as low an energy.

(2) If Si, S2, etc., are already the lowest possible
(i.e., either 0 or 2) then (1) above is transparently true.

(3) If S is indeed the minimum of SiO+S20+, etc. ,
then lowering some one of these S; values, say S&,
would permit us to create a function of total S equal
to S—1. But there does exist a function having a lower
energy than 8p and having the properties of g listed in
Lemma II, except that the first column has the value
Si—1. To see this, we regard the function having the
0. tableau in the x's as being the sum of functions each
belonging to definite symmetry classes in each of the
groups of x variables appearing in each column of P.
One of these sets of tableaux must be the respective
conjugates of S~, S2, etc. Looking at x from this point
of view, it is clear from the results of Secs. I and II
that we can lower one or more of the S; at will and at
the same time lower the energy.

This completes the proof of Theorem III for two
dimensions; the extension to higher dimensions is
obvious: Ke simply treat the s;, z; pairs in the same
manner as the spins above. Let us remark, however, on
the reason for the lack of strict inequality as we had in
Theorem I. Suppose the lowest function of S=i had
an (x,s) tableau such as (a) in Fig. 1 with Si=Sq= 2
and S2=0. Since each column already has its lowest
possible S value, the only way in which S=O could
have a tower energy is by having an (x,s) tableau con-
taining only columns of even length, such as (b) of
Fig. 1, with 5=0 in each. But it is not possible to prove
that such a function has, in fact, a lower energy, and
therefore it is possible for the ground state as well as
for excited states to have a degeneracy in more than
one dimension. (This degeneracy can be estimated
never to exceed E*, in three dimensions. It is therefore
not an extensive property of the system. )

IV. ON THEORIES OF FERROMAGNETISM

Although we could extend them to other particles
obeying various statistics, the results of this paper
apply most directly to the problem of interacting
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electrons, and as such have some bearing on the theory
of ferromagnetism.

It is well known that ferromagnetism must be a
consequence of the electronic interactions, for a non-
interacting electron system always obeys the theorem
E(S)&E(S+1), regardless of the external potential.
This is antiferromagnetism, or at most, paramagnetism.
Ferromagnetism is assumed to occur when the ground
state belongs to a nonvanishing S whose magnitude is
proportional to the size of the system. It is also well
known that the direct magnetic spin-spin forces are
negligibly weak, so that the spatial forces in conjunc-
tion with the Pauli principle are held to be responsible
for the phenomenon.

The simplest realistic problem which offers some
hope of being soluble is the linear chain of three-
dimensional atoms. The atomic states are supposed
known when the atoms are infinitely far apart, and the
problem is to find the new configurations when overlap
becomes important. Peierls' considers this very problem
in the chapter on ferromagnetism in his book. The
approximation which he makes is that there is only one
orbital state per atom, and he concludes that the
electronic interactions can lead to ferromagnetism. How-
ever, recent and more realistic calculations' ' on such
chains have proved the contrary to be true. Also in
Sec. I we showed that under no circumstances can a
one-dimensional electron system be ferromagnetic with
only space-dependent forces; this includes the special
case of a chain of one-dimensional "atoms. " In the
Appendix we also treat a model applicable to an ideal-
ized chain of three-dimensional atoms, with similar
results. It therefore seems that a linear chain can be
magnetic only if the individual atoms have orbital de-
generacy, that is, if the single atom displays a magnetic
or truly three-dimensional character; but it is not
known whether this is a sugcsent condition for ferro-
magnetism to occur in a linear system.

Our theorem has no relevance to atomic magnetism
per se (Hund's rule) because it does not apply to the
central force problem in three dimensions. But if we
consider ferromagnetism to be an extensive property of
a solid, the theorem does have some relevance. For we
shall show that it is not merely sufficient to have (i) a
band structure, (ii) strong repulsive interactions, and
(iii) three dimensions, to produce ferromagnetism. Ke
shall base ourselves on the results of Sec. III.

Suppose, for example, that highly magnetized states
of a noninteracting set of electrons lie rather close in
energy to the 5=0 ground state. If one introduces a
repulsive interaction potential into the problem, and
treats this by lowest-order perturbation theory, certain
terms called the "exchange integral" will favor the

'R. E. Peierls, Quantum Theory of Solids (Oxforcl University
Press, New York, 1955).

R. K. Nesbet, Phys. Rev. 122, 1497 (1961).
L. F. Mattheiss, Phys. Rev. 123, 1209 (1961).
David I. Paul, Phys. Rev. 118, 92 (1960), and Phys. Rev.

120, 463 (1960).

magnetized states. To lowest order, one may find that
the magnetized states have crossed the 5=0 state, and
the interacting system is supposed to become ferro-
magnetic. But this conclusion would be fallacious if
the effect were cancelled by second-order or higher-
order terms in the perturbation series (or if the per-
turbation expansion did not converge). Indeed, we now
give an example based on the previous section, which
is a case in point. Consider, for example, the unper-
turbed Hamiltonian to be

Hs ——Q PP+Q, LU(x,)+V(y;)+ V(sf) j. (22)

Let V(x) be a periodic potential so that one-electron
eigenfunctions are Bloch functions. The potential can
be chosen such that the bands display the usual de-
generacies and other features of motion in a three-
dimensional cubic lattice.

If now we introduce an interaction, say

1
(23)

or some other repulsive, separately symmetric inter-
action, the total Hamiltonian Hs+Hr is still subject
to our theorem and is rot ferromagnetic. (The theorem
does not exclude paramagnetism, however, for the
ground state might be degenerate with states of non-
vanishing spin angular momentum. ) But what are the
conclusions we would reach if we were to apply first-
order perturbation theory to H&? This amounts to
calculating the expectation value of Hs+Hr using the
Slater determinants appropriate to the unperturbed
problem. The unperturbed functions with the most
spatial nodes are better, variationally speaking, than
those with fewer nodes for sePcieetly large g', and we
might be led to conclude that there exist some values
of S such that E(S)(E(0), which is erroneous. It is
therefore clear that we cannot always trust perturba-
tion theory to properly order the levels, for when it is
carried out only to finite order, it might be more ac-
curate for some values of S than for others, depending
on the particular features of the problem. The same can
be said of variational calculations.

A notorious example of the above is the low-density
electron gas with Coulomb interactions which is in a
background of compensating positive charge. The ex-
pectation value of the Hamiltonian using the unper-
turbed plane-wave states is lower for the ferromagnetic
configuration than for the nonferromagnetic ones, at
suKciently low density. But perturbation theory di-
verges for this problem, " and this ferromagnetism is
indeed fictitious. A recent and accurate calculation" by

'OM. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
(1957).

"W. J. Carr, Jr., Phys. Rev. 122, 1437 (1961).
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Carr leads that author to conclude that at all but the
lowest densities the electronic spins are ontiferro
magrIeti cally aligned.

In concluding, we should recall that our theorem is
not valid if there are explicitly spin-dependent forces,
or velocity-dependent forces. In the latter case, the
eigenfunctions are not real and our method of proof
does not apply. Nor does it apply to the Coulomb po-
tential which governs real electrons. But it does serve
as a warning that the criterion for ferromagnetism must
be rather detailed, and not so broad as to violate the
results of this investigation.

We have also found it possible to order many of the
energy levels of the Heisenberg Hamiltonian PE;;S; S,
(where the S, are spins on a lattice in one, two,
or three dimensions), by ana, logy with the calculation
in the Appendix. These results will be reported in a
subsequent publication.
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APPENDIX. ONE-DIMENSIONAL LATTICE GAS

We are interested in a theorem analogous to the one
in the text, for a chain of three-dimensional atoms. This
problem cannot be solved in all generality, therefore we
are led to consider the following tractable model.

(a) Ke use a truncated Hamiltonian such that only
valence electrons are mobile.

(b) Each atom in the linear chain has only one
valence state (capable of double occupancy, however,
because of spin degeneracy).

(c) The atoms are at a distance d from their nearest
neighbors. This distance is such that only nearest™
neighbor overlap is important.

(d) The matrix element for a one-electron hop from
site j to j~1 is E, a constant. Two-electron hops and
exchange e6ects are neglected. This is equivalent to

(e) assuming that aside from the "hopping" matrix
elements the Hamiltonian is diagonal, with an energy
calculable by specifying which atoms have empty
valence states, which have singly occupied valence
state, and which have doubly occupied valence states.
These assumptions lead directly to Eq. (A4).

Our model reduces, in a certain limit, to the one-
dimensional problem of Sec. I. The Appendix provides
therefore an alternate proof for Theorem I.

To see this, let us consider one-dimensional space as
consisting of discrete points labeled i=1, 2, , Ã,
separated by a distance d. The length of the chain is
therefore Ed. Next, introduce the second-quantized
Fermi operators c;, and ci,~, where s= "up" or "down"

If we transform to running waves,

8 —+ 2E P(l coskd—)cg,tci„

+Q Vgcgyga ckscg —gs' ck's'q (A.3)

where V, is the Fourier transform of V(li —jl). In the
limit E '= d =E '= 0 this reduces to the problem of a
one-dimensional electron gas with two-body forces.
The Hamiltonian (A2) is a special case of the problem
we shall now consider,

II= Eg(c,+i,,—t c;,.+H.c.)+U( .rt; . ), (A4)
2, 8

where V is an arbitrary symmetric function of the
operators n; = (c,etc;t+—c;etc;i). This Hamiltonian satis-
fies (a)—(e), is identical with the general Hamiltonian
of Sec. I in the limit K:=d=0, and can be shown to
commute with the spin operators which, in our new
representation, are

Sg= g Q(cii cfg cii cia)q Sg=kz Q(cit cii cfi cig))

and
S.=-,' Q(c, t tc, i, +H.c.). (A5)

The problem is soluble because there exists a trans-
formation to Pauli (pseudo-spin) variables, in which
the Schrodinger equation can be reduced to a series of
algebraic equations. We define the Pauli operators as
follows:

b;i, =c;i exp(gri Q c—, i tc, g },

b, fi =c,t exp(gr~'LP c;—pic, i++ c,etc, t7},

(A6)

7=1 7'=1

The b;~'s are given by the Hermitean conjugates of
these dining equations. All Pauli operators commlte
except b;, and b;,t, (for all i and s), which anticommute:

b;,tb;,+b;,b;,2= 1.

In terms of these new operators,

(A7)

8= —KQ(b;+i, ,t b;,+H c )+V( m;. .. ), (A. g)

where n;=b, rtb;t+b;itb;i. The Hamiltonian remains
simple under this transformation only for this very
special case of a linear chain, and nearest-neighbor hops.
We now assume E&0. Otherwise, E can be made posi-
tive by a trivial canonical transformation.

according to the spin coordinate, and

ga'7+= l: ~' t '7+= 'g «'
Now consider the Hamiltonian

If Q(ci+is,c«+c~ i, ~ c—'s 2cig c;c)
2, 8

+ 2 V(li j I)c'.—"-C., TC, , (A2)
2, 7, 8, 8I
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Also, for the moment, let us pretend that the number
of electrons is even, and is 2p. Obviously, p cannot ex-
ceed E, the number of sites, as each site can accom-
modate two electrons at most.

U any f =0, then by Eq. (A15) all f&( ) also vanish.
Since by repeated application of H to any given state,
all other states are eventually reached, we can con-
clude that all f vanish if some one f~ vanishes.
Therefore

Ground State in M=o Subsyace f &0 for all n. (A16)

vy. = v.y., ) v.
~
& (A10)

then Schrodinger's equation can be expressed in
terms of the amplitudes as

—& Z~(-) f"'= (Eo V-)f — (A11)

The index P {n) runs over those configurations for which

(l (-) l~- Vl-)« (A12)

Ke parenthetically observe that a variational function,

(A13)4=2 g ((-,

has variational energy 8',

&EZ—g"g")+& v-(g )'
W= )Eo. (A14)

Clearly, all nonzero amplitudes f can be chosen posi-
tive in the ground state. For if they oscillate in sign,
define a trial function by g —=

~ f ). Then by inspection
of (A14), W &ED. This is a contradiction unless

is also a ground-state eigenfunction. Therefore,

—&Z((-)If"'I=(J-'o—V-)If I (A»)

States of all allowed spin angular momentum can be
rotated into the M=O subspace with no change in
energy. The ground state here is therefore the ground
state of the Hamiltonian. The configurations which
form a complete set in this subspace have p electrons
with spin up and p with spin down. (A configuration
specifies which sites are vacant or occupied); for ex-
ample, if p = 1 and Ã = 2, the complete set of M =0
configurations is

4i=&it'fi~')o), 42=4~'f2~')0),
y3=&»'&~i'l0), and y4=&li f~)'I0).

The Pauli operators for different particles commute,
and therefore, the configurations can all be defined to
have the same sign for arbitrary ordering of the opera-

+ 2

tors. The number of distinct configurations is t=—

and we shall label them p, where n= 1, 2,
I,et the ground-state function be

A=K f 0-,

with energy Eo and real amplitudes f If we de.note
the eigenvalues of V by V,

(Ke note that Eo—V (0 for all n, since the ground-
state energy must lie lower than the most favorable
potential energy. )

Equations (A11) and (A15) are incompatible unless
all f have the same sign, for if we combine them, we
obtain

2 If")
I

=
I 2 f")), «r»l ~. (A17)

Hence )P'= &go. That the ground state is nondegenerate
follows from the observation that all other eigenfunc-
tions of II must be orthogonal to $0 and therefore must
have a change of sign, and therefore cannot obey
Eq. (A17).

The spin of po is found by noting that )po is Not

orthogonal to the ground state for V=O, because they
both contain all configurations of Pauli operators with
no changes of sign in the amplitudes. The ground state
for V=O can be found by inspection of (A3), and be-
longs to S=O. Therefore, the ground state belongs to
5=0 in general.

Ground State for M&{)

Hy a similar procedure, the ground state in any M &0
subspace is found to belong to S=M. Since each such
subspace contains all states of S&M, this automatically
orders the ground states belonging to the various values
of S, whether the number of electrons is even or odd.
Denoting by E(S) the lowest energy belonging to total
spin S, we have therefore proved the following:

Tkeorerrl, . E(S+1))E(S).
Note that the restrictions (a)—(e) preclude "double

hops, " which is related to so-called "exchange. " It is
therefore reasonable to assume that if ferromagnetism
is possible in a linear chain of the sort we have con-
sidered, that these neglected exchange matrix elements
would be responsible. However, very recent and accu-
rate calculations ' have shown this exchange mecha-
nism to be rather weak. Nesbet' finds that the direct
"exchange is small compared with the sum of the various
antiferromagnetic effects. " Mattheiss' finds that the
true energy levels of such a chain are accurately
approximated by the states of the Heisenberg anti-
ferromagnet with nearest-neighbor interactions. Finally,
Paul' also concludes that linear chains of atoms in s
states are nonferromagnetic. It would be interesting to
investigate whether an orbital degeneracy on each atom
could lead to ferromagnetism for the linear chain in
the same way as it appears to be responsible for the
magnetic moment of the 02 molecule.


