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The techniques of the sharp and rounded cutoff models for
elastic scattering have been extended to the calculation of nuclear
monopole and quadrupole excitation in the adiabatic approxima-
tion. In the case of scattering from nuclei with quadrupole de-
formations, a spheroidal coordinate system is introduced where one
of the coordinate ellipsoids coincides with the nuclear surface; the
wave equation separates outside the range of the nuclear potential.
Formal expressions and results of numerical calculations for the
cross sections are presented for a case where simple assumptions
are made about the functional form of the partial wave amplitudes
and where only terms linear in nuclear deformation are retained.
One limit of the form for the spherical partial wave amplitudes

I. INTRODUCTION

HE adiabatic approximation'™ is frequently a
useful and appropriate theoretical tool with which
to investigate inelastic scattering from nuclei. The ob-
served inter-relations between elastic and inelastic cross
sections are more easily understood through use of this
approximation*7 than appears evident with other pro-
cedures. It is noteworthy that the adiabatic approxima-
tion is particularly applicable to collective nuclear
surface excitations, since it appears that the low-lying
levels most strongly excited through inelastic scattering
are of this type.? Comparison between theoretical calcu-
lations performed with and without the use of the
adiabatic approximation have indicated that the range
of validity of the adiabatic approximation is wider than
a superficial study would lead one to expect.®?
When the adiabatic approximation is wvalid, the
amplitude for a particle to scatter from initial state a
to final state & may be written as

Tya(adiab)=(®s(e) [ £(kskaa) | Pa(e)), 1

where ¢(ks,kq,) is the exact scattering amplitude for

the elastic scattering problem (k,=k3) with static a.
Thus, both the problem of true elastic and inelastic
scattering reduce to a study of the elastic scattering
amplitude for fixed collective coordinates.
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leads to a sharp-cutoff model which goes over into the Fraunhofer
results for moderate and large values of the critical angular mo-
mentum. It is found that graphs of the excitation cross section (and
to a lesser extent the elastic scattering cross section) fall into a
single-parameter family of ‘“universal curves” when plotted
against (scattering angles) X (critical angular momentum-%). The
single parameter is (thickness of transition region in ! space)
= (critical angular momentum). No detailed comparisons with ex-
periment are made, but the model is capable of reproducing the
qualitative results of alpha-particle scattering at energies well
above the Coulomb barrier.

The most successful model for the description of
elastic scattering of nuclear projectiles from spherical
nuclei has been the optical model. For complex nuclear
projectiles such as alpha particles, however, the nucleus
appears, to a good approximation, as a sharply defined
absorbing sphere and thus a variety of extremely simple
models have also enjoyed fair success in matching the
elastic cross sections (particularly at low orders in the
diffraction pattern). Perhaps the most elementary of
these models is one familiar from the study of physical
optics, namely, Fraunhofer diffraction due to a black
circular disk.!12

A nearly equivalent model is the sharp-cutoff model*
in which it is assumed that the amplitudes of the out-
going partial waves n; undergo, at a critical angular
momentum L, a sharp transition from zero to their
value in the absence of an absorbing nucleus; for large
L, zero charge, and small scattering angles, the resulting
scattering amplitude is equivalent to the Fraunhofer
black-disk result. Generalizations of the sharp-cutoff
model, in which there is a smoothed transition in the
value of 7;, have been able to fit quantitatively even
large-angle elastic-scattering cross sections.!

It is not difficult to apply the Fraunhofer diffraction
treatment to an absorbing nucleus whose surface is de-
formed from spherical shape. The resulting scattering
amplitude will be a function of the (dynamical) col-
lective nuclear surface coordinates and thus, according
to Eq. (1), will lead to inelastic scattering. Drozdov? and
Inopin® introduced this procedure for the case of
ellipsoidally deformed nuclei and one of the present
authors? generalized the method to deformations of
arbitrary multipolarity. Exceedingly simple expressions
for scattering cross sections are obtained when two
further approximations are made in addition to the

1 See, for example, P. M. Morse and H. Feshbach, Methods of
Theoretical Physics (McGraw-Hill Book Company, Inc., New
York, 1953), p. 1552.
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117, 1337 (1960).
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adiabatic and Fraunhofer diffraction approximations:
(1) The nucleus is considered to be black within a
strong absorption surface R (6,¢") which is related to the
collective surface coordinates ay, through the familiar
expression R(0',¢")=Ro[14+> ara¥2u(0',¢")]. (2) The
scattering amplitude is expanded only to terms linear
in O

The purpose of the present paper is to present an ex-
tension of the cutoff models, sharp or smoothed, to
inelastic scattering. Crucial use is again made of the
adiabatic approximation. The advantages of these
models over that described in the paragraph above are:
(a) the Fraunhofer diffraction approximation, which is
trustworthy only at small scattering angles, is circum-
vented. (b) The sharp-edged strong-absorption radius
may now be softened in the sense that it is possible to
spread a transition from complete to no absorption over
several partial waves.

Although the model is easily formulated for an arbi-
trary magnitude of deformation, the mathematics is
simple only in the approximation that terms linear in
the deformation parameter are retained in the scattering
amplitude [which is assumption (2) of the previous
paragraph |. The cutoff model is feasible for monopole
and quadrupole excitations only because the free wave
equation is separable in spherical and spheroidal coordi-
nates. The model does not appear to generalize to
higher order deformations.

We appreciate that the model has its limitations. The
linear deformation approximation is suspect, particu-
larly at the large angles. An indication of the importance
of terms high order in the deformation may be obtained
through expansion of the Fraunhofer scattering ampli-
tude for a sharp edged ellipsoid of arbitrary deforma-
tion?; it is found* that the most relevant expansion
parameter is the quantity (8kRdf), where 8 is a measure
of the permanent deformation; thus the expansion
converges poorly at large orders of the diffraction pat-
tern. Effects due to nonlinear terms in the scattering
amplitude have been observed experimentally!’; the
angular distributions of alpha particles which excite
some 0t — 4% transitions are in qualitative agreement
with theories in which terms of second order in the
collective coordinates occurring in the scattering ampli-
tudes are responsible for the transition.*¢:*?

A further defect of our method is the prescription for
obtaining partial wave amplitudes which, although
physically plausible, contains phenomenological parame-
ters; a more fundamental procedure would be, for ex-
ample, to obtain these partial wave amplitudes from the
solution of Schrédinger’s equation with a complex
potential.
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A generalization of the optical model to treat inelastic
(neutron) scattering from deformed nuclei has been
carried out.? In that model, the Schrodinger equation
was integrated as a set of coupled differential equations
corresponding to the various reaction channels. The
model is characterized by the parameters of the complex
potential, surface thickness and shape, and the moment
of inertia; the adiabatic approximation is not made.
Indeed, the inelastic cutoff and Fraunhofer models may
be regarded as approximations or simulations to the
inelastic optical model. The advantages of the simpler
models are that they are characterized by fewer parame-
ters and require considerably less effort for numerical
computation.

In Sec. IT, monopole excitation is considered as a first
example of inelastic scattering in the cutoff model.
Section III gives a formulation of the scattering prob-
lem in spheroidal coordinates, while in Sec. IV the
scattering formulas for quadrupole excitation are de-
veloped. Numerical results are presented in Sec. V.
Possible extensions of the model are discussed in
Sec. VI.

II. MONOPOLE EXCITATION

In this section the techniques to be used in the paper
will be exhibited for the simple case of monopole
excitation, in which geometrical complications arising
from quadrupole deformations are absent.

The general expression for the elastic scattering
amplitude of a spinless projectile incident on a spherical
target is

fO=— @ity Z QI+ (=) Pilcost),  (2)

where k(=1/R) is the relative wave number, 4 is the
scattering angle in the center-of-mass system, P;(cos)
is the Legendre polynomial of order /, and #; is the
amplitude of the /th outgoing partial wave.

The sharp cutoff approximation (in the case where the
Coulomb interaction is neglected) consists in the as-
sumption that

=0 for I<L, 3)

m=1 for I>L,

where the critical angular momentum L, which need not
be an integer, is related to the sharp cutoff radius by'®

(kR)*=L(L+1). 4)
If /=L it will be assumed that n,=1%.

18 The correspondence between the ‘“nuclear radius” R, and the
critical angular momentum, L, given in Eq. (4) is, as indicated, a
matter of definition. The nuclear radius has been defined as that
radius at which the Lth partial wave has its classical turning point
in the absence of any nuclear potential. A similar statement applies
for the quadrupole deformation problem concerning the corre-
spondence between the “nuclear surface” &, and the critical
angular momentum L, given by Eq. (46). The question naturally
arises: What is the connection between the cutoff parameters L
and R and those which characterize the optical potential for the
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Smoothed cutoff models,**® in which there is a more
gradual transition from complete to no absorption, not
only seem more realistic but have also provided a better
fit to observed elastic a-particle cross sections. Further
justification for smoothed cutoff models is provided by
the form of |7;| resulting from optical model calcula-
tions®?! and by arguments relating to barrier pene-
trabilities.

As a statement of the smoothed cutoff approximation,
it is assumed that 5; is a smooth, monotonic function of
the difference (!—L). The critical angular momentum L
is again related to a critical radius R by Eq. (4). The
form of n;=n(—L) is restricted by requiring that
1(0)=3.

Now consider a monopole deformation, i.e., a de-
formation which simply increases the nuclear radius by
an amount 8. It is assumed that the critical (strong
absorption) radius entering the scattering problem is
correspondingly increased (R=Ry+9§), so that

L=Lo+-ks. )

Here R, and L, are, respectively, the critical radius and
angular momentum for zero deformation. If the ampli-
tude of /th outgoing wave, n(/— L) is now expanded to
first order in the deformation §, one finds

n(l—L)=n(l— Lo)—kdn’ (1— Lo), (6)
so that
f(O)=— (2ik)~* { > 11D 1—5(l— Lo) P i(cosh)
dy(l— L)

+o 21(21—}—1)71’,(0050) .

nucleus? It is our belief that the maximum value of the real part
of the total potential, nuclear plus centrifugal, for the critical
angular momentum L in the surface region is very closely equal to
the available energy E. This correspondence was demonstrated in
reference (26) for elastic alpha-particle scattering through com-
parison of observed sharp-cutoff angular momenta and those de-
termined by application of the above criterion to the “best fit”
optical potentials. The statement also appears plausible from
consideration of nuclear barrier penetrabilities. Indeed, it has been
pointed out that for a barrier which may be approximated as an
inverted parabola, the barrier penetration probability is exactly %
when the top of the barrier equals £ [D. L. Hill and J. A. Wheeler,
Phys. Rev. 89, 1102 (1953)]. Application of the above criterion to
a square well optical potential leads to the result that the radius of
the well equals the R of Eq. (4). When this criterion is applied,
however, to a diffuse potential which decreases exponentially with
fall off distance d, it is found that R is energy dependent [see
reference (26)7]; the magnitude of the nuclear potential at the
cutoff radius R is relatively small, being of the order (d/R)E. For
a diffuse potential of the Saxon form it is easy to see that the
values of the cutoff radii are usually much larger than typical
values for the midpoint radii of the potential. An additional point
to be noted is that for some purposes—e.g., to obtain a WKB
solution of the wave equation—it is better to make the substitution
1(+1) — (I4-3)% Whether, L(L+1) or (L+%)?is used in Egs. (4)
and (46) does not affect the subsequent results except insofar as it
does alter the interpretation of the nuclear radius obtained from
analysis of experimental results; in practice, the difference is
negligible.

¥ K. R. Greider and A. E. Glassgold, Ann. Phys. 10, 100 (1960).
(13’5%. B. Cheston and A. E. Glassgold, Phys. Rev. 106, 1215
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The monopole deformation § will now be regarded as
a collective coordinate corresponding to the “breathing
mode” of nuclear motion. The inelastic scattering cross
section for excitation of this mode is then given, ac-
cording to the adiabatic approximation [Eq. (1)], as

do
25—2(0 — 0)=[(]6] )X :(I+3)n"(I— Lo) Pi(cos) |2 (8)

A particularly simple result emerges when the transi-
tion region is sufficiently broad so that the sum over /
may be replaced by an integral and yet narrow enough
so that the product (J+3)P;(cosf) may be taken outside
the integral and replaced by its value at the point where
dni/dl is a maximum. A form of #(J— L) is assumed for
which n(l— L) is symmetric about Ly, and such that the
derivative is a maximum at L. Then the cross section,
Eq. (8), becomes

do
@(0—’ 0)=2[(b[6] )| *(Lo+3)?| Pro(cosh) [, (9)

since S ' (I—Lo)dl=1.

At small angles the Legendre polynomials are well
approximated by zeroth order Bessel functions:
P(cosf) — Jo[ (I4+3)0]. Thus, in the forward direction,
the above derivation yields the Fraunhofer result

do
E)(O-—) 0)=2(kR0)2|(b|8] a)|2T 2 (RRH). (10)

At this point it is of interest to mention the corre-
sponding results for elastic cross sections. For a sharp
transition centered at L, where L is an integer, one finds

§<21+1>[1—n(l—L)]chose)
ELZ—ZI(ZI—}- 1)Pi(cosh)+3(2L+1)Pr(cosf). (11)

When use is made of the recursion relation (2/41)P;
=Pu'— P/, the elastic cross section becomes

doe1/dQ= (1/4R)[PL'+3(Pro/+Pr/) T, (12)

the primes denoting differentiation with respect to cosf.
In the forward direction, the Legendre polynomials are
again approximated by Bessel functions to obtain

doe1/dQ= (ER2)2| J1(ERB)/ (ERH) |2, (13)

so that the elastic cross section reduces to the familiar
Fraunhofer black-disk formula.

Finally, in the extreme forward direction (#=0), the
elastic cross section becomes simply

doe)/d=(1/4R")[(L+3)+iP=(kR#)*/4.  (14)
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The Fraunhofer results lie close to the elastic and
inelastic cross sections given by Eqgs. (9) and (12) for
rather large values of the scattering angle. The general
features are similar to those discussed for quadrupole
deformation in Sec. V.

Computations of the monopole cross section using a
smooth form for n; in Eq. (8) have not been carried out
in this paper.

III. FORMULATION OF THE SCATTERING PROBLEM
IN SPHEROIDAL COORDINATES

Inelastic scattering from a nucleus with quadrupole
surface deformation may be treated in a manner similar
to that employed for monopole excitations. The mathe-
matical apparatus required, however, is now more
complicated since it is necessary that the problem be
formulated in spheroidal coordinates. There is an ex-
tensive literature concerning solutions of the wave
equation in these coordinates?? and general expressions
for the scattering cross sections in the adiabatic ap-
proximation have been given by Inopin.?* We find it
desirable to recapitulate some of this material in the
present section. In this development attention is called
to some special relations, valid to first order in the
deformation parameter, which at a later stage make ours
a manageable calculation.

A. Separation of the Wave Equation

Prolate spheroidal coordinates are defined in terms of
rectangular coordinates by the relations

£=(r1+72)/a, (15a)
1= (r1—ry)/q, (15b)
¢=tan(y/x), (15¢)

where 71.=[(s£3a)*+a>+*]%. The variables are
limited to the ranges:
1<¢< o0,
—1<9<1,
0<¢p<27.

(16)

Surfaces of constant £ are prolate spheroids with foci at
2= 41%a; surfaces of constant 5 are hyperboloids of
revolution with foci at +21a. In the limit 7;,,— « or
a— 0, these coordinates are related to the spherical
coordinates » and @ as follows:

£— 2r/a, an
17— cosf.
In the absence of potential, the wave equation,
(V2+E2)y=0, (18)

22 P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc., New York, 1953), p. 1502.

2 Higher Transcendental Functions edited by A. Erdelyi
(McGraw-Hill Book Company, Inc., New York, 1955), Vol. III.

2 E. V. Inopin, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 1455
(1958) [translation; Soviet Phys. JETP 7, 1007 (1958)].

SHARP,

AND WILETS

is separable in spheroidal coordinates. If one assumes
for ¢ the form y=J(¢) Ps(n)®(¢), Eq. (18) yields for J,
Ps, and @ the equations:

m?

d d
{ { (82— 1)~}—A+hﬂ£2—»
dt dt £—1

d d m?
{ _[ (l—ng)—:l-F—A—hQ‘rf—'
dn dny 1—9

}](é) =0, (19a)

2

l Ps()=0, (19b)

{&*/dp*+m*} () =0.

A and m are separation constants, and h=2%ak. The
separation constants A are nonintegral but form a dis-
crete set, each element of which may be labeled by an
integer ! as well as by m; the manner in which this
correspondence is made will be apparent from Egs. (20)
and (21) to follow.

Normalized spheroidal harmonics Y, are defined by

Psim(l; m)Pm () & Yuim (739 ,)
=2 v Au™Y vm(9,9),

whered=cos™y, ®,,= (2r)~%¢™¢ and ¥ ;,, are spherical

harmonics. Moreover, / and I’ are of the same parity.
Formal expansion of the coefficients 4, (k) and the

separation constants A=A, (%) in powers of 42 gives

Aw™(h)=81+kam+0 (R, (21a)
A (B)=1(14+1)+ 1N 140 (B). (21b)

The coefficients a;p™ and A, may be determined by
the application of standard perturbation theory to Eq.
(19b), with k2= h? cos®¥ as the perturbing term. This
yields, to lowest order,

(19¢)

(20)

™= —a,/,m=/me* cos?3Y 1, dQ/ [ I(IH+1)— V(' +1) ]

)

2<2z+1>% (12m0|I' m)(i200|7 0)

3\t 11— (1)
('=1+2), (22a)
and
)\lm: /Ylm* COSQﬁYImdQ
=-§~(l2m0]lm)(120()il())+%. (22b)

The regular and irregular solutions of the ‘“radial”
equation (19a) are the spheroidal functions jeu.(%,£)
and ney,, (4,£) which approach the spherical radial func-
tions not only as %#— 0, but also (nontrivially) as
¢ — oo with 7 fixed:

jewm(h,£) g Ji(hE) — (hE)~" sin[hE— gal],

(23)
nem(%,§) o ralhg) = (R~ sin[hg—3w(I+1) 1.
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This permits a phase-shift representation of the scat-
tering problem in the spheroidal representation. Fur-
thermore, since the spheroidal coordinates = cos™'n and
£ approach the spherical coordinates 6 and 2r/a at large
radii, the spheroidal phase shifts can readily be in-
corporated into the spherical formulation of the scat-
tering problem.

B. Expansion of a Plane Wave

Let us recall the expansion in spherical harmonics of
a plane wave incident along the space-fixed z direction
in terms of a coordinate system rotated with respect to
the space-fixed system. This is:

e*2=3"111(2141) 7 ,(kr) P (cosb)
=4dr Zlm iljl(kr)ylm*(_ﬁy _’Y)Ylm(ely(ﬁl);
where 6 is the angle between the space-fixed z axis and

the field point; @, 8, ¥(=N) are the Eulerian angles
which rotate the space-fixed coordinate system into the

(24)

1629

body-fixed system and ', ¢’ give the orientation of the
field point with respect to the body-fixed axes.

In complete analogy, the expansion of a plane wave
in spheroidal harmonics is given by :

ette=4r 3 1 thjem (B,E)

X(ylm*(h, _B; —V)ylm(h;l’/ﬁb/)y (25)
_— 27!’(/37)‘1 Z im ,L‘H-l[e-—i(kr—%rl)_e+i(kr—%1rl)]
XYuu*(l; =B, —=7)Yum (b 0',0").  (26)

In these formulas, the notation of the previous section
has been altered by placing primes on the spheroidal
coordinates when they refer to body-fixed axes.

C. The Scattering Amplitude

In terms of spheroidal Hankel functions, hein® = jeim
=+ ne;., the general solution of the wave equation
which is asymptotically a plane wave, has the form
(outside the region of the potential)

V=2 Z m ’il[helm(h) +7]lm hel?n(+>]ylm*(]l; '—By _’Y)(ylm(h; 01;4),) -

(2) (k)™ L i i L 1 hmD — e R JY 1 ¥ (5 —B, =) Y (B30, 6 ). (27)

The adiabatic scattering amplitude is given by*

f(6,6; N)=1lim re= ¥ [ ¥ —¢it<]

=2m1A 2 1 (1 =0 1m) Y im™* (/o
=20 ¥ im(I=01) 1 Ay A 1™V v (=B, =) Vorn(06).

(28)

_6) _’Y)(ylm(k’ 0 74’/)

(29)

It should be borne in mind that dependence on nuclear orientation is contained implicitly in ¢’, ¢’ as well as in

the Eulerian angles (8,v).

According to Eq. (1) the amplitude for scattering from the nuclear state (IoM,) to the state (IM) is given, in

the adiabatic approximation, by

Trariromy 0,0) =(IM | f(6,¢; N) [ ToM o), (30)
where, in the notation of Rose?®
2741}
1)~ (~—-) D (e, (31)
8w?

for a K=0 rotational state. A typical term in Eq. (30) for a (0,0) — (I,M) transition requires evaluation of the

integral

201\
D1V 0=, =) 0@ )10 0= 10| (=) Do @800 D @) Vi 060 00)

1 27/+17
=|:~ ] W' —MM[VO)YV ImO|l m)Y v _3(0,0). (32)
47 2U4-1
To obtain Eq. (32) use has been made of the relation?
/Dkwulekzmthkamh*sz [(87"2)/(2j3+ 1)](j1j2k1k2' j3k3) (jljZmlmzl j;;'m:;)- (33)

¢ M. E. Rose, Elementary Theory of Angular Momentum (John Wiley & Sons, Inc., New York, 1957), p. 60.
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Thus one obtains for the scattering amplitude:

fr,000,0)
=@FA T v (L—nm) A w™A 1w m[2I+1)/(20+1) ]
XU —M MO ImOl m)Y vr—u(6,0). (34)

Note added in proof. The explicit form of the scattered
wave given in Eq. (28) et seq. assumes the existence of
a nuclear potential, separable in spheroidal coordinates,
of the form 7[5 (r1+72)]/rirs=4f(}a8)/[@*(&—7")]. Al-
though this form possesses unphysical singularities at
the two foci, we shall apply our procedures only to
nuclear models for which there is strong absorption in
the nuclear interior, in which case such singularities
should be of little consequence for the scattering am-
plitude. The equipotential surfaces for this form of
the potential do not coincide with surfaces of con-
stant £; however, for f a smooth function, the equi-
potential surfaces, through first order in the deforma-
tion, are still spheroids, characterized by e(potential)
= e(coord, system)[1— (2f/ f'R)/(1—2f/f'R) ], [cf. Eq.
(56) for the definition of €]. Thus for

Jeexpl—3(ritrs)/c]

in the surface region, the e is “renormalized” by the
factor (14-2¢/R). The e and 8; of Eq. (57) are character-
istic of the coordinate system, not of the nuclear
potential.

Equation (34) is a specialization of Eq. (42) in
Inopin’s paper** to the case of a separable nuclear
potential. We wish to thank Professor Inopin for point-
ing out an erroneous statement in our original manu-
script concerning these equations.

IV. EVALUATION OF THE SCATTERING AMPLITUDE
FOR QUADRUPOLE EXCITATION

At this point the linear approximation is made in the
evaluation of the scattering amplitude Eq. (34); that is,
terms higher than first power in the parameter 42 are
discarded. The parameter /4 measures the eccentricity
of the coordinate system and should also be considered
as a measure of the deformation of the nucleus, a result
which shall be shown later for special models.

SHARP, AND WILETS

The dependence of the scattering amplitude on 4? is
contained in the geometrical factors 4™, which give
the expansion of the spheroidal harmonics in terms of
the spherical harmonics, and in the partial wave ampli-
tudes 7. It will be recalled that the expansion of
Aw™(B?) is given by Eq. (21a)

Aw™(h) =81+ aw™+0h). (21a)

Similarly, the 5, may be expanded in powers of the
deformation parameter

Num (W) =m0+ 1w (0)4-0 (B2).

Here prime denotes differentiation with respect to 42,
and where it is explicitly recognized that 7,(0) is inde-
pendent of 7 and equals 7;, the partial wave amplitude
for the spherical nucleus.

The product of factors in Eq. (34) which are functions
of /2 may then be written, to first order in /42

(35)

A=nm)Ad ™A 1™ o
= (1—n0)8 1000+ (1 =) (@re™d 10+ ™S 0r)

— i’ (0)8108:0-]. (36)

It is now apparent why it was advantageous to express
the expansion coefficients a;p™ in terms of Clebsch-
Gordan coefficients; the following orthogonality prop-
erties of these coefficients,

S n( I mO|lm)=>5r,0(20+1),
S al@2mOl m)(Q I mO|l m)=6r,(21'4+1)/5,

(37a)
(37b)

enable one to evaluate the sum over m in Eq. (34)
involving the first three terms of (36). In particular, it
is found that

Zm a”/"‘(l 2m Oll/ m)
2 [HDEI+DTE200(2 0)
15 +)—r@+1)

38)

Thus, the scattering amplitude for the excitation of the
I'=2+level of the ground state rotational band becomes

(2U+1)41200[10)(12 —M M| 0)

2
Tonr;00(0,0)=iAh? (5m)? s 2w (nr—mn1)

To the same order, the elastic scattering amplitude is

foo00(O,0)=2ika? 320 { (1—12) (204+1)1Y 1,0(0,0)
—'h277 lm, (2l+1)—%yl,0(0)¢)} . (40)
To this order in /42 only the scattering amplitudes to the

I=0% and 2* final states are non-vanishing since, as
will be determined in the paragraphs which follow, the

I/vl‘——M (01¢’)

0+1)—=I@+1)
——Zlm 7)1,,,’(2[-{*1)_%(1 2m Oilm)(l 2—-M MUO)YZ,_M(H,(}B) .

(39)

terms involving 7:,’ also contribute only to the scat-
tering amplitudes to these final states.

The preceding evaluation of these parts of the
scattering amplitudes containing the geometrical factors
has been straightforward. The evaluation of the re-
maining portions is less so, however, since it depends on
the assumed form of .
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As a guide to determine the form of 5. the “radial
equation” in spheroidal coordinates is recast so as to
resemble the radial equations in spherical coordinates.
Outside of the region of nuclear interaction the “radial
equation” in spheroidal coordinates is given by Eq.
(19a). The first derivatives in this differential equation
may be eliminated by the substitution

Jim(&)= (=1 2uim(8), (41)
so that the radial equation becomes
1 d2u l,,,(g)
o dg
52 A im mi— 1
T i e R
g-1l wg pe@E-1

Similarly, the free-space radial equation in spherical
coordinates is

1(I+1)
1—

k22

Lo @

;e; o }ul(r)=0.
y

The analogy between these two equations is apparent
when it is recalled that in the limit 2— 0 (or r — ),
hE— kr. To first order in 4% the effective “centrifugal

W2

LCom(i2) =1+ {(l2m0|lm)(1200[l0)[

(2i+1)

2 @-1)(2+3)7 1
3 3L(L+1) ]+ [_
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barrier” in Eq. (42) is

l(l+1)+h2[)\ 1+m2_1+l(l+1—)]} (44)
ww{ " g '

The effective “angular momentum” £;,(h?), at the
point £, is defined accordingly by

Lim (M) [ Lim(F?)+1]
m2—1+1(l+1)
—‘—-—w—] (45)

El(l+1)+h2l:)\lm_ 14
h2£2

The fundamental assumption is now made, in analogy
with the procedure followed in the monopole excitation
section, that 7;,(%%) is a smooth monotonic function of
Lim(B2), ie., Nim(B)=1(Lwm(*#%)). A critical “angular
momentum,” L, is defined by the statement n(L)=3
and may be related to a critical surface &, through!®

(e =L(L+1). (46)

It will have been noted that the effective ‘“angular
momentum,” as here defined, is a function of £. It is now
assumed that the £,(#2) occurring in n should be
evaluated near the critical surface £.. The motivation for
this assumption is the belief?!:2¢ that the partial wave
amplitudes are mainly determined by the amount of
transmission into the nuclear interior allowed by the
effective potential at and exterior to the nuclear surface.

When £;,(#2) is evaluated at £=£,, one obtains

3

41(1+1) 1
4 L(L+1)]*L(L+1)]‘ 1)

On the other hand, when £;,,(%) is evaluated at the classical turning point, i.e., the value of £ such that the curly

bracket of Eq. (42) vanishes, one finds

i
L (1) = 14—
(2

i 12mO0l|l 12001021
1A< 0|1 m)(200]10)-

3[ ;(1:15 ]J%_ l(l_lH) } (48)

The difference between these two forms is not of great practical consequence, since the main contributions to the
scattering amplitude will come from partial waves with /~ L when there is a fairly rapid change from complete to

no absorption around L.

The partial wave amplitude 5(£:,(%%)) may be expanded

Nim (B2)=201 (0) + H 1’ (0) = 0 (1) + [ L0 (?) — 11(d/di)n (D),

(49)

where [ £, (4% —1] is given either by Eqgs. (47) or (48) above. The presence of the Clebsch-Gordan coefficients in
these equations makes it possible through use of Eqs. (37a) and (37b) to carry out the sum over = in Eq. (39),

so that

(2I+1)41200[1 0)(12 —M M| 0)

Farry00(0,0) =08 (5m)4 (2/15) IZI () —=n()]

Lodl
26 J. S. Blair, Phys. Rev. 108, 827 (1957).

Vi_au(0,9)

(41— (' +1)
M@F+F%

I1)41200[10)(12 —M M|LO)Y 1 w(6.6) L, (50
z(z+1)](2+) (1200]20)( 1L0)V o (6,6) }, (50)
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where Eq. (48) has been used for £;,,(42)—I. Similarly,
the contributions to the elastic scattering amplitude,
Eq. (40), of order 42, may be evaluated; such terms will
be dominated, however, by those which are independent
of 42 Thus in subsequent numerical work, the elastic
scattering amplitude will be computed only to zeroth
order in /?; in other words, the usual spherical formula
will be employed.

The inelastic scattering amplitude Eq. (50) can be
evaluated for the sharp-cutoff approximation. Since the
amplitudes n; have meaning only for integral values of
I, there is a certain amount of arbitrariness in one’s
definition of the sharp cutoff approximation. When (/)
is taken to be a step function, then dn(f)/dl is a 6 func-
tion (at a point that might not even be defined). To
circumvent this difficulty, the form of dn(l)/dl will be
chosen such that > ;dn(l)/dl=1, a result which be-
comes exact only when it is permissible to replace the
sum by an integral over dl.

Thus for an integral value of L, the sharp-cutoff
approximation is conveniently expressed as

n()=0 for I<L,
~3, =L
1, I>L,

i

Jaaz;00(0,0)=— X2 (5m)*(1/15)
(2L/+1)}

243

@L/'—1)}

21

+(L'+12 =M M|L'—10) YLIH,_M]—[

(L'—1200|L+10)[(L'—12 —
L’H—L’-%]
L'(L'+1)
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and

dn()/dl=1 for I=1L,

=0 otherwise. (31)
This is the form of the sharp-cutoff approximation
which has been used in the discussion of monopole
excitations (Sec. IT). For half-integral values of L, it has
been convenient to choose

7()=0 for I<L,
=1 for I>L,
and
dn(l)/dl=% for I=L43%,

1

2
=0 otherwise. (52)

It is possible to establish the connection between the
scattering amplitude given in the sharp-cutoff approxi-
mation and that calculated using the Frannhofer ap-
proximation. To show this connection it is worthwhile
to evaluate explicitly Eq. (50) when the sharp-cutoff
approximation is expressed by Eq. (52),

(L'200|L/+20)[(L'2 =M M|L'+20)Y oy~ (L'+22 =M M|L 0)Y 112, _a]

MM|L'+10)Y 1y o

X (2L'+1)"}(L' 200|L 0)(1' 2 —M M|L' 0)V 1 _u

[ LP+3L+1
(L+1)(L'+2)
where to simplify the notation L'=L—3.

It is interesting to examine this result when Z>>1 and
the scattering angle 8 is small. Under these conditions,
the spherical harmonics are well approximated by
Bessel functions

20417} .
Viu@,0)— [ ] Tyan) ((LA2)0)ei ¢

™ ©
[times (=)™, M pos

(54)
times (1), M neg

and inspection of the formulas for the Clebsch-Gordan
coefficients shows that they tend to simple numerical

](2L’+“‘3)-%(L’+1 200|141 0)(L'4+12 =M M|L'+10)V 1 _a |, (53)

ratios. Dropping terms of order 1/L, one finds

St p?

f‘zM;oo(@,dJ)_%—’i?\;BJQ((L‘*‘%W) for M=0

~0 for M==+1
32

s — i —@U((L41)0)
2 15

for M==42. (55)

In order to compare Eq. (55) to the scattering ampli-
tude previously derived with use of the Fraunhofer ap-
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proximation, it is desirable to relate the parameters 42
and L to alternative characterizations of the nuclear
deformation and. radius. The spheroid £=£, can be
approximated in polar coordinates by

R(0',¢) = Ro[ 1+B:V 50(¢",¢") ]
= Ro[ 14 €eP;(cos 0') ], (56)

with

£E2Ro/a and h2=3e(kRo)?=3(5/4w)#B2(kRo)2. (57)

These relations may be combined with Eq. (46) to give

LA+%= (ht)=2kR,. (58)
Thus Eq. (55) becomes
B2
Forts00(0,0)2—i (kR Jo(kR®) for M=0
2(4x)?
>0 for M==+1
. B
=~—i(kRe?) -($)¥2(kRB)
2(4m)t
for M==+2, (59)

which is the inelastic scattering amplitude in the
Fraunhofer approximation.?4:27

When the linear approximation is used for the scat-
tering amplitude, the cross sections for rotational ex-
citation of an odd-4 nucleus are related to those of an
even-4 nucleus in exactly the same manner as was
indicated in earlier papers*?® on inelastic diffraction
scattering. The differential scattering cross section be-
tween two states with total angular momenta I and I’,
which are members of the same rotational band corre-
sponding to quantum number K, is given by

do doel do

—(I = 1)=6;r—+T2KO0|I'"K)>—(0—2). (60)
aQ aQ aQ

Here doe)/dQ and (do/d)(0— 2) are the expressions
for the elastic and inelastic scattering cross sections
from an even-A4 nucleus.

V. NUMERICAL APPLICATIONS

In the numerical examples of this section, the follow-
ing simple form is adopted for 7;:

1()={14exp[— (I—L)/AJ}, (61)

so that the angular distributions resulting from the
evaluation of Egs. (50) and (40) will be characterized by
two adjustable parameters, the critical angular mo-
mentum L, and the width of the transition region, A.
This choice has the following desirable features: (1) It

278. I. Drozdov, J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 1875
(1959) [translation; Soviet Phys. JETP 9, 1335 (1959)].

28 S. 1. Drozdov, J. Exptl. Theoret. Phys. (U.S.S.R.) 30, 786
(1956) [translation; Soviet Phys. JETP 3, 759 (1956)].
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F1c. 1. Inelastic scattering cross sections for quadrupole excita-
tion versus angle in degrees for L=10.5 and various values of A.
The dimensionless ordinate, Q, is the differential cross section
divided by B22(kR¢*)%. Since L is a half integer, the cross section
for A=0 is computed using the prescription given by Eq. (52).

is a simple expression which displays a gradual transi-
tion between strong to no absorption. (2) Analyses of
elastic scattering cross sections by McIntyre ef al., using
this form for partial wave amplitudes, have had some
measure of success.*

No attempt will be made in this paper to carry out
exhaustive comparisons between this theory and ex-
periment. Rather the numerical examples will illustrate
the general features of the model.

To increase the import of the computed results, it is
worthwhile to recall some of the predictions of the
diffraction model in the Fraunhofer approximation?:
(1) The computed differential cross sections displayed
regularly spaced oscillations. (2) Except at the lowest
orders of the diffraction pattern, there was a definite
phase relationship between the elastic and inelastic
angular distributions depending on the parity change of
the excitation. (3) The angular distributions could be
expressed in terms of “universal” curves, in the sense
that the scattering cross sections, elastic and inelastic,
when divided by (ER¢?)?, depended on k, R, and 6 only
through the argument, kRof [or 2kR,sin(8/2)], of the
Bessel functions.

In Fig. 1 are plotted the inelastic scattering cross
sections for quadrupole excitation versus angle for
L=10.5 and various values of A. The dimensionless
quantity shown is the square of the bracket of Eq. (50),
summed over final states M ; thus it is the differential
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F1c. 2. The elastic scattering cross sections versus angle in
degrees for £=10.5 and various values of A. The dimensionless
ordinate Q(EL) is the differential cross section times (44%).

cross section divided by [A#2(5m)*(2/15) P=pB:?(kR?)?
and is denoted by Q. The following features will be ob-
served : (a) The oscillations in the angular distributions
have the same periodicity independent of A. (b) The
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F1c. 3. The dimensionless inelastic cross section Q versus
(L+%)0 (where@ is in units of degrees) for A=0 and various values
of L
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cross sections are essentially equal at =0 for all values
of A. (c) As Ais increased, the envelope of the oscillatory
pattern drops off more rapidly with increasing angle.
(d) For the largest values of A, the oscillatory structure
at the higher orders of the diffraction pattern is com-
pletely damped out and the cross section flattens.

One frequent criticism of the Fraunhofer and sharp-
cutoff models has been that they do not predict angular
distributions which fall off at larger angles as rapidly as
those frequently observed in nature. Feature (c) above
supports one’s feeling that this defect in the Fraunhofer
and sharp-cutoff treatments is due to the assumed sharp
nature of the transition.

For comparison, elastic scattering cross sections are
given in Fig. 2 for L=10.5 as a function of A. The
quantity plotted is the spherical cross section' multi-

T T T T T T
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F1c. 4. The dimensionless inelastic cross section Q versus
(L+%)8 (where 8 is in units of degrees) for A/L=0.06 and various
values of L.

plied by (4%2) and is denoted by Q(EL),
Q(EL)= | X:(2141) (1 —n1) Pi(cosd) | %

The qualitative features of the inelastic scattering re-
sults are mirrored in the elastic scattering curves. It will
be noted that the cross sections do not agree at =0 but
rather increase with A. This behavior is a consequence
of the factor (2/41) in the elastic scattering amplitude;
as A is increased this factor weights the partial waves
with /> L.

Since the Fraunhofer results could be expressed in
terms of ‘“‘universal” curves, it appears worthwhile to
consider whether similar constructions can be made for
the present computations. A reasonable surmise is that
cross sections calculated with different values of L but
the same value of the ratio, A/L, should be closely re-
lated. Again the dimensionless inelastic scattering cross
section Q (which is the true inelastic scattering cross

(62)
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F16. 5. The dimensionless inelastic cross section Q versus
(L+%)8 (where 6 is in units of degrees) for A/L=0.1095 and vari-
ous values of L.

section divided by Bs2(ER¢*)? is plotted versus (L-+3)0
for various values of A/L in Figs. 3 through 7. Com-
parable results for elastic scattering are shown in Figs. 8
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F1c. 7. The dimensionless inelastic cross section Q versus
(L+3)0 (where 6 is in units of degrees) for A/L=0.3095 and two
values of L.

and 9 where Q(EL)/(L+43)*= (do.1/dQ)/[(FR®)?/4] is
plotted versus (L-+3).

It will be seen that to a high degree of accuracy, it is
possible to construct “universal” curves for the inelastic
scattering cross sections and, to a lesser extent, such a
construction is also possible for the elastic scattering
cross sections. This means the two-parameter theory
depends essentially on only one parameter A/L. To

F1g. 6. The dimensionless inelastic cross section Q versus
(L+3%)0 (where 6 is in units of degrees) for A/L=0.2095"and vari-
ous values of L.

Fic. 8. The dimensionless elastic cross section Q(EL)/(L+3)*
versus (L+43)0 (where is in units of degrees) for A=0 and various
values of L.
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Fic. 9. The dimensionless elastic cross section Q(EL)/(L+3)*
versus (L+%)0 (where 6 is in units of degrees) for A/L=0.1095 and
various values of L.

facilitate use of this model in the analysis of experi-
mental cross section, the computed inelastic and elastic
scattering cross sections at the maxima are plotted
versus A/L in Figs. 10 and 11, respectively. The
separate curves are labeled by the parameter x which is
the value of (L+3)6 at the corresponding maxima of the
Fraunhofer curves; to a very good approximation, the
maxima for the cutoff models occur at the same values
of (L+3)0.

Some further remarks about these graphs follow: (a)
The sharp-cutoff curves (A=0) shown in Fig. 3 do not
lie as close to one another as do those in the succeeding
figures. The reason for this is that the sharp cutoff
prescription given in Eq. (52), dni/dl=% for I=L+1,
partially simulates the effect due to a finite value of A.
It is interesting to observe, nonetheless, that the cross
section corresponding to a very small value of the

SHARP, AND WILETS

critical angular momentum, L=2.5, bears considerable
resemblance to the other curves. '
(b) The Fraunhofer prediction for Q,*+4

Q= (1/4m){3/ *(kRob)+1/2* (kRdf)}, (63)

is practically indistinguishable from the sharp-cutoff
curve for L=19.5 shown in Fig. 3. For example, the
sixth maximum beyond =0 in the Fraunhofer expres-
sion occurs at (kRof)=1119.4 degrees with Q=2.60
X1073%; the corresponding maximum in the sharp-
cutoff prediction for L=19.5 occurs at (kRf)=1120
degrees with 0=2.38X1073. The agreement is much
closer at small orders of the diffraction pattern. In an
earlier paper? it was noted that the argument to be used
in the Fraunhofer expressions was ambiguous and could
depend on the choice of shadow plane. The comparison
of the Fraunhofer and sharp-cutoff curves now shows
that the appropriate argument at large angles is kR0
= (L+3%)0. This conclusion also has been reached by
Rost? through comparison of distorted-wave Born ap-
proximation computations and the Fraunhofer formula.

(¢) The locations of the maxima and minima of the
elastic scattering cross sections also are given very ac-
curately by the corresponding Fraunhofer formula when
kRo0= (L+%)0 is used as an argument. Since the elastic
scattering cross sections do not possess ‘“universality”
to the extent which was evident for the inelastic scat-

ol
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1

Fic. 10. The dimensionless inelastic cross section Q, at its
maxima versus the ratio (A/L) for L=10.5. The separate curves
are labeled by the parameter x which is the value of (L-3)0 at the
corresponding maxima of the Fraunhofer curves. The crosses on
the A}) L=0 axis are the values of the Fraunhofer prediction for Q
at these maxima. The dashed lines interpolate between A=0 and
A/L=0.04 through a region where the computed cross sections
were not considered meaningful; in this region the values of A are
so small that the criterion 2; dy(l)/dI=1 is not well satisfied.

2 E. Rost, Ph.D. thesis, University of Pittshurgh, 1961 (un-
published).
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tering results, it is not surprising to find some deviation
between the magnitudes of Q(EL)/(L+3%)* shown in
Iig. 8 and the Fraunhofer prediction,

Q(EL)/(L+3)*=4[J1(koRob)/ (kR0) .

For example, at the third maximum beyond 6=0, the
Fraunhofer prediction for this ratio is 1.6X10~3 while
the sharp-cutoff result when L=15.5 is 1.8 X102, The
agreement, of course, improves as L is increased.

(d) Both the elastic and inelastic scattering cross
sections depart from their values at A=0 in a similar
fashion when considered as functions of (A/L). Let
Figs. 8 and 9 be superimposed so that the ordinate at
A=0 for a maximum of given order on the elastic scat-
tering figure lies midway between the corresponding
ordinate for the maxima in the inelastic cross sections
which bracket this order. It is then found that the
elastic scattering curve smoothly interpolates between
these two inelastic curves.

A standard technique used in calculating inelastic
scattering cross sections has been the distorted-wave
Born approximation (DWBA). Recent calculations by
Rost and Austern'®?**® using this method have dis-
played many features of the Fraunhofer version of the
inelastic diffraction model, such as the locations of the
maxima and minima, and have provided good fits to
several measured angular distributions of inelastically
scattered alpha particles. To the extent that a potential
description is relevant, the portion of the exact adiabatic
inelastic scattering amplitude linear in the deformation
parameter should be equivalent to the DWBA ampli-
tude, computed for no energy transfer. The existing
DWBA calculations contain some features which are
not present in the linear deformation model of this
paper, namely (a) consideration of deviations from the
adiabatic condition (a consideration which lies outside
the scope of an adiabatic calculation) and (b) inclusion
of effects due to the Coulomb field (which, in principle,
can be put into an adiabatic calculation).

It is worthwhile to attempt a comparison between the
predictions with the DWBA model and the model of the
present paper. In his thesis Rost has made a particularly
detailed examination of the elastic and inelastic scat-
tering of 43-Mev alpha particles from Ni® using stand-
ard values for the optical potential. The relative location
of the maxima and minima are in excellent agreement
with the predictions of the Fraunhofer model (and
consequently, also the smoothed-cutoff model). The
magnitudes of the maxima in the computed DWBA
angular distribution for quadrupole excitation may be
compared to the smoothed-cutoff predictions plotted in
Fig. 10. It is found that there is excellent agreement
between the DWBA relative magnitudes and smoothed-
cutoff predictions for the value (A/L)=0.48. The only

(64)

% N. Austern, Proceedings of the Seventh International Conference
on Nuclear Structure, Kingston, 1960 (University of Toronto Press,
Toronto, Canada, 1960), p. 323.
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Fi1c. 11. The dimensionless elastic cross section Q(EL)/(L+3)4,
at its maxima versus the ratio (A/L) for L=10.5. The separate
curves are labeled by the parameter x which is the value of
(L4+3%)8 at the corresponding maxima of the Fraunhofer curves.
The dashed lines interpolate between A=0and A/L=0.04 through
a region where the computed cross sections were not considered
meaningful.

discrepancy among the first seven maxima occurred at
0° where the DWBA magnitude is about 109} less than
the next maxima while the smoothed-cutoff magnitude
at 0° is about 25%, larger than the next maxima for
(A/L)=0.48. Tt is likely that this discrepancy is as-
sociated with the finite energy transfer and Coulomb
excitation; these modifications were found®?® to be
most effective near zero degrees.

For the example above, Rost has also given the mag-
nitudes |1—n;| corresponding to the optical potentials
employed. The values vary monotonically and, in the
transition region, are fitted fairly well by the form of »;
given by Eq. (61), where L is slightly larger than 19
and A=21.0 with about a 109, uncertainty. It will be
noted that the resulting ratio, A/L=20.05, is in accord
with that determined in the paragraph above.

This comparison leads us to make the following ob-
servations: As can be seen from inspection of Eqgs. (8)
and (50), our inelastic as well as the elastic cross sections
depend only on the functional form of the partial wave
amplitudes. The optical model provides a mechanism
for generating partial wave amplitudes. Indeed, for a
suitable choice of parameters the optical model yields
partial wave amplitudes resembling the simple form
used in the present computations and a full DWBA
computation using those optical model wave functions
is in good accord with the computations of this section.
Any other physical model, however, for which the par-
tial wave amplitudes vary in a similarly smooth fashion®

3 An illuminating argument justifying a smoothed transition in

the partial wave amplitude, with no appeal made to the optical
model, has been provided recently by Austern in reference 21.
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will yield roughly the same inelastic scattering cross
sections. Thus it is by no means clear at this stage that
calculations with a complex local potential provide a
uniquely successful description of a strongly absorbing
nucleus.

Although no detailed fits to experimental results will
be given, two comparisons to Fig. 10 will be cited:

(1) “Universal” plots have been made® of several angu-
lar distributions for alpha particles which excite the
1.37-Mev 2t state of Mg?. The relative magnitudes of
the maxima corresponding to x=2388.7, 574.2, and
756.9 degrees indicate that (A/L)=20.05; comparison of
the maxima at x=186.2 and 388.7 degrees alone yields
a larger value, A/L=20.08. When the smoothed cutoff
calculations are used, the values of the collective
parameters are altered slightly from values obtained
using the Fraunhofer formulas. When (A/L) is set equal
to 0.05 and a fit between theory and experiment is made
at x=388.7 degrees, the value of (8sR)) is altered from®
1.43f to 1.70f, in close agreement with the DWBA
value 1.671.

(2) The maxima in the angular distributions® of
41-Mev alpha particles which excite the lowest 2+
states of natural Ni may be compared to Fig. 10. The
falloff from the Fraunhofer prediction for the maxima
is matched rather well by the value (A/L)==0.06.

To conclude this section, the reader should be re-
minded of the many approximations and omissions in
these calculations: (a) The adiabatic approximation
itself takes no account of the oftentimes large energy
transfer. (b) There has been no consideration of
Coulomb distortion of the incident wave nor Coulomb
excitation. (c) A very simple form was chosen to repre-
sent the partial wave amplitudes. Even the expansion of
71m(#2) given by Eq. (49) required that there be a simple
functional dependence. (d) Lastly, only terms in the
scattering amplitude linear in the deformation have
been retained. This approximation is particularly sus-
pect at large angles; indeed, the experimenter is cau-
tioned against taking too seriously any attempt to
obtain detailed fits between observed angular distribu-
tions spanning a wide range of angles and theories whose
scattering amplitudes are no more than linear in the
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deformation. Some of these questions are reconsidered
in the next section.

VI. POSSIBLE EXTENSIONS

The underlying basis of the present model is the
adiabatic approximation. Once this has been assumed,
one is quite at liberty in choosing the partial wave
amplitudes 7, according to any physical model.

In the context of the present work, there are several
obvious extensions:

(1) Although the linear (small-deformation) approxi-
mation was considered here for simplicity of computa-
tion, the apparatus needed for calculation in a spheroidal
coordinate system with arbitrary deformation is avail-
able in this paper and the literature.

(2) An attempt was made to include Coulomb effects.
The wave equation does separate in spheroidal coordi-
nates with a potential generated by a pair of point
charges located at the foci of the coordinate ellipsoids.
It was found, however, that the electric quadrupole
moment of such a charge distribution is roughly five
times that due to a uniformly charged ellipsoid with
the same distortion of the nuclear surface and thus
gives rise to spurious Coulomb excitation comparable
with the nuclear potential excitation being calculated.
For this reason the work was not pursued further,
although there may well be methods to circumvent the
difficulty.

(3) In general, the partial wave amplitudes (for ex-
ample, as derived from optical potentials) are complex,
and the variation in phase as well as magnitude should
be included. '

(4) The correspondence between the sharp-cutoff and
Fraunhofer models has now been established for both
elastic and (rotational) inelastic scattering. It should
also be possible to establish similar correspondences
between the smooth-cutoff model and a diffuse-surface
Fraunhofer model.
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