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When the current is increasing exponentially, i(t)
=i(0) exp(t/8) so that Eq. (A1) becomes

1=~L~+ exp( —T+/8)+G5 (A3)

When the electrode spacing is fixed, y and m+ are func-
tions of V. The quantity G is a function of V and $
(which contains 8 implicitly). The following are typical
of the expansions to first order of these functions about
their breakdown values:

V= Vg+AV,
~=~+~~~i«).~V=~.+(1S/P~) r~ /~(eP)5 ~V,
G= Gg+ (BG/8 V)d, V+ (8G/8$) pA(,

8= L(~P+&P'+1/8)/D5'
= (o+ (1/2(~D) (1/8)

exp (—T+/8) = 1 T+—/8

Recall the breakdown criterion 1=ybtm+s+Gb5 W.hen
expressions such as the ones we have listed are sub-
stituted into Eq. (A3), Eq. .(8) of the text follows.
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A theoretical study has been carried out of the eight non-
degenerate optical vibrations of o. quartz including the problem
of their infrared and Raman intensities. The investigation
consists of three parts: First, the atomic motions and frequencies
are calculated on the basis of a valence force model. It is shown
that the 207 cm ' vibration involves atomic motions very similar
to those of the a-P transformation. Secondly, a general discussion
is given of infrared absorption in complex crystals, which shows
that in quartz the intensities are determined by the atomic
motions through 12 effective charge parameters. The intensities
are calculated in good agreement with experiment on the assump-
tion of a 2-charge model suggested by the valence nature of
quartz. It is shown that a 1-charge model, the usual model for
an ionic crystal, cannot account for the observed intensities.
Finally, the relative Raman intensities are calculated with no

adjustable parameters in good agreement with experiment on the
basis of a simple assumption about the atomic polarizabilities.
The calculation accounts for the surprising weakness of the
1082-cm ' stretching vibration in the Raman eGect. The three
parts of the investigation are mutually dependent, since the
infrared and Raman intensities depend in an essential way upon
the atomic motions corresponding to each frequency. It is shown
that a consideration of the Raman intensities as well as the usual
comparison of frequencies is required to determine the bending
constants of the valence force model. It is inferred from the
success of the calculations that the three principal assumptions
of the present work, namely the valence force model for the
vibrations, the 2-charge model for the infrared intensities, and
the simple Raman model, are all applicable for quartz.

L INTRODUCTION

'HIS paper is concerned with the fundamental
lattice vibrations of n quartz and the intensities

of these vibrations in infrared absorption and Raman
scattering. The range of these intensities extends over
more than an order of magnitude, so that in some cases
a fundamental frequency exhibits a weaker effect than
a combination frequency. An adequate explanation of
this phenomenon would be very desirable both from
the standpoint of practical spectroscopy and of the
basic physics of dielectric crystals. The problem of
relating the intensities to the corresponding vibrations
may be called the effective charge problem. The problem
is to determine an effective charge and an effective
polarizability coefficient' for each atom in the unit cell
such that all crystal vibrations have the correct infrared
and Raman intensities. This problem is essentially

' The eRective charge is sometimes called the dipole derivative,
the derivative of the electric moment with respect to the displace-
ment of a certain atom. The polarizability coeScient is the
derivative of the polarizability with respect to the displacement
of a certain atom. For a discussion of the eRective charge as the
term is used here see H. Callen, Phys. Rev. 76, 1394 (1949).

trivial in the diatomic cubic crystals where the effective
charge is a single parameter which can be adjusted to
give the measured intensity of the single fundamental
optical vibration. The problem then remains of explain-
ing the effective charge in terms of the atomic polar-
izabilities, which may be called the local, retd problem. ~

In complicated crystals, however, the eRective charge
problem itself may be formidable. The eRective charges
become tensors, and the total number of independent
components of all these tensors is the number of
fundamental lattice vibrations active in the infrared.

It might appear that the effective charge problem in
quartz with its 16 fundamental vibrations is hopelessly
complicated. Furthermore, the problem cannot be
approached until something is known or assumed about
the nature of the vibrations. Nevertheless some progress
has been made on the problem, notably by Saksena
and associates. Saksena and Bhatnagar' have attempted

'The local field problem in this sense has been treated by:
B.Dick and A. Overhauser, Phys. Rev. 112, 90 (1958);J.Hanlon
and A. Lawson, ibid. 113, 472 (1959);B. Szigeti, Trans. Faraday
Soc. 45, 155 (1949).

3 B. D. Saksena and S. S. Bhatnagar, Proc. Indian Acad; Sci.
A30, 308 (1949).
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to predict the relative intensities of the four infrared
active-Raman inactive vibrations of quartz on the basis
of normal modes of vibration previously calculated by
Saksena. ' Qualitative agreement with reflectivity
measurements was claimed, but the actual strengths of
the resonances were not known at the time, and no
proper comparison with experiment could be made.
More recently Stepanov and Prima' have calculated
frequencies and intensities for p quartz and several
mineral silicates. Some calculations have been reported
for the intensities in molecules. ' ' In particular Rollef-
son and Havens' have made a careful theoretical and
experimental study of CH4 and report great discrep-
ancies between the calculated and measured intensities
of the infrared bands. Similar discrepancies were found
by Bell et al. ' who considered certain bending vibrations
in the molecules of a number of benzene derivatives.
All of these calculations are based on the rather drastic
assumption that the tensor effective charge can be
approximated by a scalar representing a point charge
residing on and moving with the ion. The sizeable
discrepancies between calculated and measured in-
tensities are probably' due to this assumption.

An experimental investigation of the intensities of
the infrared active fundamental vibrations of quartz
has recently been completed. ' With the information
provided by this investigation it now becomes possible
to treat the effective charge problem in quartz. It is
proposed in the present work that the infrared in-
tensities in quartz can be accounted for on the basis of
a simple kind of tensor effective charge suggested by a
valence bond picture of the quartz crystal. Comparisons
between theory and experiment are presented for the
four infrared active —Raman inactive vibrations based
upon new calculations of the normal modes of vibration.
The Raman intensities reported by Krishnan" for these
vibrations are found to be consistent with a scalar
polarizability coefhcient which depends only on the
Si-0 distance. The local 6eld problem is not considered
in this paper beyond pointing out that the effective
charges obtained seem physically reasonable. Detailed
consideration is given to the problem of calculating
the normal modes of vibration and to the physical
nature of the modes.

Of particular interest is the mode of wave number
207 cm ' which is Raman active —infrared inactive.
According to Raman and Nedungadi" the excitation
of this vibration with increasing temperature is re-

4 B. D. Saksena, Proc. Indian Acad. Sci. A22, 379 (1945).' B. I. Stepanov and A. M. Prima, Optika i Spektroskopiya 4,
734 (19S8).' D. M. Dennison, Phil. Mag. 1, 216 (1926).

7 R. Rollefson and R. Havens, Phys. Rev. 57, 710 (1940).
8 R. P. Bell, H. W. Thompson, and E. E. Vago, Proc. Roy. Soc.

(London) 192, 498 (1948).'%. G. Spitzer and D. A. Kleinman, Phys. Rev. 121, 1324
(1961).' R. S. Krishnan, Nature 1SS, 452 (1945)."C. V. Raman and T. M. K. Nedungadi, Nature 144, 147
(1940).

sponsible for the n-p phase transformation in quartz at
575'C, Narayanaswamy" has reported that as the
transformation temperature is approached, the Raman
line at 207 cm ' broadens remarkably, shifts to lower
frequency, and ultimately disappears. It is therefore of
considerable interest to compare the appropriate calcu-
lated mode of vibration with the motions of atoms in
the n-P transformation. This comparison is presented
here and reveals a striking similarity.

Two approaches have been proposed for under-
standing the essential features of the vibration spectra
of quartz. Matossi" has attempted to account for the
vibration frequencies of several silicate minerals in-
cluding quartz by considering the Si04 tetrahedron.
All silicates exhibit infrared bands near 1000 and 500
cm ' which are interpreted as the two active frequencies
of the tetrahedron. The tetrahedron also has inactive
frequencies corresponding to wave numbers near 770
and 360 cm '. Matossi points out that bands are
observed in quartz near all four of these frequencies.
In spite of this superficial correspondence of frequencies
the normal modes of quartz cannot be deduced in any
straightforward way from those of the tetrahedron.
Barriol'4 has suggested that the vibrations of quartz
may be in first approximation the same as those of p
quartz. Because of the higher symmetry of p quartz
it is much easier to calculate its modes and frequencies,
and these can be assigned to the appropriate symmetry
species of quartz. "'5 This approach provides an
attractive explanation for the intensities of the doubly
degenerate (species E) infrared lines. In P quartz there
are eight doubly degenerate vibrations, four of which
are inactive in the infrared spectrum. This suggests
that of the eight doubly degenerate vibrations in quartz
four should be weak and four should be strong in
agreement with experiment. ' The same argument
applied to the eight nondegenerate vibrations, however,
does not give results in agreement with experiment.
Both the central force model of Barriol and the valence
force model of Saksena and Narian" predict zero
frequency for the vibration corresponding to the 207-
cm ' Raman line. It seems therefore that the p-quartz
model cannot be used to discuss the relationship of this
vibration to the cr-P transformation. Since neither of
these approaches is suitable for quantitative calcula-
tions they will not be considered further in this paper.

In the present work it is proposed that the vibrations
of quartz are best understood by considering the
motions of the 0 atoms relative to their Si neighbors.
The valence bond picture of quartz suggests that the
0 atom may vibrate with respect to its neighbors along
three mutually orthogonal directions with quite di6erent
frequencies. Therefore the normal modes are expanded

'2 P. K. Narayanaswamy, Proc. Indian Sci. Sci. A28, 417 (1948).
'3 F. Matossi, J. Chem. Phys. 17, 679 (1949).' J. Barriol, J. phys. radium 7, 209 (1946).
'~ B. D. Saksena and H. Narian, Proc. Indian Acad. Sci. A30,

128 (1949).
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in terms of these 0 motions combined with appropriate
Si motions. The normal modes and frequencies are
obtained on the assumption of the usual valence force
model" previously used for quartz by Saksena. " For
simplicity, consideration is limited to the eight non-
degenerate modes of vibration. The effective charge
problem in quartz divides itself naturally into three
parts, the normal modes, the infrared intensities, and
the Raman intensities, which are treated in Secs. II,
III, and IV, respectively.

II. NORMAL MODES OF VIBRATION

Formulation

A projection of the atoms in a unit cell of quartz
onto the basal plane (normal to the triad axis) is shown
in Fig. 1. The atoms are numbered according to the
notation of Saksena" where numbers 1, 2, 3 are Si and
4 through 9 are 0 atoms. The Cartesian coordinates
of each atom are given in Table I, referred to the x, y
axes shown in Fig. 1 and a s axis normal to the basal
plane, based on data furnished by Wyckoff. " Also
given in Table I are the Cartesian components of the
unit vectors y between neighboring Si and 0 atoms
associated with the tetrahedron of atom 1. Since some
of these atoms are not part of the unit cell of Fig. 1
their numbers are primed. It may be noted that the
Si atoms do not lie at the hexagonal vertices in the
basal plane. In the n-P transformation the Si atoms
move out to the vertices and the 0 atoms move to
planes bisecting the angles between the Si atoms. The
projection of the motion of atom 4 is shown by the
heavy arrow in Fig. 1. Table II gives the atomic

TwsLE I. Cartesian coordinates in angstroms of the atoms
according to the numbering of Fig. 1. Also given are the unit
vectors g representing the bonds belonging to silicon tetrahedron 1.

Atom

1 silicon
2
3

4 oxygen
5
6
7
8
9

1~4'
1 —+9
1 —+ 6'
1~7'
4~3'
9~2'
6'~ 2"
71 ~ 3/1

2.280—1.140—1.140

1.368
0.316—1.684—1.684
0.316
1.368

—0.566—0.566
0.586
0.586—0.036—0.036
0.341
0.341

0
1.974—1.974

1.155
1.760
0.607—0.607—1.760—1.155

0.720
—0.720

0.379—0.379
0.694

—0.694
0.850—0.850

0—1.796
1.796

0,647—2.443—1.149
1.149
2.443—0.647

0.402—0.402—0.716
0.716
0.716—0.716—0.402
0.402

displacements of the Si 1 tetrahedron in the n P-trans-
formation.

The symmetry elements of quartz are a triad screw-
axis normal to the basal plane through the origin of
Fig. 1 and diad axes through each Si atom intersecting
the triad axis. The unit cell has the symmetry group
D3 if displacements of the translation lattice are
considered equivalent to the identity operation.
Saksena' has shown that the 24 vibrational degrees of
freedom of the unit cell can be classified according to
symmetry as follows": four of species A &, n.ondegenerate
totally symmetric Raman active —infrared inactive;
four of species Ar, nondegenerate Raman inactive—
infrared active in the extraordinary ray; eight of
species E, doubly degenerate Rarnan active —infrared
active in the ordinary ray. These vibrations correspond
to the vibrations of quartz having the periodicity of
the lattice, the so-called optical nibrations.

90

FIG. 1. Projection
of the atoms of the
unit cell of quartz
onto the basal plane.
The arrow shows the
n-P transformation.

I

3A

"G. Herzberg, Infrared and Raman Spectra of Polyatomic
3IIolecztles (D. Van Nostrand Company, Inc. , Princeton, New
Jersey, 1945), Chap. II, Sec. 4."B.D. Sakaena, Proc. Indian Acad. Sci. A16, 270 (1942l.' B. D. Saksena, Proc. Indian Acad. Sci. A12, 93 (1940).

' R. Wycko8, Crystal Strzrctz~res (Interscience Publishers, Inc. ,
New York, 1951).

Therefore, it must be possible to reduce the problem
of determining the frequencies co to two secular equa-
tions of degree 4 in co' and one of degree 8. This reduction
is best done by writing the equations of motion in
terms of symmetry coordinates, which are linear combi-
nations of the coordinates of all the atoms in the unit
cell so constructed as to form bases for the symmetry
species. If the species occurs only once in the vibrations
the symmetry coordinate is also a normal coordinate.
In other cases the symmetry coordinates are not
necessarily normal coordinates but linear combinations
of normal coordinates of the same species. Nevertheless,
the hope exists that one might intuitively construct
symmetry coordinates which are approximately normal

"The notation follows that of Herzberg (see reference 16).
The term species designates an irreducible representation of the
symmetry group. Species A& and A& are called class A and 8,
respectively, in the notation of Saksena (see reference 18).
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m q, qk =tk, b;k, (2)

where m is the mass of the 0.th atom and the sum is
over the unit cell. The constants p;, which specify the
normalization, may be considered to be the masses of

TABLE II. Atomic displacements in the a-P transformation.

modes, although this is more difficult in crystals than
in molecules. Saksena" has given symmetry coordinates
for quartz and diagrams showing the corresponding
atomic motions. It does not appear that any consider-
ation of the atomic motions went into the construction
of these symmetry coordinates, so they probably have
no physical significance.

It is convenient to refer to the atomic displacements
corresponding to a symmetry coordinate as a symmetry
mode. A symmetry mode j is specified by a set of
vectors q; which gives the displacement of each atom
n of the unit cell. An arbitrary displacement may be
expanded in the symmetry modes

x =P, q;Q;,
where Q; are the symmetry coordirtates of the arbitrary
displacement. The q, may be chosen orthogonal to
one another such that

TABLE III. Unit vectors g, rf, ( for the three types of 0 motion

Atom

0.860—0.042
0.510
0.466—0.724
0.510

—0.393
0.766
0.510
0.393
0.766
0.510—0.466—0.724
0.510—0.860—0.042
0.510

—0.317
0.744
0.588—0.802—0.098
0.588—0.486

—0.646
0.588
0.486—0.646
0.588
0.802—0.098
0.588
0.317
0.744
0.588

—0.404—0.667
0.626
0.375
0.682
0.626
0.780—0.017
0.626—0.780—0.017
0.626—0.375
0.682
0.626
0.404—0.667
0.626

where the sum extends over only the symmetry modes
of a particular species, and Qik, Qsk, , Q, k,

satisfy the equations of motion for a frequency eigen-
value col, . Regardless of whether the symmetry modes
are orthogonal, the normal modes must satisfy

m ilk 11) =mk8k(,

Atom

1
4
9
6'
7/

0.17
0.08
0.08
0.23
0.23

y (A)

0
—0.32

0.32
0.23—0.23

s (A)

0
0.25—0.25
0.25—0.25

where mI, may be considered the mass of the kth mode.
An arbitrary displacement may be expanded in the
normal modes

X = Qk 11k lVk)

the symmetry modes. For orthogonal modes the
symmetry coordinates are given by

Q, =P (m /tk;)q, ' x .

If the symmetry coordinates are given in the form

Q (x)=Q v, x,

(3)

q "= (tk /m )vt . (6)

The orthogonality relation for symmetry modes is
written in the form (2) since this is the relation satisfied
by the normal modes of vibration, It is not essential
that the symmetry modes be orthogonal. For non-
orthogonal modes the Q; are defined by (I), but (3) is
not valid. The equations of motion for the Q; can be
obtained, however, without obtaining explicit expres-
sions of the form (4) for Q;.

The normal modes of vibration can be written

11k"=Z~' qt Qt»

where the components of v are constant coefficients,
then the orthogonality relation (2) takes the form

Q~(m )-'vt vI, ——P,-'beak.

If (5) is satisfied, the mode vectors are

where the S~, are the normat coordinates of the displace-
ment.

As a starting point for the present work, predicted
motions for the 0 atoms of quartz were used to con-
struct new symmetry modes. Each 0 atom is bonded
to two Si atoms with bonds of nearly equal length
making an angle of 144'. If y and y' are unit vectors
pointing along the bonds toward the Si atoms, the
vectors y+p', y

—p', and p&(p' define three mutually
orthogonal directions which are designated $, rt, and i
respectively. The unit vectors g, rf, and ( for each 0
atom of Fig. 1 are given in Table III. The sign of each
vector has been chosen to make all the s components
positive. It may be expected intuitively that the 0
atoms move along one of these three directions in
many of the normal modes of vibration. In particular,
the highest frequency mode in any species should
involve motions of the g type, since this motion stretches
and compresses the bonds. Also the lowest frequency
mode should be of the i type which does not change
the bond lengths. Therefore, symmetry modes con-
structed from the g, rf, and ( vectors might be expected
to have physical signi6cance. Although symmetry
modes for species E can be constructed from these
vectors, consideration here will be limited for simplicity
to species A~ and A~.

Four symmetry modes are required to represent the
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Q„~=r~ for o.'=1) 2) 3) (10)

where $, q, i are given in Table III and the atoms are
numbered as in Fig. 1.

The sets of (, q, ( vectors given in Table III con-
stitute symmetry coordinates for A2 with the signs as
given. It will be noticed, however, that in these modes
all of the 0 atoms move in the same sense along the s
axis so that the center of gravity of the unit cell is
not at rest. If only four symmetry modes are to be
used, it is essential that they be orthogonal to a rigid
motion of the unit cell along the s axis. To keep the
center of gravity at rest a Si motion along s can be
combined with the 0 motions of $, g, f Afour. th
symmetry mode is needed to represent tangential
motion of the Si atoms around the triad axis. If t is a
unit tangential vector in the counterclockwise sense of
rotation, the A~ symmetry modes can be written

(A2): e =& for a=4, 5 9
= —(2jn,/jmo)$, x for a=1, 2, 3;

similarly for q, (;
q& =t for O.=i, 2, 3,

where z is a unit vector in the s direction, and m„mo
are the atomic weights of Si and 0, respectively. These
modes are less convenient than those of (10) because

qg, g, , gt are not mutually orthogonal, although
they are orthogonal to q& . The main difhculty intro-
duced by the nonorthogonality is that the secular
equation for the frequencies is more difhcult to reduce
to polynomial form. It turns out that the nonorthogo-
nality does not seriously interfere with the character-
ization of the normal modes in terms of the 0 motions.

The kinetic energy expressed in symmetry coordi-
nates is

where

~ ~

2 =2Zij jiijQiQj&

j v=2-~ e"aj'.

(12)

(13)

For orthogonal modes p;;=8;;p;. The kinetic energy

most general vibration of species A». Three of these
can be 0 motions of the $, g, i types, and the fourth
must involve Si motion along the radial direction in
the x, y plane. If r is a unit vector in the x, y plane in
the outward radial direction representing Si motion,
the symmetry modes for A & can be designated r, ], q, i'.
These modes are orthogonal according to (2) and have
the masses 84.18, 96, 96, and 96, respectively, if m is
expressed in atomic weights. In constructing the $, &t, i
modes care must be taken to choose the correct sign
for the vectors of Table III for each atom. For A» the
symmetry modes are defined by

(A&): qp=+P for n=4 6 8

for n=5 7 9
similarly for g, (;

Vi, s&= 2& Ps&(h cose)'d',

Vt, ,o = -,'E"Qo(A cose)'d',
(19)

where Ps; is over all Si bond angles (six for each Si
atom), and go is over all 0 atoms of the unit cell.
Expressions for V„V&,s;, and Vg, o in terms of symmetry
coordinates are obtained by substituting the appro-
priate x from (1) for x, x„x,', x, in (17), (18), and
(19). The general form for the equations of motion in
terms of T and V is

if BT(Q) BV(Q)

dt BQ; BQj

A» Modes

(20)

Consider first a pure stretching model in which
V= V,. This model should be a good approximation
for the-highest frequency normal mode. For the A»
symmetry coordinates

V&= ~aEE3 98Q,'+10.86Qw2

+1.164Q»2+2(6.57)Q,Q„), (21)

where very small terms in Q„Q» and Q,Q» have been

for the A ~ symmetry modes (10) is given by

~.,=-;.,Q:+-,.(Q»+Q;+Q»), (14)

where p„=84.18 and p, =96 measured in atomic weights.
For the A2 symmetry modes (11)

Tg, = —,'p&[Q&2+ (0.339)Q»'+ (0 450) Q '+ (0.510)Q»2

+2(0.391)Q»Q„+2(0.479)Q„Qr
+2(o 416)Q»Q» j+l j (Q»'+ Q.'+Qr') (15)

where p~= 84.18.
The potential energy will be written as the sum of

three terms
V= V.+Vis+ V, r,o, (16)

representing the stretching of bonds, the bending of
the Si bond angles, and the bending of the 0 bond
angles, respectively. If y is a unit vector representing
some bond, and x, and x,' are the atomic displacements
at the two ends of the bond, the stretching energy may
be written

V, = ,'I& Q, L(x-, —x,') y]', (»)
where the sum is over all bonds with one end termi-
nating on a Si atom of the unit cell. The change in
the angle 0 between two bonds, y and p', of an atom
may be written as

0 cosg=f»& —t&'(»&»&')] (x —x)d—'

+Le' —e(e e') j(x,—x)& ', (18)

where d is the Si-0 distance=1. 60 A, y and y' extend
outward, x, and x, are the displacements of the
respective neighbors, and x is the displacement of the
atom. The bending energies may then be written
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neglected. Since Q» does not appear in V„ it is a normal
coordinate belonging to zero frequency in the pure
stretching model. Also Q» is a normal coordinate since
it enters TA, and V, only as Q»' and Q»s. The equations
for Q, and Q, are

3.98E p„a—t' 6.57E Q, 0 (22)6.5E 10.86E—poP Q

The solutions and frequencies are

—1.65
100 (23)

0 69 (3.98 10.86)
00 j c04 =E] +Ep„p I

(24)

n4 ——C[(0.69)q,+q„], (26)

where cs is 2~ times the frequency. The mode (24) is
to be identified with the highest A» wave number'
1082 cm ', which gives for the stretching force constant

E=4.32X 10' dyne/cm. (25)

The normal modes of vibration will be denoted by
n&, n2, n3, n4 in order of increasing frequency. It is
assumed temporarily that n4 is given correctly by the
pure stretching model:

q», q», q&= [(—1.65)q„+q„$, q4= n4, (27)

which are orthogonal and have masses p, g=p~=96,
p, &= 325, and @4=136C', respectively. The kinetic
energy in coordinates Q», Q&, Q» is

(P»Q» +fI &Q& +fJ»Q» )

and the three potential energy terms are

V,= -', E(1.164)Q»s,

Vs s;———,'K'[(51.6)Q s'+ (26.2)Q»s

+ (20.6)Q»s+2 (6.03)Q »Q»

+2(744)Q Q -2(» 3)Q»Qa,

Vs,o= sE"[(136)Qs'+(747)Q»'+2(3 18)QsQ»l.

(29)

The normal modes are the solutions of the matrix
equation

where C is a normalization factor to be specified later.
The other three modes given by the stretching model
will be used as the basis for n~, n2, n3 in a calculation
which includes Si and 0 bending forces. This procedure
has the advantage of reducing the secular equation
from fourth to third order for the determination of the
bending constants E' and E". Therefore let new
symmetry modes be defined by

20.6E'—p]a)'
7.44@'

—15.3E'

7.44K'
51.6E'+1.36E" ps(u'—
6.03E'+3.18E"

—15.3E' Q»
6.03E'+3.18E" X Qs ——0.

1 164K+26 2.E'+7 47E." p»&a' . Q—»

(30)

where
as ats+a—ss' s'= 01—

as ——0.978+0.517e+0.0944K+0.00262 e)t)

ar =4.165+1.156e+0.175)t+0.00196e)t,

as =4.020+0.510e+0.0754K.

(32)

(33)

The cubic equation (32) may be solved easily by trial
and adjustment when values have been chosen for X

and e.
A number of calculated frequencies and the experi-

mental ones"' are given in Table IV. All of the cases
calculated satisfy the condition that the product of the
calculated frequencies equals the product of the meas-
ured frequencies. This condition provides a relation
between) and e.

If we define the dimensionless quantities

),=K/K', e= K"/K', f=a&/~, , and s= Xf' (31)

then the secular equation for the frequencies can be
written

TABLE IV. Calculated frequencies f=a&/au4 for several choices of
the bending force constants. The deviation D is deaned in i35).

Calculated

10 12 13 14—2.2 —1.6 —1.0 —0.5
15
0

16
1.0

Experi-
mental

Outside the range of X, e indicated in Table IV, D
increases rapidly.

The normal modes have been calculated for two of
the cases of Table IV, X=15, &=0 and X=12, e= —1.6.
The signi6cance of negative e will be discussed later.
It is convenient to normalize the normal modes to
have a mass of 100 (atomic weight), i.e., rNA=100 in

(8) and C=1.36 '* in (26). The normalized modes
obtained from (30) for X= 15, e=0 are given in Table V
along with the calculated and observed frequencies
expressed in wave numbers. The normalized mode
vectors for each atom in the unit cell are given in
Table VI in the Cartesian coordinates of Table I and
Fig. 1.These vectors are to be considered dimensionless.

us('A, e) =0.000734K'. (34)

The quality of agreement between calculated and
measured frequencies can be estimated by the quantity

D= 2[1—(f/f-. )7 (35)

fl
f2
f3

D

0.180 0.194 0.199 0.198 0.199 0.194 0.191
0.308 0.295 0.295 0.292 0.289 0.289 0.329
0.487 0.467 0.466 0.469 0.469 0.487 0.432

0.024 0.017 0.019 0.022 0.024 0.031
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It may be readily veri6ed from Table VI that they
satisfy (8) with m)&=100. The normalized modes for
~= 12, e= —1.6 are given in Table VII. No 6gures are
given here to show the normal modes because it is
very dificult to exhibit graphically their essential
properties.

The validity of the approximation of separating out
the highest frequency stretching mode will now be
examined. The equations of motion (20) for the normal
coordinates E», ~ S4 corresponding to the normalized
modes n», , n4 of Table VI and the valence force
system X=15, e=O may be written

81.5—2.11@' —0.443
—0.443 17.8—2.08 p'
—1.81 0

0.411 0

—1.81
0

6.70—2.09' '
0

0.411
0
0

3.09—2.09q 2,

rg
Ã2

X4

(36)

where y'=co'mo/E' The .off-diagonal terms in the first
row and column connect the pure stretching mode n4
to the other three modes through the Si bending force.
By expanding the secular determinant of (36) into
polynomial form it can readily be shown that the effect
of the off-diagonal terms on the frequencies is com-
pletely negligible. By perturbation theory it can be
shown that the greatest eGect on the normal modes is
a 2% mixing of modes 4 and 2:

n4 ~ n4 —0.024n2, n2-+ n2+0.024n4. (37)

The procedure leading to (30) is therefore justified.

A2 Modes

The normal modes and frequencies of species A, ~ can
be calculated by using as a basis the symmetry modes
given by (11).Since three of the four symmetry modes

are not mutually orthogonal, the secular equation will
be more complicated in this case than for the A» modes.
The kinetic energy for the A2 symmetry modes (11)
is given by (15). The potential energy terms V, and
t/"&, p; are given by

V,= -',E{1.324Q 2+0.683er2+8.44Q,'+1.055QP
—2(0.0274)Q Q

—2(0.674)e Q„
+2 (0.660)Qie)+ 2 (2.16)Q re „

+2(0.690)Q Q +2(1.876)e„e(},
39

Vi, si = i2E'{4 78QP+13 79Qr2+2 80Q„'+11 16QP
+2(2.29)eier+2(0. 729)ege„
-2(394)e e~+2(6»)ere,

+2(8 14)ere~+2(401)e.ea
It will be assumed that V~,o=O corresponding to the
case A, =15, &=0. The normal modes and frequencies
are then solutions of the equations

' 24.6—g'
2.29

—9.38
5.96

2.29
24.0—1.65g'
38.6—4.79g'
18.5 —0.416g'

—9.38
38.6—0.479g'
129—1.59g'

32.2—0.391g'

5.96 ~eg
18.5—0.416g' Qr
32.2—0.391g' Q
27.0—1.48g' QI

(40)

where g'= ale, /E' and m, is the mass of the Si atom
(absolute units). The secular equation in polynomial
form is

128 883 42 845g2+4109g4 126gsygs —0 (41)

and the roots of this equation are g'=5.20, 10.79, 28.0,
and 82.1. The frequencies obtained are compared with
the observed frequencies' in Table VIII. Also given are
the normal modes, which are normalized according to
(8) with et~ —100. The normal modes —are orthogonal,
although this is not so easy to verify in the form given

TABLE V. Normal modes for the three lowest A1 frequencies
(wave numbers s given in cm ') with X=15, a=0.

in Table VIII. In Table IX the normal mode vectors
for each atom are given in Cartesian form, from which
the orthonormality can readily be veriied.

It will be seen from Table VIII that the agreement
between calculated and observed frequencies is poorer
than was obtained for A». The deviation defined by
(35) has the value a=0.07, and the wave number
product is 1.1&(10»» cm 4 compared with the observed
value of 1.5)&10»». The valence force constants were
chosen to make the highest frequency and the frequency
product of A» agree exactly with experiment, In Ag no
adjustable parameters are used, so that the poorer
agreement is not surprising. The maximum fractional
error in Table VIII is for the 364-cm ' mode for which

) (voai~/sobs) —1 j
—0.18.

&calo
At

&obs

Q&
Qs
0&

215
207

0.706—0.347
0.372

313
356

0.584
0.433
0.260

507
467—0.446

0.0171.
0.917

D$$cs$$$0%

Normal modes and frequencies of species A» and A2
have now been obtained for a valence model. The
highest frequency Ai mode and the stretching constant
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TABIE VI. Normal modes of vibration (A&) in Cartesian form. TAsrE IX. Normal modes of vibration (A&) in Cartesian form.
The normalization is chosen to make the masses of (8) equal to The normalization is chosen to make the masses of (8) equal to
100 atomic weight units. 100 atomic weight units.

Mode
Vobs

(cm)
—' 207

0.573
0
0

—0.286
0.496
0

—0.286—0.496
0

0.145—0.745
0.428

—0.716—0.246—0.428

0.573
0.497
0.428

0.573—0.497—0.428

—0.716
0.246
0.428

0.145
0.745—0.428

356

—0.714
0
0

0.357—0.619
0

0.357
0.619
0

—0.150—0.078
0.753

0.007—0.168—0.753

0.143—0.091
0.753

0.143
0.091—0.753

0.007
0.108
0.753

—0.150
0.078—0.753

467

—0.028
0
0

0.014—0.024
0

0.014
0.024
0

0.963
0.272
0.199

—0.246
0.970

—0.198

—0.717
0.699
0.199

—0.717—0.699—0.199

—0.246—0.970
0.199

0.963—0.272—0.199

1082

0.589
0
0

—0.294
0.510
0

—0.294—0.510
0

—0.270
0.635
0.502

0.684
0.084—0.502

—0.415—0.551
0.502

—0.415
0.551—0.502

0.684—0.084
0.502

—0.270—0.635—0.502

Mode
&obs

(cm ') 364

0
0.008
0.215

—0.007—0.004
0.215

0.007—0.004
0.215

0.751
0.634—0.189

—0.172—0.966—0.189

—0.924
0.334—0.189

0.924
0.334—0.189

0.172—0.966—0.189

—0.751
0,634—0.189

0
0.543
0.405

—0.471—0.272
0.405

0.471—0.272
0.405

—0.552
0.453—0.357

—0.666
0.251—0.357

—0.118—0.702—0.357

0.118—0.702—0.357

0.675
0.251—0.357

0.552
0.453—0.357

778

0—0.935
0.319

0.809
0.467
0.319

—0.809
0.467
0.319

—0.289
0.163

—0.279

—0.285
0.169—0.279

0.003—0.332—0.279

—0.003—0.332—0.279

0.285
0.169—0.279

0.289
0.163—0.279

1080

0—0.141—0.568

0.122
0.071—0.568

—0.122
0.071—0.568

—0.275
0.646
0.497

—0.696—0.085
0.497

—0.423—0.561
0.497

0.423—0.561
0.497

0.696—0.085
0.497

0.275
0.646
0.497

S.;ic (cm ')
sobs (cm ')
Q|.
Qs
Q~

210
207

0.743—0.238
0.546

319
356

0.293
0.500
0.330

505
467—0.636
—0.0451

0.795

E were obtained directly by fitting the experimental
wave number 1082 cm ' with E'=E"=0. tWe will

identify modes throughout the rest of the paper with

TABLE VII. Normal modes for the three lowest AI
frequencies with ) =12, &=1.6.

ment with experiment as shown in Table IV providing
E', E" are within the acceptable range. Since the
deviation D is slowly varying in this range it is difIIicult

to determine E', E"more precisely from a consideration
of frequencies alone. The calculated A& frequencies
agree with experiment to within 12%, which is typical
of the accuracy of valence force calculations for mole-

TABLE X. Comparison of calculated and observed wave numbers
(in cm ') for species Ar and A2.

v„i, (cm ')
~obs (Cm ')
Q~
Qt.
Q~
Qp

298
364

0.008—0.845
0.124
0.523

433
495

0.544—0.303
0.300—0.673

697
778

0.935
0.167—0.047
0.397

1190
1080

0.147
0.009—0.894
0.007

their wave number, the units (cm ') being understood. ]
It was subsequently shown that this is a valid procedure.
The remaining A& frequencies are in reasonable agree-

TABLE VIII. Normal modes for the four A& frequencies
with X=15, a=0.

Observed

A1
1082
466
356
207

A2

1080
778
495
364

Present
work

1082
507
313
215

1190
697
433
298

a See reference 17.
b See reference 4.
& See reference 14.

1082
484
330
208

1087
508
310
195

1200
466
272

0

1160
809
489
149

1190
660
400
318

Saksena' Saksena Barriol'
(1942) (1945) (P Quartz)
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TABLE XI. Summary of information on force constants
relevant to quartz.

Matenal

Quartz

E
(105

dynes/cm)

4.32
4.32

(sin'8') E'
(105

dynes/cm)

0.24
0.39

(sin'e") E"
(105

dynes/cm) Reference

0.093—0.33
present

work

Quartz

Quartz

P Quartz

Zircone

5.065
5.01
4.98

4.5

4 48

4.0

0.9491
0.51
0.61

0.5116
0.41
0.18

17
3

15

13

14

13

SiH4
SiC14
SiF4

HQO
ClQO
FQO

2.8
3.8
7.2

0.19
0.16
0.25

0.69
0.41
0.55

16
16
16

16
16
16

"Wilson, Decius, and Cross, 3lolecllar Vibrations (McGraw-
Hill Book Company, Inc. , New York, 1955), p. 174.

cules."The calculated A2 frequencies without further
adjustment of force constants agree within 18%. The
arbitrary choice of ) = 15, t.=0 in Tables VI and IX,
which give the Cartesian components of the normal
modes, is an acceptable one and has the advantage of
simplifying the model and the calculations.

For purposes of comparison the frequencies calculated
here for X=15, &=0 are listed in Table X along with
the observed frequencies' and the calculated frequencies
of Saksena (1942),'r Saksena (1945),4 and Barriol. '4

The significance of the work of Barriol on P quartz has
already been discussed in the Introduction. The most
extensive calculations in the literature on quartz are
those of Saksena. For the A~ modes the present work
is in substantial agreement with Saksena (1945), which
was based upon a valence force model including O-O
repulsion. The force constants were obtained by fitting
the elastic constants c» and c», and the frequency
expressions +cued and g'P'~;s~P(st�) using the At
frequencies. The A2 frequencies were calculated for the
same force constants. Three of the A2 frequencies are
in somewhat better agreement with experiment than
the present work. The lowest frequency, however, is
very much in disagreement with experiment. The
normal modes belonging to these frequencies are not
given. Although Saksena does not comment on this
fact, his earlier paper (1942) on the frequencies and
normal modes of A~ reported much better agreement
with experiment. The modes which he obtained for A~
are not in agreement with the present work.

The force constants for quartz along with those for
several silicate minerals and several molecules contain-
ing Si or 0 are given in Table XI. The first two rows

give the results obtained here for the extreme cases of
Table IV, X= 16, e= 1 and ) = 10, e= —2.2. The bending
constants are listed in the form (sin'8')E' to agree with
the customary definition for the bending force con-
stant. " The Si bond angles are considered to be all
equal to 0'=109', and the 0 bond angle is 8"=144'.
The next three rows give results obtained in various
calculations by Saksena et al. The sixth row gives a
result reported by Matossi from qualitative consider-
ations on the SiO tetrahedra in quartz. The remaining
data on minerals and simple molecules containing Si
and 0 are included for comparison. It will be seen
that the E obtained here agrees well with that of
Matossi" and Barriol" but is considerably smaller
than that of Saksena. '' ' The Si bending constant
(sin'8')E' is in reasonable agreement with those found
in molecules but much smaller than that of Saksena.
The 0 bending constant (sin'8")E" is much smaller
than either Saksena's or those found in simple mole-
cule s.

Of particular interest is the negative E", which
according to Table IV gives optimum agreement with
measured frequencies. It may at erst seem surprising
that negative bending force constants are allowable in
the theory. This may be understood by considering the
potential energy as a function of bond angle for oxygen.
The potential energy would presumably have a mini-
mum at some angle near 0" 90' corresponding to
covalent bonding of the p electrons. " At some angle
8" 135' the potential energy has an inAection point,
and at 0"=180' it has a maximum. Since the bending
force constant is the second derivative of the potential
energy it must be positive near 0" 90', zero at the
inQection point, and negative for greater angles. The
bond angle in the molecules H20, C120, F20 is about
8 105' where (sin'8")E" should be positive and large.
In quartz, on the other hand, 8"=144' where (sins8")E"
should be small and possibly negative.

Symmetry modes for quartz were proposed by
Saksena" as a first step toward understanding the
optical vibrations. He originally assigned observed
frequencies to these symmetry modes, but his later
calculations4 ""showed that they are not approximate
normal modes. Saksena's symmetry modes, '4 chosen
with a view of the symmetry of the unit cell, consist
of Si and 0 motions normal to and in the basal plane.
It is possible, however, that the motions of the indi-
vidual atoms are determined less by the symmetry of
the unit cell than by the local environment of the
atoms. This point of view is supported by the similarities
in the spectra of quartz and vitreous silica."A con-

' Eyring, Walter, and Kimball, Quantum Chemistry (John
Wiley 8z Sons, Inc. , New York, 1944), Sec. 12b."B.D. Saksena, Proc. Indian Acad. Sci. A19, 357 (1944).

Q4 The symmetry coordinates given by Saksena {seereference 18)
have been verified except for modes Q14 and Q15, where the
expression given for Q14& is actually Q»& and that given for Q»&
is actually Q14& ."I. Simon and H. 0. McMahon, J. Chem. Phys. 21, 23 (1953).
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sideration of the 0 motions in the Si-0-Si unit leads
to the symmetry modes based on the $, sI, ( vectors of
Table III.

The q motion, which is in the Si-0-Si plane in the
direction from one Si to the other, involves the greatest
potential energy of stretching. The highest frequency
Ai mode (24) consists of this motion combined with a
radial Si motion in the basal plane. This is the only
type of Si motion allowed in species A&. These two
motions combine in two ways, one of which is the high
frequency mode e4 given by (26), and the other is

essentially a rigid rotation of the Si-0-Si unit denoted
by q(( in (27). As shown in Table V this latter motion
is important in the 356 mode. The 207 and 467 modes

may be characterized as i and P modes, respectively.
The i motion would be expected to have a low frequency
since it is normal to the Si-0-Si plane and therefore
does not stretch the bonds. The potential energy of
the $ motion contains large contributions from both
stretching and Si bond bending. Thus the (, ri, i motions
of 0 provide a simple and satisfactory way of character-
izing the 207, 467, and 1082 vibrations of species A~.

The 356 mode of A~ cannot be well characterized in
the (, ri, i scheme. Saksena" suggested that this mode
is an 0 motion along the triad axis. According to
Table VI the 0 motion is in substantial agreement
with Saksena's prediction, and there is also a large
radial Si motion.

For the A2 modes it is necessary to combine with
the $, ri, f motions an axial Si motion. The modes are
given in Table VIII in terms of the f, rt, i coordinates,
which include the axial Si motion, and a coordinate
representing the tangential motion of Si atoms in the
basal plane. The normal modes are given in Table VIII,
which must be interpreted with some care, since the

$, rt, f symmetry modes are not mutually orthogonal.
Nevertheless the 1080 mode can be characterized as an

q mode, which is the expected result. The 778 is a
tangential Si motion in the basal plane. The lowest
frequency A2 mode 364 has an appreciable contribution
from the $ motion as well as the f motion, which

accounts for its frequency being considerably higher
than that of the lowest frequency A& mode. Neither
the 364 nor the 495 is simply characterized in the $, ri, i

scheme, although the dominant contributions are t and

j respectively. It is evident from Table IX, however,
that these modes involve radial and tangential 0
motions, respectively. "

gested that this mode is a radial Si motion in the basal
plane, but his later calculations did not con6rm that
this motion is a normal mode. According to the present
work this mode is best described as a motion of 0
atoms normal to the plane of the Si-0-Si unit. The
vectors of Table VI for the 207 mode may be compared
with the vectors of Table II giving the displacements
in the n Ptra-nsformation for the atoms of the tetra-
hedron of atom 1. The directions of motion and the
relative magnitudes of the Si and 0 motions are in
remarkable agreement. This establishes the connection
between this mode and the transformation. There is of
course no requirement that the mode agree exactly
with the transformation displacements. When the other
modes of Table VI are compared with Table II they
are seen to be unrelated to the transformation.

M=+. B x, (42)

where the tensor (dyadic) B is the effective charge for
atom o. and the sum extends over one unit cell. If 0
is the volume of the unit cell, the polarization is M/Q.
The real susceptibility p and conductivity 0 are defined

by

Mn-= x (43)

where g, 0- are tensors and E is an electric field with
the time dependence exp(2n. ivt). When the displace-
ments are expressed in the normal coordinates according
to (9), then (42) becomes

M=gs Es P B ns (44)

In the presence of the field E the equations of motion
for the EI, are

d2ÃI,
p«««««««+4 ' «'x«)=v (s M) (45)

dt

where V is the gradient operator on the coordinates
of atom n. By means of (8) and (44) this can be written

III. THE INFRARED INTENSITIES

General Theory

The theory of infrared absorption in crystals has
been given by Lax and Burstein. "The general expres-
sion for the electric moment to first order in the atom
displacements may be written

n-II Transformation
d2iVI,

+4s-'vis, V(,——mg 'E Q~ B~n(
dt2

(46)

It has long been known" ""that the lowest fre-

quency A& mode 207 is associated in some way with the
n Ptransformation a-t 575'C. Saksena" at first sug-

The solution to (46), when damping has been introduced
in the usual way, is

2 It is interesting to note that the 778 and 364 are essential]y
the symmetry modes Qs and Q6 respectively, of Saksena (see
reference 18) while the 0 motion in the 495 agrees with his Qg .
However, to Q8, Q6, Q9 he assigns the wave numbers 364, 777,
and j.149 cm '.

1
iV(, = — — E p B nk~,

4m'mi (vs' —v')+r'ysv vs

2' M. Lax and E. Bursteirr, Phys. Rev. 97, 39 (1955).

(47)
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where y~ is the width for the kth normal vibration in components for quartz. There are also 12 infrared
the notation of reference 9. From (43), (44), and (47) active normal vibrations, so that the effective charge
one obtains in dyadic notation problem in principle has a unique solution.

Separating real and imaginary parts gives

V2 p2

X=K~ popo'
(p 2 p2)2+~ 2p2p„2

2' pkV Pk
0'=~f PI &I

2

(p&2 p2)2+y~2p2p 2

(49)

where the strength p~ of the kth vibration is the tensor
(dyadic notation)

,(2-B» )(Z-B» ).
4m'Omj, vf,

' (50)

For the simple case of an isotropic diatomic crystal this
reduces to the usual form"

p =e*'/(4z'Qris*p'), (51)

where e* is the effective charge' and m* the reduced
mass. It will be seen from (8) that m& is an arbitrary
normalization constant, but the choice of normalization
does not affect p~.

The electrical neutrality and symmetry of the crystal
impose restrictions on the 8 . The neutrality condition
1s

Qs;B +Qp B =0.

Symmetry requires

(52)

(53)

where T is any symmetry operation, and )= To& with
the atomic indices considered as position vectors in the
unit cell. Symmetry enables 8~", 8'@ to be determined
from 8('), and 8(", . , 8 "& to be determined from 8&"
in the notation of Fig. 1. The xy, yx, xs, sx components
of 8"' vanish because the atom lies on a diad axis, but
there is no such restriction on 8(4&. It may be noted
that there is no requirement that 8 be symmetric.
Both sums in (52) have the form

u 0 0
Zs'B = 0

0 0

Therefore, (52) imposes two conditions on the 14
components of 8(" and 8(4& allowed by symmetry,
leaving a total of 12 independent effective charge

8 W. G. Spitzer, D. Kleinman, and D. Walsh, Phys. Rev. 113,
127 (1959).

1
g+—o=Zi—

27I z 4z' QrÃo (po p +s'rp„pvk)

&& (P B ne ) (Q B no ). (48)

Bs;(ionic) = eqI, Bo(ionic) = zeqI, —(55)

where l is the unit dyadic and e is the electronic charge.
The valent charges can be simply represented in terms
of a single parameter if the assumption is made that
the polarization of the Si-0 bonds depends only upon
the interatomic distance. In this case

Bs;"(valent) = —eQQ& ' yy

Bo (valent) =eQP'& yy,

where P& ' is the sum over the unit neighbor vectors y
of atom o&. Each term of the form aeQyy gives rise to
a moment directed along the bond and proportional to
the strain of the bond. On the basis of these consider-
ations it is proposed that the effective charges in quartz
can be represented in terms of two parameters q, Q

B = eqI —eQQ& &-yy silicon,

B = ,'eqI+eQQ' ' —yy—oxygen.
(57)

The components of the symmetric dyadics Q& & yy

TABLE XII. Components of the symmetric dyadics
Z&~& yy introduced in (56).

Atom xx

1 1.328
2 1 325
3 1.325
4 0321
5 1.204
6 0.456
7 0.456

1.204
9 0.321

xy

0—0.00173
0.00173—0.432
0.078
0.510—0.510

—0.078
3.432

0—0.0312
0.0312

—0.253—0.807—0.554
0.554
0.807
0.253

1.324
1.327
1.327
1.000
0.1166
0.865
0.865
0.1166
1.000

0.036 1.350—0.018 1.350—0.018 1.350
0.786 0.675—0.174 0.675—0.612 0.675—0.612 0.675—0.174 0.675
0.786 0.675

"F. Seitz, Moderrs Theory of Solids (McGrew-Hill Book
Company, Inc. , New York, 1940), p. 60.

~ L. Pauling, The 1Vature of the Chemical Bond (Cornell Uni-
versity Press, Ithaca, New York, 1960), p. 93.

Two-Charge Model

Quartz is classified" as a valence crystal primarily
because the number of nearest neighbors of each atom
is equal to the ordinary chemical valence of that atom.
Other reasons for this classification are its hardness,
high-cohesive energy, low-electrical conductivity, and
the fact that silicon comes from the center of the
periodic table. On the other hand quartz might also be
considered an ionic crystal because of its strong infrared
absorption and because 0 is highly electronegative. "
The covalent and ionic properties of quartz may be
expected to give rise to two distinct kinds of effective
charges, which are conveniently designated ionic and
~alert charges. Since the ionic charges are regarded as
residing on and moving with the atoms, they have the
form
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based on the p vectors of Table I are given for each
atom in Table XII.

The normal modes of species A2 given in Table IX
are so normalized that m~ corresponds to 100 atomic
weight units, or m~=1.67X10 "g. It follows that

200—

150—

100—

1NFRARED

(CALCULATED)

(e'/irQnsi) =3.9X 10'4 sec ' (58)
50— 40

It is convenient to define an experimental quantity

= 4irp»& /3 9X10 (59)

I8

I I I I I I I I I

which is readily obtained from Table XVI of reference
9. According to (50), Si,'"i' should agree with the
quantity

081c—(Q IInn„a) (P Ilan„a) (60)

Actually S&""as defined by (60) is a dyadic, but it has
only one nonvanishing component if n is a mode of
species A~. It is evident from (57) and (60) that 5'"'
is a quadratic form in q, Q. The coefficients of q', 2qQ, Q'
in the ss component of S~""are given in Table XIII
for each A~ mode. These coefficients have been com-
puted in a straightforward manner from the n~" of
Table IX and the Q & i Iiii of Table XII. The fourth
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TABLE XIII. Comparison of calculated and observed infrared
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column of Table XIII gives S~'"' for the choice

q=+3, Q=+3 (61)

It will be seen in Table XIII that the theory accounts
for the weakness of the 778 and accounts quantitatively
for the other intensities of species A~. The agreement
is noteworthy since the calculation depends both upon
the two-charge assumption (57) and the calculated
normal modes of Table IX. The modes 495 and 364
may be considered ionic in the sense that their intensity
is derived primarily from the ionic effective charge q.
The value of q' is therefore determined by the intensities
of these modes. The value of Q is obtained from q and
the intensity of the 1080. This causes the 778 to be
given the least accurately of all the modes, but this is
not surprising since its small intensity is due to the
large negative value of the 2qQ interference term. The
effective charge parameters g, Q must be of the same

The last column gives the experimental values S~' &.

A graphical comparison of the calculated and experi-
mental infrared frequencies and intensities is shown in
Fig. 2.

Discmssi oe

I'&G. 2. A comparison of the calculated and experimental infrared
and Raman intensities and frequencies.

e,=3g/(eG+ 2) (cubic), (62)

where eo is the dielectric constant at optical frequencies.
The factor 3/(ca+2) arises from solving the local field

sign, and their magnitudes are fixed by S'"& to within
about 10%. It is of interest that good agreement with
experiment is not obtained by considering only the
ionic effective charge. If one sets qAO, Q=O the 364
becomes the weakest mode, and the 1080 is only twice
as strong as the 495, only three times as strong as the
778. The conclusion that the ionic effective charge by
itself cannot account for the observed infrared intensities
concurs with the findings of Dennison, ' Rollefson and
Havens, 7 and Hell et al. ,

' on simple molecules. The
two-charge model used here for quartz may be equally
applicable for molecules, although this has not been
investigated.

It is not to be expected that q, Q can be readily
interpreted in terms of electron densities on the atoms
or in the bonds. For the cubic ionic crystals the number
of extra electrons residing on the negative ion can be
immediately determined from an expression given by
Szigeti'



I). A. KLL'l N MAN AN D WV. G. Sl'I I'ZEI&

problem for cubic crystals. There is no treatment of
the local field problem for quartz, and no formula like
(62) is available. If nevertheless (62) is applied it gives
the result that each oxygen atom carries one extra
electron.

The valent effective charge parameter Q may be
interpreted as a measure of the derivative of the ionic
charge with respect to small changes in the Si-0
distance. Changes in the ionic charge as the atoms
vibrate Inay be regarded as changes in the polarization
of the Si-0 bonds and produce electric moments along
the bonds. Since q, Q have the same sign, (57) shows that
the ionic effective charge decreases as the Si-0 distance
is increased. If (62) is applied to Q it gives the result
that the ionic charge changes by two electrons per unit
strain of the bond for small strains. These elementary
considerations suggest that the values (61) obtained
for q, Q are physically reasonable.

x= xo+Q; x,lV, , (65)

where Xo is the static susceptibility, X, is a dyadic
codFicient, and lV~ is the normal coordinate for the jth
normal mode of vibration. The intensity of the jth
mode for Raman scattering is proportional to the
square of the matrix element of X, which is

0 1

IP ) I'=— —1+, (66)
U 2m, (u, exp(A(o, /kT) —1

where U/0 is the number of unit cells in the crystal.
The absolute intensities of Raman lines are usually
unknown, but (66) is important in comparing the
relative intensities of Raman lines of different fre-
quencies.

The Raman intensity of the jth mode is also propor-
tional to

I
x, I' which must satisfy certain requirements

~' See reference 16, Chap. III, Sec. 1.

IV. THE RAMAN INTENSITIES

General Theory

The Raman effect considered here arises from the
dependence of the electric susceptibility p on the atomic
displacements from equilibrium. " The nature of the
interaction can be deduced quickly from the semi-
classical theory of radiation. Let the incident and
scattered electron waves be represented by

Er(r, t) = Er exp(ikz r—kurt)
63

Es(r, t) = Es exp(ik8 r i~at). —

The energy of interaction with the crystal is

W=Es*xEr expIi(kz ks) r——i(Mz —(a)s)t], (64)

where g is the dyadic susceptibility. To first order in
the displacements, p may be written

of symmetry. " In the usual theory of Raman eBect in
crystals it is assumed that the light is of such long
wavelength that it interacts only with phonons having
the periodicity of the crystal, the optical normal modes
of vibration. In this case the unit cells of the crystal
may be regarded as molecules having the symmetry of
the point group of the crystal. If a molecule has no
symmetry all vibrations are Raman active. In a
symmetric molecule, however, some vibrations may be
Raman inactive, which is to say that X; vanishes for
those vibrations.

The symmetry properties of the modes for Raman
scattering are easily formulated as follows: The suscepti-
bility dyadic must transform according to the relation

where T is an orthogonal transformation of coordinates.
In (67), x and T may be represented by 3)&3 matrices.
The operation of T on a function of the atomic coordi-
nates r may be defined by the relation

Tf(r) =f(T "). (68)

Simyle Stretching Model

It is generally found in the Raman spectra of simple
molecules that stretching modes have larger intensities
than bending modes. This tendency might be expected
to hold also in a valence crystal such as quartz. The
Raman intensities reported by Krishnan" are given in
the 6fth column of Table XIV. It is at first surprising

"G. Placzek, IIandblch der I'aChology (Verlag Julius Springer,
Berlin, 1934), Vol. 6, 2nd Ed., Part II.

"Saksena (see reference 18) has distinguished three kinds of
x; for species E vvhich he calls EI, E2, E3. This distinction is not
a necessary consequence of theory.

If now T is an operation of the point group of the
crystal p' can be written

(69)

where r'=T 'r represents the atomic coordinates in
the transformed system, and E represents the set of
normal coordinates. From (67), (68), and (69) is
obtained the fundamental symmetry requirement on p.

~(T&)=T 'x(&)T (70)

This shows that the static part of g must be invariant
to the symmetry operations, as is well known. The
first-order part of x must obey the relations

Q;X;TE;=Qp )VpT 'xI,T. —
(71)

The selection rules for the first-order Raman effect
follow from the application of the orthogonality rela-
tions of group representations to ('t1). The result may
be simply stated as follows: The only nonvanishing
components of X, are those which form a basis for the
species of S;. The form of X; for the Raman active
species 3 & and Eof quartz has been given by Saksena. ""
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TABLE XIV. Comparison of calculated and observed Raman
intensities for the A I frequencies.

v; (cm ')

1082
467
356
207

F (v;)

0.9
2.4
3.3
7.3

0.004
12
0.7
2.1

x'r(. ;)

0.004
29

2
15

Krishnan'

3
30

6
15

' See reference 10.

F(v) = 1+
exp (her/k T)—1

(73)

v being the wave number, The calculation of X; is
straightforward from the y of Table I and the n, of
Table VI. The calculated values of F(i;), XP, and XP F;
are given in Table XIV. A graphical comparison of
theory and experiment is shown in Fig. 2.

to observe that the stretching mode 1082 is the weakest
of all the modes. It will be shown, however, that the
observed intensities can be accounted for on the basis
of a simple model. Let it be assumed that each atom
has an isotropic (scalar) polarizability which depends
only upon the distances of its nearest neighbors. Kith
this assumption X, can be written, except for a non-
essential factor,

(72)

where Q' ' has been defined under (57), and Q is
over all atoms of the unit cell. It is convenient to
express the relative intensities by the quantity X, F(v;),
where F(v) is the essential factor from (66):

10'

X;=Po 6 cos9,, (74)

where 2 cos8 is given by (18).This model gives XQF(v, )
=0.5, 41, 13, 8 in order of decreasing frequency. This
model correctly predicts the strongest and weakest
vibrations, but comparison with experiment decidedly
favors the stretching model. Calculations were also
made for a more sophisticated model which leads to
anisotropic X; dyadics. It was hoped that this model
would predict the polarization properties of the Raman
scattering reported by Saksena. "Let it be assumed
that the vibrational Raman effect arises from a modu-
lation of the energy gap by the vibrations. This modu-
lation could arise from the changes in Si-0 distance
and also from the changes in ionic charge implied by
the nonvanishing valent charge parameter Q. It may
further be supposed that in the presence of an electric
wave the polarization induced by the vibration would
be in the direction of the bond and the resultant
polarization wouM be the sum of the contributions of
each bond. The mathematical expression of these
assumptions, except for a non-essential factor, is

These results are in disagreement with experiment in
regard to the ratio of the intensities of the two strongest
vibrations.

It may be of interest to report briefly on the results
obtained with two other models for the vibrational
Raman effect. Let it be assumed that the Raman effect
is due to the 0 atoms which have an isotropic polar-
izability depending only on the angle between the
bonds to the two neighboring Si atoms. Ke then write,
except for a non-essential factor,

Di sclssi or X =2-2"(e»')ee, (75)

It will be evident from Table XIV that this simple
model gives the correct order of the intensities, the
correct ratio of the two strongest intensities, and
adequately accounts for the weakness of the 1082
vibration. This weakness is the result of cancellation
in (72) between bonds which are compressed and bonds
which are stretched. Since the stretching model is
reasonable in view of the Raman intensities observed
in molecules, '4 the excellent agreement here obtained
with experiment supports the validity of the normal
modes for species A~ given in Table VI. Although it
was earlier suggested that the choice X=15, &=0 for
the bending constants, upon which Table VI is based,
is convenient and proper but essentially arbitrary,
positive evidence favoring this choice can be adduced
from the Raman intensities. The calculations of Table
XIV have been repeated for the modes of Table VII
based upon the bending force constants X= 12, e= —1.6.
The 1082 is, of course, exactly the same for the two
cases. The theoretical intensities obtained in the order
of decreasing frequency are XPF (v,) =0.004, 21, 15, 32.

'4 See reference 16, Chap. III, Sec. 3.

where y is always regarded as extending outward from
atom o, to the neighboring atom. Calculation shows
that this model fails completely to account for the
weakness of the 1082 vibration.

V. SUMMARY

In this paper the fundamental lattice vibrations of
species A~ and A2 of quartz have been discussed in
considerable detail. The physical description of each of
these 8 vibrations is given in the discussion part of Sec.
II, and the modes are given in Tables VI and IX. An
interesting result of this study is the discovery that
the bending force constant for 0 in quartz may be
negative. It is not possible, however, from a consider-
ation of frequencies alone to fix the bending force
constants very closely. Evidence from the Raman
intensities favors the choice zero for the oxygen bending
constant. The relationship of the 207 vibration of
species A i to the n Ptransformation i-s exhibited
directly by comparing the calculated displacements of
this mode with those of the transformation.

The effective-charge problem has been treated on the
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basis of a two-charge model. The physical meaning of
the two-charge parameters is briefly discussed in Sec.
III. By a suitable choice of the two parameters satis-
factory agreement is obtained for the intensities of the
four A ~ vibrations as shown in Table XIII. The Raman
intensities of the four A» vibrations have been calcu-
lated on the basis of a simple model in Sec. IV. With
no adjustable parameters satisfactory agreement with
experiment is obtained for the relative intensities as
shown in Table XIV. The theoretical and experimental
strengths and frequencies for both the Raman and
infrared are summarized and compared graphically in
Fig. 2.

It has been customary to demonstrate the validity of
the valence-force model entirely from the calculated
frequencies. Such a comparison is shown in Table X.
However, in the present work it has been shown that
the Raman intensities are more sensitive to the normal
modes than are the frequencies. Evidently the infrared

intensities are also very sensitive to the normal modes.
Therefore the successful calculation of the intensities
constitutes a much stronger confirmation of the normal
modes and the valence-force model than just a com-
parison of frequencies. The picture of quartz as a
valence crystal is further substantiated by the success
of the two-charge model in representing the effects of
the twelve charges allowed by symmetry.

There remains the task of applying these techniques
to the modes of species E. Much could be learned from
such a study, since these modes are active in both
infrared and Raman effects, and the experimental
intensities are now known. ' It would be interesting to
test the P-quartz theory for the infrared intensities of
the E modes suggested in the Introduction. Looking
beyond the interest in quartz itself, we hope that these
ideas will prove helpful in the general understanding
of the vibrational spectra of molecules and valence
crystals.
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Effect of Dislocations on Self-Diffusion in Gergnanium
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The effect of dislocations on the rate of diffusion of radioactive Ge ' in intrinsic germanium single crystals
has been studied at temperatures near 740'C. The dislocations were introduced by either of two methods:

(A) distorting the surface by lapping under pressure, thus producing a network of dislocations; (B) bending

the specimens so as to introduce up to 2 &(10 parallel edge dislocations per cm .Both deformation treatments

produce an enhancement of self-diffusion relative to that in undeformed crystals. In both cases the diffusion

can be described in terms of an enhanced volume diGusion with apparent diGusion coeKcients up to 3g%
larger than the value for undeformed intrinsic specimens.

INTRODUCTION

'HE role of dislocations in enhancing atom diffusion
has not been demonstrated clearly. One method

by which information has been sought is in the study
of diffusion along small-angle tilt boundaries, using the
Burgers model to describe the boundary in terms of
individual dislocations. It was Hoffman and Turnbull' '
whose observations implied that the rate of self-diffusion

in silver along grain boundaries may, indeed, be
explained by dehning an intrinsic diffusivity for
dislocation pipes. Somewhat contradictory to this are
the 6ndings of others, particularly Smoluchowski and
co-workers. ' Their measurements indicate that the
effect of individual dislocations is inconsequential in all.

* Now at IBM Research Center, Yoiktown Heights, New York.
' D. Turnbull, Report of Bristol Conference on Defects in Crystal

line Solids, July, 19S4 (The Physical Society, London, 1955),
p. 203.' R. E. Housman, Acta Met. 4, 97 (1956).

s R. Srnoluchowski, Report of Bristol Conference on Defects in
Crystalline Solids, Jsdy, 1954 (The Physical Society, London,
1955), p, 14/.

systems which they studied. The role of an array of
parallel edge dislocations which do not form a boundary
was first studied by Hendrickson and Machlin. 4 An

appreciable enhancement of diffusion due to the
dislocations was reported. Their results were later
contradicted, however, by Murray' of the same
laboratory who had tried to duplicate and extend them.
Finally, for the case of a random network of dislocations,
Hart' and Mortlock suggested that single crystals at
low temperatures may exhibit enhanced diffusion, but
without a change in the mathematical form of the
concentration pro61e. The resulting diffusion constant
at low temperatures should then be larger than that
found by the extrapolation of high-temperature data.
Tomizuka' claims that the curvature in the Arrhenius

4A. A. Hendrickson and E. S. Machlin, J. Metals 6, 1035
(1954).

5 G. T. Murray, thesis, 1958, Columbia University, New York,
{unpublished).

6 E. W. Hart, Acta Met. 5, 598 (1957).
r A. I. Mortlock, Acta Met. 8, 132 (1960).' C. T. Tomizuka, Acta Met. 6, 660 (1938).


