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A method of treating transport of injected minority carriers is developed applicable to cases in which
the physical dimension and the mean free path for capture may be less than the mean free path for scattering.
The basic differential equations of scattering and capture are those of the conservation of flux method of
McKelvey, Longini, and Brody, and the results agree with theirs, the new feature being a demonstration
that the basic equations are equivalent to a continuity equation of the conventional form but with a diffusion
constant reduced by including the effect of capture in shortening the mean free path. This method of treat-
ment reduces the problems to a familiar form when suitable boundary conditions are introduced. The
basic differential equations of scattering and capture are shown to correspond to certain simplifying and
restricting assumptions about the carrier velocity distributions. The treatment is extended from the case
of one dimension with zero electric field to three dimensions with electric fields.

I. INTRODUCTION

HE conventional method of dealing with minority
carriers in semiconductors is based on various
approximations. For the case of low electric fields, the
flux of carriers is taken as the sum of the diffusion
current and the drift current. The former is propor-
tional to the concentration gradient and the latter to
the concentration times the electric field. For materials
of very short lifetime or small dimensions, in which the
mean free path for scattering is no longer small com-
pared to other lengths, the usual formulas for currents
are not valid.

A recent attempt has been made by McKelvey,
Longini, and Brody' to furnish a treatment which is
more general and applicable to cases not having a
restriction to the ratio of mean free paths. In this
treatment (referred to as the MLB method) these
authors do not use the diffusion equation or Fick’s law
in treating the diffusion currents. Their method is based
upon considering fluxes of carriers. The influence of
the material upon the flux is expressed through previ-
ously derived?? transmission and absorption coefficients
for regions of finite thickness bounded by parallel planes
perpendicular to the flux direction. In this way, they
avoid introducing the approximations of the diffusion
equation, although their final results for solved prob-
lems coincide with the conventional ones when the
mean free path for scattering is much less than the
mean free path for recombination.

It is the purpose of this analysis to show that the
MLB method is actually equivalent to a method
involving the continuity equation with certain modifi-
cations in the diffusion constants and to generalize
this treatment to include small electric fields and three
dimensions.
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II. DIFFERENTIAL EQUATIONS FOR THE
FLUX FORMULATION

Figure 1 illustrates the definitions of the terms used
in the MLB formulation. A thin region of thickness dx
is considered. A flux to the right of carriers of strength
7 carriers per unit area per unit time is incident upon
the left side of the slab and a corresponding flux to the
left represented by / is incident upon the right side.
The fluxes emerging from the slab are influenced by
recombination, scattering, and generation in the region.
(We shall consider electric fields in Sec. VI.) According
to the assumptions of the model, a fraction kdx of the
incident flux is reversed by the slab of thickness dw.
A fraction wdx of the flux is combined within the slab.
In addition, the rate of generation of carriers per unit
volume is assumed to be g so that per unit area of the
slab the total generation is gdx; half of this generation
is supposed to emerge and add to the flux coming out
of each side. These relationships are represented in
Fig. 1.

Expressed in differential terms, the rate of change of
the fluxes to the right and to the left are readily seen
to be given by the following two equations:

dr/dx=k(l—7r)—wr+g/2, (1)
dl/dx=k(l—r)+wl—g/2. 2)

The case of thermal equilibrium corresponds to random
motion with half the particles moving to the right and

r - kdxr- wdxr
+gdx/2 + kdxt
r PR .
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{ - kdx{ - wdx!

+gdx/2 + kdxr

F1G. 1. The assumed effect of an infinitesimal layer
upon the fluxes to right and to left.
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half to the left, and equal values of g/2w for both
and /. The complete solution for Egs. (1) and (2) may
be obtained by adding exponential terms to this
constant value so that the general solution may be
represented as follows:

r=AR.e"+Be~"+g/2w, (3)
l=Ae*~+BR, e **+g/2w. 4)

The value of the coefficient ¢ necessary to solve simul-
taneously Eqgs. (1) and (2) is readily found to be

= | (2kw+w2)%! ’ k= (qZ_w2)/2.w, (5)

and the ratio of values of the coefficients of the expo-
nential terms is given by

Roo=Fk/(wtk+q)= (wtk—q)/k=(g—w)/(gF+w). (6)

A4 and B may be arbitrarily chosen to fit boundary con-
ditions discussed later.

The fact that the coefficients £ and w are taken as
independent of the way in which the flux arises implies
that certain assumptions and approximations have
actually been made in the MLB treatment. For
example, if a flux of carriers crosses a p-»n junction and
enters a region containing many recombination centers
so that the distance of penetration is very small, then
the flux will not decay exponentially as given by one
of the terms in Eq. (3), but instead will initially decay
more rapidly than at greater depths because initially
the carriers which are moving nearly tangentially to
the junction surface are recombined very near that
surface. Further from the surface, only those carriers
traveling approximately perpendicular to the surface
will be found. These will have on the average greater
depths of penetration, and an effective smaller value of
w will occur for them. This problem is like the sorting
for hard and soft components of radiation which occurs
whenever an inhomogeneous flux is present. These
variations are rejected by assuming a constant w in
the MLB treatment. Similar comments apply to k.

The significance of the coefficient R, may be under-
stood as follows: For the case in which » and ! are
dominated by the % term, it is evident that a flux of
carriers is proceeding to the left. The strength of this
flux to the left is proportional to 4. Associated with it
at any given plane there is a flux to the right smaller
by the factor R,. It is evident that R, represents the
reflection coefficient for flux proceeding toward an infi-
nite medium.

Essential to the MLB treatment are reflection
coefficients for the situation represented in Fig. 2, in
which a region of width @ is subject to a flux I(a)
incident upon its right side at x=a. On the left side
at x=0 it is assumed that no interference with the
emerging flux occurs, and whatever emerges from that
side does not return. This corresponds to a case in
which 7(0) is zero:

r=0 at x=0. ©)

OF
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F1G. 2. The definition of the transmission and
reflection coefficients.

Since we are dealing with the case in which the added
flux dominates, we may neglect the term due to gener-
ation. The condition of Eq. (7) thus leads in Eq. (3) to

B=—AR,,. (8)

According to this relationship between the coefficients
A4 and B, the fluxes required for Fig. 2 are readily seen
to be

1(0)=4(1—R.), ©)
l(a)=A(e?*— R 2 1), (10)
r(a)=AR,(e?*—e19). (11)

From these it is readily seen that the reflection and
transmission coefficients of Fig. 2 are '

R(@)=r(a)/Ua)=Re(e®*—e1%)/ (e**— Rofe~1%), (12)
T(a)=1(0)/U(a)= (1—R.?)/ (e**—Rse™*). (13)

These equations are identical with those used in the
MLB treatment. In that treatment, however, differ-
ential equations for the fluxes are not given, and the
expressions for reflection and transmission coefficients
are obtained by deriving differential equations for them
which are then integrated.

The transmission and reflection properties of the slab
of thickness @ may thus be expressed by two equations
with the reflection and transmission coefficients as
coefficients which give the emergent fluxes in terms of
the incident fluxes:

1(0)=T(a)l(a)+R(a)r(0),
7(a)=R(a)l(a)+ T (a)r(0).

(14)
(15)

III. INTERPRETATION OF THE FLUX TREATMENT
IN TERMS OF CONTINUITY EQUATIONS

As was discussed above, the constancy of the coeffi-
cients £ and / imply that carriers of a single velocity
distribution are involved in these fluxes. Since the
treatment reduces correctly to the continuity equation
method for small rates of recombination, the relation-
ship between flux and concentration can be calculated
in terms of the thermal equilibrium distribution. If we
deal with the concentration of holes, and represent
this by p, then the relationship of p to the velocity
distribution of carriers p(v,,2,,v.) is given by integrating



1572 W.

the latter over all classes of velocities:

+ 40 oo
p= d*ux/ dvy/ dv, p(v2y0,,0:). (16)

It is evident that the density of carriers corresponding
to a flux to the right is obtained by extending the
integration over only positive values for v,: Denoting
the density of these carriers by p,, we have

0 -+o0 +c0
przf dv,/ dvy/ dv, p(v4,0,,0.). 17)
0 —o0 —0

The flux carried by these carriers is » and this is evi-
dently given by

00 -+o0 o0
r=/ vzdvz/ dv_,,/ dv, p(vayvy,0.)=cpr, (18)
0 —o0 —oc

in which the coefficient ¢ for a Maxwellian distribution
of particles having a single effective mass m™* is evidently

c= (2kT/mm*)*. (19)

In accordance with the relationship (16) which applies
to carriers in thermal equilibrium, we may define in
general a density-like quantity in terms of the fluxes
rand[;

p=ptpi=(r+D/c, (20)

where p, and p; are density-like quantities given by »
and / individually.

The net flux to the right across any plane in the
medium is clearly given by

F=r—1 (21)

The differential equations (1) and (2) may be
expressed in terms of F and p. Adding (1) and (2)
together and dividing by (224w) readily yields

F=—(2ktw)'d(r+1)/dx=—D*dp/dx, (22)
where the diffusion-like coefficient D* is evidently
D*=c¢/(2k+w)=D2k/(2k+w), (23)
where D is defined as
D=c¢/2k. (24)

If the flux treatment is to reduce to the continuity
equation treatment, then it is evident that for small
values of w/k, for which case D* reduces to D, D must
be the conventional diffusion constant.

From this it follows that a unique relationship
between the coefficient £ and the diffusion constant D,
which applies in the case of the continuity equation,
must be given by Eq. (24) in which ¢ is uniquely
defined by Eqgs. (17)-(19).

A second equation in terms of F and p is obtained by
subtracting Eq. (2) from Eq. (1). This is readily seen
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to yield v
dF/dx=g—w(r+1)=g—p/r=—D*d*p/dx?. (25)

In this equation the last term is obtained by simply
differentiating Eq. (22) to obtain dF/dx. The last
equality in Eq. (25) is evidently equivalent to the
ordinary continuity equation, and if the flux treatment
is to reduce to this case for sufficiently small values of
w, it is evident that the lifetime term 7 must be given by

Pn:gT, (26)

in which we have introduced ., the equilibrium density
of holes in #-type material, as the value of p which
can be constant throughout the material.

A comparison of the case of high recombination rate
with the ordinary continuity equation case can be
obtained by considering the meaning of the attenuation
constant g of Eq. (5). It is evident that Eq. (25) admits
of a solution characterized by an attenuation constant
equal to the reciprocal of the diffusion length. Algebraic
manipulations show that this is identical with ¢:

g=1/(D*r)}= Qkw+w?)i=1/L*.

r=1/wc;

(27)

In order to appreciate an important advantage of
the MLB method, we consider the diffusion velocity
for injected carriers decaying into uniform material:

Diffusion velocity=vp*=F/p=qD*= (D*/7)i=wc/k
=op/[14 (vp/c)* Ji=c/[1+(c/vp)* . (28)

In this series of equations, the diffusion velocity is
defined as the average velocity necessary for the carrier
density p to carry the flux F. For the case in which the
quantities involved vary as e, this readily gives the
expression ¢D*. Straightforward algebraic manipula-
tions yield the other expressions. In these, vp is the
diffusion velocity that will result from the conventional
expression involving the ordinary diffusion constant D
and the mean lifetime r

vp=(D/7)}= (w/2k)k. (29)

It is seen that the MLB method is equivalent to
introducing expressions for the diffusion velocity which
behave in the conventional manner when the diffusion
velocity is much smaller than ¢ but which converge to
a limiting value of ¢ when the conventional expression
for diffusion velocity is larger than c.

It should be noted that the high capture condition
of w>>k is equivalent to the vp>>¢ as may be seen from
Eq. (29). .

The behavior for the diffusion velocity just discussed
is represented in Fig. 3, in which it is seen that vp* is
nearly equal to vp for small values of vp/c; but for
large values of vp/c, the effective diffusion velocity is
less than vp and approaches a limit of ¢ as vp/c ap-
proaches infinity or the lifetime approaches zero.

These results imply that the MLB treatment will
probably have merit and yield expressions having an
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F1G. 3. Dependence of diffusion velocity upon lifetime expressed
through continuity equation velocity vp.

approximate validity when the mean free path for
recombination becomes comparable to the mean free
path between collisions so that w>>% and vp>>c; even
though, as discussed in connection with Egs. (1) and
(2), the model does not realistically treat carriers
subjected to scattering and recombination in this
limiting case. The mathematics of the MLB treatment,
when analyzed as indicated above, in effect handles the
extreme cases by using the continuity equation but
with an effective diffusion constant D* smaller than
the normal diffusion constant D by adding the effect
of w in shortening the mean free path.

IV. BOUNDARY CONDITIONS IN
TERMS OF DENSITY*

The formulation of the mathematical problem pre-
sented in Sec. ITI means that if a problem to be treated
by the MLB method can be formulated in terms of the
density p of minority carriers, then it can be completely
solved in the usual way using the continuity equation.
This follows from the fact that if the boundary condi-
tions are known in respect to p then p and the flux F
can be determined, and from these two quantities the
individual components ! and 7 of the flux needed in
the MLB method can then also be determined by solv-
ing the simultaneous Egs. (21) and (23) for 7 and /.

In this section we shall consider the formulation of
boundary conditions for p in terms of definitions
introduced in respect to » and /.

A. Surface Recombination Velocity Expressed
in Terms of the Reflection Coefficient

If we suppose that a body of homogeneous material
terminates in the positive x direction on the surface
having a reflection coefficient R, for flux to the right,
then we can re-express this condition in terms of a
surface recombination velocity s. In this treatment we
use the principle of detailed balance and assume that
under conditions of thermal equilibrium, absorption of
carriers at the surface is just made up by generation
from the surface in amount g, per unit area. We assume

4 The author was stimulated to consider these problems after
seeing a manuscript of J. P. McKelvey, [J. Appl. Phys. (to be
published)]. In this manus ript several of these problems were
treated by the MLB method, yielding some of the same results.
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that this generation is independent of the carrier density
or flux incident upon the surface. Accordingly, we may
represent the flux leaving the surface to the left ac-
cording to

I=Ryr+g.. (30)

The carrier density immediately in front of the surface
is denoted as p, where evidently

cp=r+l=(1+Ro)r+g.. (31)

The net flux into the surface is denoted by F and this
is evidently equal to the loss of the incident flux minus
the generated flux leaving the surface:

F=(1=Ro)r—g,=(p—pn)s.

The last equation in (32) expresses F in terms of the
usual definition of a surface recombination velocity,
which gives a flux into the surface proportional to the
excess of the carrier density over the thermal equi-
librium carrier density denoted by p,. In order for Eq.
(32) to become an identity when the relationship
between p and 7 is given by (31), we must have

s=(1—Ro)¢/(1+Ry),
gs=(1—=Ro)cpn./2.

Using these definitions, we may treat the surface on
the basis of the usual diffusion continuity equation,
introducing the diffusion constant and the lifetime as
discussed in Sec. III.

(32)

(33)
(34)

B. Boundary Condition at a Slab Bounded on
the Far Side by a Surface Constant R,

We shall here derive a result needed for discussing
the boundary condition at an abrupt p-z junction.
The case considered consists of a slab of thickness a
and coefficients R(a) and T'(a) of Egs. (12) and (13)
bounded on the far side by a surface of reflection
coefficient R,.

We shall assume the same coordinates as Fig. 2 and
Eqgs. (7) to (15) of Sec. II. The incident flux »(0) is
regarded as known with the other three fluxes 7(0),
r(a), and I(a) as unknown. In order to determine the
reflection coefficient R=1[(0)/7(0) of the composite
structure, it is necessary to have three independent
linear equations relating 1(0), 7(a), and I(a) to 7(0). Two
of these equations are given by (14) and (15) describing
the transmission properties of the slab. The third equa-
tion is

1(a)=Rur(a),

which is Eq. (28) for the condition in which the incident
flux 7(0) dominates the situation, so that the g, term
may be neglected, a condition similar to that discussed
with Eq. (8).

The solution of the three equations leads to

R=1(0)/7(0)=R(a)+{T(a)*Ro/[1—R(a)Ro ]}

(35)

(36)
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Fi1c. 4. Boundary condition at a p-» junction showing the
potential energy g¢ of a hole versus distance. (The fluxes shown
represent values just inside the » region.)

By reasoning similar to that of Sec. IV (A), it follows
that if the density at x=0 is p, under conditions of
thermal equilibrium, the composite structure of slab
plus surface Ro must be characterized by a generation
due to g and g, given by

gs(at x=0)=(1—R)cpn/2. 37)

This will give the emergent flux across x=0 when the
incident flux 7(0) is reduced to zero.

C. Boundary Condition at an Abrupt p-n Junction

We shall now assume that the structure discussed in
Sec. IV(B) bounds an abrupt p-» junction. By abrupt
we mean that the potential rise may be thought of as
occurring over so small a distance that the carrier
density incident upon the structure from the left side
and moving toward the right side is in equilibrium
with the majority carriers to the left of the junction.
This means that as illustrated in Fig. 4 this density
increases exponentially with the applied forward bias,
so that we may write for the density of incident carriers
denoted by p, as given by Eq. (20)

pr=pr exp(qV/kT), (38)

in which V is the applied forward voltage and p,,= p,/2’
where p, is the thermal equilibrium minority carrier
density within the #-type material.

(It may be helpful to note that the hole fluxes I and
7 just outside the » region of Fig. 4 are only very slightly
disturbed from their thermal equilibrium values of
cpp/2. This value is larger than ¢p,, in the familiar ratio
napp/nd so that disturbances which affect the hole flux
in the # region by large factors produce only relatively
small fractional disturbances in the p region.)

The minority carrier density for carriers moving to
the left just in the n-type region may be written as

p1=1pint+Rpr[exp(qV/kT)—1], (39)

SHOCKLEY

in which the second term represents the increment in
carriers due to the reflection of the increment in incident
carriers. Equation (39) reduces correctly to the normal
value for no applied voltage and also correctly repre-
sents the reflection of the increment.

Combining (38) and (39) leads to a total carrier
density just inside the » layer given by

p=pr+p1=pnt (pn/2)(1+R)[exp(qV/kT)—1]. (40)

It is seen that this equation reduces to the usual
continuity equation form when R approaches unity.
For cases in which the recombination rate is large so
that R(a) is less than unity, or the layer is very thin,
and R, is substantially less than unity, then R is less
than unity and (14-R)/2 in Eq. (40) may be signifi-
cantly less than unity so that (40) differs from the
usual boundary condition.

In any event if (40) can be evaluated, it suffices to
give a boundary condition at the p-» junction for p.
The diffusion equation (25) then suffices to determine
p throughout the region involved and the currents can
thereafter be calculated in the usual way using, however,
the modified value D* instead of D.

V. CURRENT VOLTAGE CHARACTERISTIC OF A p-n
JUNCTION BY BOTH METHODS*

In this section we shall illustrate how the current
voltage characteristic of a p-» junction may be derived
on the basis of the MLB method and also on the basis
of the continuity equation method of Sec. III, together
with the boundary conditions of Sec. IV. We shall
assume that the junction has an abrupt potential rise
as discussed in connection with Fig. 4. Just inside the
body of uniform n-type material, the deviation in total
hole density due to the applied voltage may be repre-
sented as

Ap=Ap.+Apr. (41)

As discussed in Sec. IV, the deviation of carriers
corresponding to flux towards the right is given by

Apr=pr—prn= (pn/2)[exp(qV/kT)—1],

where Eq. (38) gives p,.

Since both methods of treatment are linear in
disturbances in the carrier density, it follows that the
flux itself must be proportional to the deviation in
density and thus of the form

F=F[exp(qV/kT)—1]. (43)

The constant F,, which corresponds to the saturation
current in conventional junction theory, is calculated
differently on the basis of the type of treatment given
to the problem.

Our object in this section is to show that the results
of the two different treatments lead to one and the same
current-voltage relationship.

If we assume that the structure dealt with is like
that discussed in Sec. IV(B) and is characterized by a

(42)



DIFFUSION AND DRIFT OF MINORITY CARRIERS

reflection coefficient R, then the MLB method leads
readily to the following value for F,:

Fy=(1=R)(cpn/2).

In the preceding expression the second factor is the
thermal equilibrium flux to the right, and the first
factor represents the fraction of this that finally
constitutes carrier current across the p-» junction.

On the basis of the continuity equation and boundary
condition treatment, an equal value for F, can be
derived. The reasoning is as follows: In accordance
with the treatment of Sec. IV(C), the carrier density
just inside the uniform z-layer is given by Eq. (40).
This excess carrier density diffuses deeper into the
n-layer at an effective diffusion velocity denoted by
vp™*. This leads to a saturation flux coefficient given by

F.= (pa/2)(1+R)vp*". (45)

The effective diffusion velocity vp** in this case can be
calculated in a straightforward way using the boundary
conditions for the surface recombination velocity given
by Eq. (33) and the corresponding solution for the
diffusion equation throughout the region of width a.
This result can be shown to be equivalent to Eq. (44).
In this treatment, however, we shall simplify a com-
parison of Eqs. (44) and (45) by restricting the con-
siderations to the case in which the width @ becomes
infinite so that R reduces to R, and »p** becomes
simply vp*.

For this particular assumption the F, values given
by the MLB method and the continuity equation
method can readily be seen to be equal. The necessary
manipulations are as shown below :

2F/pn= (14+R,)vp*=[2¢/ (¢+w) I (cw/q)
=2cw/(¢+w)=(1—R,)c=2R}vp.

In the preceding equation, the term following the
second equality is obtained by expressing the two
factors of the preceding term in terms of ¢, w, and g.
It can be verified that the final term, when expressed
in terms of the same variables, reduces to the same
expression. The final term permits expressing the
saturation current in a form similar to that used in
conventional p-x junction theory.

The saturation flux coefficient F, can be interpreted
in terms of two of the preceding expressions:

Fo=p,0p*(14R.)/2= R} p.vp.

In the above equation the term following the first
equals sign is seen to be similar to the classical con-
tinuity equation value, which would be p,vp except
that it has the actual effective diffusion velocity times
a factor involving R,,. When R,, approaches unity the
fractional term approaches unity and vp* reduces to vp:
Thus this term reduces to the classical formula for
small ratios of w/k. For large values of w/k, for which

(44)

(46)

(47)
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R, approaches zero, this expression reduces to the
limiting flux value p,c/2 regardless of how large the
recombination term w becomes. The last expression in
Eq. (47) shows that the saturation flux can also be
written simply as R} times the classical expression.
This shows that as the lifetime approaches infinity and
vq also approaches infinity, the correction term ap-
proaches zero. It is not so easy to see quickly from this
form that the limiting value for F, is the thermal
equilibrium flux in one direction.

Similar expressions can, of course, be derived for
electron current injected into p-type material, but the
generalizations for this case are obvious and will not
be discussed here.

VI. EXTENSION OF THE METHOD TO THREE
DIMENSIONS AND TO INCLUDE SMALL
ELECTRIC FIELDS

The presence of an electric field E= —grad¢ may
be expected to influence the transmission of carriers
through a thin slab of thickness dx. This effect should
be most pronounced for flux of carriers which are de-
celerated upon entering the slab so that some of them
are reversed, adding to the effect of scattering described
by k. The flux which is accelerated rather than retarded
by the field should be little affected. The same basic
problems are involved in linearizing the effect of the
electric field as are involved in taking w and % as con-
stant as discussed following Eq. (6). However, a mathe-
matically consistent generalization of Egs. (1) and (2)
can be made simply by adding linear terms in the elec-
tric field and the fluxes as follows:

dr/dx=—k(r—1)—wr+(g/2)+hE(r+1),
dl/dx=—k(r—1)+wl— (g/2)+hE(r+1).

Manipulation of these equations in the same way as
carried out in Sec. III leads readily to

F=—[c/(2k+w)]dp/du+[2hc/ (2k+w) JEp
= —D*dp/dx+u*Ep.

(48)
(49)

(50)

In this equation an effective mobility u*, which varies
with w/2k in the same ratio as does D* of Eq. (23), has
been defined as follows:

w*=2hc/ (2k+w). (51)

The other equation obtained by subtracting (48) from
(49) is the same as before:

dF/dx=g—p/r. (52)

It should be noted that the Einstein relationship
applies between p* and D*| since it must apply between
u and D if the model is to reduce to the correct con-
tinuity equation. Thus we have

w¥=u2k/ (2k+w)= (¢/kT)D*, (53)
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where u is the value for u* when w is set equal to zero
and is thus the ordinary conductivity mobility.

The results of Egs. (50) and (53) indicate another
way of looking at the effect of the recombination terms
upon the continuity equation. In case the carrier
density is uniform, then it is evident that the effect of
the electric field in producing carrier flux or current is
reduced due to the recombination and emission of
carriers from the recombination centers. This recombi-
nation and emission in effect adds an additional
scattering mechanism whose importance is in the ratio
of w/2k compared to normal scattering; the factor 2
arises from the fact that recombination and subsequent
emission simply randomizes the motion of the carrier
and thus reduces the velocity to zero on each collision;
scattering in accordance with the definition % reverses
carrier velocity and thus is twice as effective.

Thus it appears that the flux method is equivalent
to an effective reduction of mobility and diffusion
constant, together with modifications of the boundary
conditions like those discussed in Sec. V.

The formulation presented above allows a ready
generalization to three dimensions. The complete set
of differential equations for the density p is as follows:

F=—D* gradp—u*p grade, (54)
divF=g—p/7, (35)
*=c/(2k+w)=D/[1+4 (w/2k)], (56)
wE=gD*/kT. (57)

The effect of these equations is to modify the mobility
and diffusion constant by introducing an effective
influence of the recombination constant upon them.
It is evident that this modification does not affect the
Boltzmann distribution for carrier density under the
thermal equilibrium conditions, in which case Eq. (54)
vanishes. As discussed above, the modification of the
diffusion constant leads to reasonable results for
limiting currents for high recombination rates.

The combination of Eqs. (54) to (57), with suitable
boundary conditions like those discussed in Sec. IV,
formulates the flux treatment of McKelvey et al. into
a generalized and modified form of the continuity
theory.
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APPENDIX

Significance of the Constants k and w with Respect
to Familiar Quantities

In their article! McKelvey, Longini, and Brody
derive a relationship between the mean free path for
scattering and the quantity k. This relationship is
derived on an arbitrary basis which brings out the fact
that the constancy of the quantity k& is physically
inconsistent with the model assumed. The treatment
given in their Appendix B calculates the average
distance which a carrier fluxing across a plane travels
without scattering. This distance is then identified
with 2. However, % is uniquely defined in their mathe-
matical theory in terms of scattering in an infinitesimal
distance. If their Appendix B formulation is used with
the differential definition of %, a % value is obtained
which is twice as large as theirs; the difference arises
from the fact that the carriers crossing the plane are
initially in the first infinitesimal distance scattered to a
greater degree than are ones that have crossed a greater
distance.

These considerations raise the question of what
physical model might actually correspond accurately
to the mathematics of scattering used in the MLB
method. There does appear to be one applicable to a
one-dimensional case, but this is a very artificial one.
It is a model in which a large number of additional
scattering centers of unusual property must be assumed.
If one assumes that there are present centers producing
a mean free path much smaller than that associated
with either % or w and having, in addition, the property
that these centers never reverse the direction of carriers,
they will insure that the right-hand flux and the left-
hand flux, » and /, have each always the same compo-
sition of carrier velocities no matter how the carriers
have originated. It is hard to see how a generalization
of such centers could lead to the intuitively reasonable
three-dimensional formulation presented in Sec. VI.



