
order to explain these results with the concepts used
in those models.

Mycielski" suggests that the conduction in question
may be due to hopping over instead of tunneling
through the Coulomb potential wall separating
neighboring donors. This differs from previous models
only in. the way the effective height of the potential wall
is calculated. The expression derived by Mycielski does
not predict a stress dependence of e& for a donor like
Sb which has a very small valley-orbit splitting.

V. CONCLUSIONS

Germanium overs a unique opportunity to study the
effect of the correction to the effective-mass approxi-
mations on the donor levels and on their wave functions
because it has donors with greatly diferent valley-orbit
splitting energies. For Sb the effective mass approxi-
mation is nearly correct, whereas As shows a valley-
orbit splitting which is almost one-half of the eAective-
mass binding energy.

It is surprising that the differences in the impurity
cell correction are distinctly observable even at the
transition to metallic conduction where the interaction
between impurities is very strong. It is interesting

"J.Mycielski, Phys. Rev. 122, 99 (1961).

to investigate whether these differences affect the
metallic conduction properties at even higher impurity
concentrations. Preliminary experiments of the low
temperature piezoresistance effect at concentrations
larger than 4&(10" cm ' show no difference between
Sb- and As-doped germanium. The characteristics of
Esaki diodes, however, show a difference between the
donor elements. "

Several advantages of the use of shear strains for the
investigation of impurity conduction have been men-
tioned and illustrated in this paper. The results obtained
at large L111]compression may be better suited for a
theoretical interpretation than those obtained at zero
stress because of the simple, almost hydrogen-like
donor level scheme produced by the compressional
stress. Investigations are presently in progress of the
anisptropy of the piezoresistance in the low and inter-
mediate concentration ranges. They seem to yield
further information about the nature of the observed
activation energies.

The conclusions which can be drawn from the reported
data concerning the strain-induced changes of the
donor wave functions will be discussed in the following
paper (II).

22 N. Holonyak, I. A. Lesk, R. N. Hall, J. J. Tiemann, and H.
Ehrenreich, Phys. Rev. Letters 3, f67 (1959).
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The effect of the corrections to the effective-mass approximation on the stress dependence of the donor
wave functions has been re-examined. It is found that not only the relative valley contributions to the
ground-state wave function are changed by the stress, but also the individual envelope functions I';(r)
which originate from the j conduction-band .valleys. The stress dependence of the II (r) depends strongly on
the value of the valley-orbit splitting of the donor. This can explain qualitatively the difI'erent behavior of
the piezoresistance e8ect in the impurity conduction range of germanium doped with antimony, arsenic, or
phosphorus. The stress dependence of the hyperfine splitting of the electron spin resonance is shown to be
very insensitive to the stress-inducecl changes in 1~;(r) except in the limit of very large stresses.

I. INTRODUCTION

'X previous calculations" of the strain-induced
& - changes of the donor wave functions in germanium
and silicon it was assumed that the only effect of strain

*Work supported by the U. S, Air Force Office of Scientific
Research.

~ H. Fritzsche, Phys. Rev. 119, 1899 (1960). An error in this
paper should be pointed out. The second line of Eq. (1)should read

2 4

~&*&=-.' ~ L1+;l(&a'+ )'3~C;—'; ~ Ll+;i(4~:+.,')1l-'~;.
j=l 1'=3

'D. K. Wilson and G. Feher, Phys. Rev. 124, 1068 (1961.).
G. Feher, Proceedings of the International Conference on Senzi-
conductor Physics, Prague, 1960 (Czechoslovakian Academy of
Sciences, Prague, 1961),p. 579.

is to admix to the ground state some of the higher-lying
1s-like states. As an example, consider the wave func-
tions for the donor states in germanium which can be
written according to Kohn and Luttinger' as

where y; is the Bloch function at the jth conduction
band minimum and F, (r) is the effective-mass envelope

3 For a review on this subject see: W. Kohn in Solid-State
Physics, edited by F. Seitz and D. Turnbull {Academic Press,
Inc. , New York, 1957), Vol. 5.
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function. The assumption that only the relative valley
contributions to 0'(r) are affected by the stress implies
that stress changes only the numerical coefFicients n;.
These coefFicients then depend on the stress X and on
the valley-orbit splitting parameter 6 through the
ratio X/A. The properties which depend on the donor
wave functions should, therefore, be reducible for the
various donor elements on a plot against X/A. This was
indeed found to be the case for the strain-induced
change of the hyperfine splitting of the electron spin
resonance in silicon and in germanium. ' Hence it was
possible to determine from the stress dependence of the
hyperfine splitting, the valley-orbit splitting energies of
the various donors. 4

In a previous paper, ' hereafter referred to as I, we
describe measurements of the effect of uniaxial $111]
compression on impurity conduction in germanium. In
contrast to the hyperfine splitting, which is proportional
to the amplitude square of the donor wave function at
the donor nucleus, impurity conduction depends on the
amplitude of the donor wave function at large distances
from the impurity. According to the previous treatments
of the stress dependence of the donor wave function,
which assumed a change only of the n, , we expected the
piezoresistance of impurity conduction to be approxi-
mately the same function of X/6 for the different donor
elements. We found this not to be the case.

Dependiog on whether antimony, arsenic, or phos-,
phorus was used as donor, we observed great qualitative
differences in the behavior of the piezoresistance of
impurity conduction in the intermediate concentration
range and in the stress dependence of the transition
from nonmetallic to metallic conduction.

The largest effect of stress was found to be a change
of the activation energy e2 of impurity conduction. ' For
Sb donors es increases strongly with L111]compression;
for As and P donors, however, e2 decreases, the effect
being larger for As than for P donors. We observed that
the critical impurity separation d, at which the tran-
sition' to metallic conduction occurs depends on the
donor element and on stress. Compression along $111]
decreases d, for Sb donors. It increases d, for As
donors and to a smaller extent for P donors. At all
stress values d, remains largest for Sb'and smallest for
As donors.

This large difference in the behavior of the donor
elements must be related to the corrections to the effec-
tive-mass approximation which give rise to the valley-
orbit splitting of the 1s donor multiplet. ' ' The valley-
orbit splitting differs greatly for the different donors. It

4 Actually these measurements determine only the ratios of the
shear deformation potential to the valley-orbit splitting energies.

' H. Fritzsche, preceding paper )Phys. Rev. 125, 1552 (1962)j.' This activation energy determines the temperature dependence
of impurity conduction in the intermediate impurity concentration
range. For more details see reference 5.' 'N. F. Mott, Can. J. Phys. 34, 1356 (1956); N. F. Mott and
W. D. Twose, Advancesin Physics, edited by N. F. Mott (Taylor
and Francis, Ltd. , London, 1961), Vol. 10, p. 107.

' P. J. Price, Phys. Rev. 104, 1223 (1956).

is 46=0.57)(10 ' ev for Sb,' 46=2.9&(10 ' ev for P, '

and 43=4.15)&10 ' ev for As""
In order to arrive at a qualitative understanding of

the results of the piezoresistance measurements, which
are discussed in greater detail in I, we want to re-
examine in this paper the effect of the corrections to the
effective-mass approximation on the stress dependence
of the donor wave functions. Kohn and Luttinger
mentioned already' that the correction potential which
lowers the ground-state energy below the value obtained
from the effective mass theory causes a reduction of the
effective Bohr radius. This means the envelope functions
F;(r) of the donor ground state at zero stress a,re changed

by the correction potential.
In Sec. II of this paper we estimate the changes of

the donor wave functions in germanium as a function
of uniaxial compression along L111]. In Sec. III an
attempt will be made to explain qualitatively the
experimental results reported in I. In the last section
we discuss the effect of strain on the hyperfine splitting
of the electron spin resonance using the corrected
envelope functions. The corrections to the effective-
mass treatment will be discussed by %. D. Twose in
the Appendix.

II. CALCULATION OF THE DONOR WAVE FUNCTIONS

A. Without Strain

The Kohn-Luttinger theory' of shallow donors yields
Eq. (1) for the donor wave functions of germanium in
the effective mass approximation. Each of the envelope
functions J,(r) of the 1s-like donor states has the form
of a pancake with its symmetry axis along that of the
jth valley and can be written as follows:

The parameters a =64.5 A and b =22.7 A for germanium
were found by a variation calculation to yield the lowest
energy. The direction of z; lies along the t 111]direction
of the jth valley.

In the effective-mass approximation the ground state
is fourfold degenerate. Symmetry arguments allow this
state to split into a onefold and a threefold state. This
splitting is caused by corrections to the effective-mass
approximation, which in turn are due to a number of
factors. Some of these are the finite charge of the im-

purity ion, the breakdown of the concept of the dielectric
constant near the impurity, and the incomplete shield-

ing of the donor nucleus inside the donor ion. All these
factors have in common that they are appreciable only
in the immediate vicinity of the donor atom. These
deviations from the effective-mass approximation will

be expressed by a correction potential U(r) which is
large only in or near the impurity cell.

' H. Fritzsche, Phys. Rev. 120, 1120 (1960).
'0 D. K. Wilson and G. Feher, Bull. Am, Phys. Soc. 5, 60 (1960);

G. Weinreich and H. G. White, ibid. 5, 50 (1960).
"H. Fritzsche, Phys. Rev. 115, 336 (1959).
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Inclusion of the correction potential U(r) leads to the
following equation" for the F;(r) in the absence of
strain:

4

Q n. &oei&k& ki& r[+. E]p.&i& (r)

Each of the envelope functions F,"&(r) of the ground
state falls off exponentially with an effective Bohr
radius:

a&'& =a(eff. mass) (Esp/Eep+4A)1. (6)

If the anisotropy of the E,(') is not changed by the
correction potential, then both parameters a and b of
Eq. (2) will be reduced according to Eq. (6).

For the higher lying threefold state, the terms in
Eq. (3) containing U(r) will sum approximately to zero
and &r&s& =g&'&=a&i&=&r(eff mass). The splitting param-
eter 6 is then more accurately given by the matrix
elements of U(r) using the corrected envelope functions
p. it& (r)

B. With Strain

%hen the crystal is subjected to shear, the degeneracy
of the conduction band valleys is in general destroyed.
The shift of the valleys e; due to the shear component
of compression along [111]is given by the deformation
potential theory" as

t] = 36~

62= t3= 64= f~

with
e =—9E2544X.

+P n &'&e'& ~' '&'U(r)P '(r) =0. (3)

H, is the effective-mass Hamiltonian appropriate to the
jth valley and k, is the wave vector to that valley. The
superscript (i) runs from 1 to 4 labeling the different
1s-like donor states. Because of the short range of U(r),
the diagonal matrix elements of U(r) are nearly equal
to the off-diagonal matrix elements. Following Price, we

set them equal to —A. The solution of the secular
equation yields the is multiplet.

(4)

where —E&0 is the lowest energy eigenstate of the
effective-mass Hamiltonian H;. The completely sym-
metric state n&" = (—'„-'„-,', -', ) having a large amplitude in
the impurity cell is the only one affected by the short-
range potential U(r). The energy difference 4A, called
the chemical shift" or "valley-orbit splitting, "depends
on the donor element.

Since Z(" lies below the effective-mass value Ego, the
ground state wave function +(') will be more con-
centrated near the impurity ion than +"), 0(", and
4'&4& of the three upper states. Thus F,&'&(r) depends on
the ith donor state. Following Kohn and Luttinger we

estimate the asymptotic behavior of F,&" (r) at large r,
where U(r) =0, from

[H;—E&'&]P;&'&(r) =0, (r =large).

"See Appendix.

Si4=1.47X10 " cms/d is the elastic shear constant"
and Es 19 ev/strain is——the deformation potential for
pure shear. "The stress X, parallel to [111],is positive
for compression. The valleys are labeled from j=1 to
j=4 according to the direction of their axes along [111],
[111],[111],and [111],respectively.

Including the shifts of the valleys in Eq. (3) and
assuming that U(r) is unaffected by the strain, we
obtain"

p n &i&ei&ki k.i& r(++—e, E&i&)p &i&(r).

+P n &'&e'&"' k"'U(r)F &'&(r)=0. (8)

In the following we try to obtain an approximate solu-
tion for the asymptotic form of 4'(') at large r as a
function of stress. First we assume Ii,") to be the same
for all (i) and equal to the solution of the effective mass
Hamiltonian H;. Price' solved the resulting secular
equation and obtained" the donor states:

Eil& Esp e 2A 2(its pe+ps),
E&s&=E&s&=

E&'& = —Edp —e—26+2(LV —he+e')'*

"C.Herring and E. Vogt, Phys. Rev. 101, 944 (1956l.' M. E. Fine, J. Appl. Phys. 24, 338 (1953).
'~ Our result differs from his only in that we assumed the

diagonal and the o6-diagonal matrix elements of U(r) to be equal.
This leaves at zero stress the higher lying threefold state unaffected
by the correction potential.



EF F ECT OF STRESS ON DONOR %AVE F UNCT IONS I N Ge

Figure 1 shows for L111]compression the donor level
scheme of Sb and of As in germanium. We set x= s/d,
and 4 &')= p F") solve for the coefFicients n.(" and
obtain the corresponding wave functions:

2$—1
+('& (x) =—1+ @,(&)

v2 2(x' —x+1)l

I 0 s s

Sb

0.9

~ ~ ~

high stress
limit

2x—1
1—— (c (()+c, (&)+@ (&))

Q6 2(x'—x+1)'
0.8

1
e('& (x)=—(C, ('& —C, ('&),

v2

1
@(s)(x) (c (s)+@ (s) 2lgl (s))

6

(10)
Q7—

s s t I s s s s.
5 IO

Compression X {IO dyneslem )
8 2

1 2x—1
e(4) (x)=—1— C,&4)

K2 2(x'—x+1)-:

2x—1—1+ (C.('&+Cs('&+C4('&).
Q6 2(x' —x+1)l

So far we have assumed C, &" to be the same for all
donor states (i). Now we estimate the asymptotic form
of F;&'& (r) at large r in a way similar to the zero stress
case. At large r the terms in Eq. (8) containing U(r) can
be neglected because of the short range of the correction
potential, so that the asymptotic form of F;(')(r) is
determined by

$H;+e, (x) E&'& (x)]F &" (r—,x) =0.

The effective Bohr radius depends on both the donor
state number (i) and the valley number j.It is approxi-
mately given by

a, &'& (x)=&r(eff. mass) (—Es&)/LE('& (x)—e, (x)])l. (12)

In the special case of uniaxial stress along L111],E("(x)
is given by Eq. (9) and e, (x) by Eq. (7). According to
Eq. (12) the effective Bohr radius of the jth envelope
function of the ith donor state depends on the ratio of
the effective-mass binding energy E« to the energy
difference between the ith state and the jth conduction
band edge. Figure 2 shows the ratios a, &'&/&r of the
ground state as a function of compressional L111]
stress for the various donor impurities in germanium.
At zero stress, the ground-state orbit of As is about 17%
smaller than its effective-mass value because of the
large valley-orbit splitting 4A. The orbit of C»(')
expands with increasing compression up to a certain
limiting value which is still smaller than that of the
efFective-mass theory. This expansion of the orbit is
of course most pronounced in the case of As donors
which have the smallest orbit at zero stress. The radii of
4»", 43(", and 44(') shrink considerably for all donor

Fro. 2. The ratios a;o)/a of the ground state as a function of
compressional $111) stress for the various donor elements in
germanium. See Eq. (12) of text.

elements. It is interesting to note that the orbit radius
of 4~(", which is the limiting form of 0'(" at large
compressional stresses, becomes in the high stress limit
almost the same for Sb, As, and P. It differs only by a
few percent from the effective-mass value. The question
whether the anisotropy of the envelope functions, that
is the ratio a/b, remains unaffected by the stress is still
unresolved.

The error made in using the uncorrected F, (r) for
the calculation of &r, ('&(x) and E"&(x) is probably not
large. It comes primarily from the fact that with
F,&'& (r,x) also the matrix elements of U(r) become stress
dependent. How the stress dependence of F,"'(r,x)
changes the ground state energy E&'& (x) can be estimated
in the high-stress limit. There one deals with a one-
valley semiconductor and 4'(') (r, ~ ) = q t (r)Ft("(r, ~ ) .
The correct Ft('&(r, eo) is less concentrated around the
impurity ion than any of the F, &'& (r,0), which determine
6 at zero stress Hence t.he amplitude of F,"&(r,x) at r =0
and consequently the matrix element

g —(Fr(t)
i U(t) iF&o))

is reduced by the stress. Thus 6, the depression of
E '&(~) below its effective-mass value Es&j is less—
than one quarter of the valley-orbit splitting at zero
stress. This fact brings ato)(~) of the various donor
elements even closer to the value of &r(eff. mass).

III. COMPARISON WITH EXPERIMENTAL RESULTS

In this section we wish to evaluate the effects of
uniaxial L111] compression on impurity conduction,
which have been reported in I, in terms of the stress
dependence of the donor wave functions calculated in
the previous section. The main features of the experi-
mental results can be seen in Fig. 13 of I. They are the
following:
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(1) In the absence of strain the critical impurity
separation d, of the transition to metallic conduction is
very different for the various donor elements. It is
largest for Sb and smallest for As.

(2) In the limit of large $111]compression the donor
elements behave almost alike. However, Sb still seems
to have a slightly larger effective Bohr radius than As.

(3) Compression along L111]decreases the effective
overlap of neighboring impurity states for Sb donors, it
increases the overlap for As and to a smaller extent also
for P donors.

The erst feature agrees with the theoretical predic-
tions since according to Eq. (6) the ground state wave
function at zero stress is more concentrated around the
donor ion the larger its valley-orbit splitting is. This is
shown in Fig. 2 where at zero stress the Bohr radius
becomes progressively smaller as one goes from Sb to P
and to As. As a consequence one needs in the case of P
and As a larger impurity concentration than in the case
of Sb to obtain a given value of the activation energy e&

or to reach the transition to metallic conduction.
The second feature indicates that the Bohr radii of

the different donor elements become nearly the same at
large compressional stresses along (1117where 4'"&(r)
=4'& "&(r,~). This agrees with Eqs. (10) and (12).
Figure 2 shows that the values of a& "&/a differ greatly at
zero stress and that they become almost identical at
large stresses. The small differences in Bohr radii still
remaining in the high-stress limit are also observable
experimentally.

In order to understand the third feature, that is the
decrease in overlap in the case of Sb and the increase in
overlap in the case of As donors as L1117compression is
applied, one has to consider the two opposing effects
which change the donor wave functions.

The first effect is present in both cases of large and of
small valley-orbit splittings. It results in a decrease in
the average overlap of the ground state wave functions
of neighboring donors and is due to the following. The
$1117 compressional stress reduces the contributions
to 4'"& (r) of the three valleys 2, 3, and 4 which move up
in energy Lsee Eq. (10)].Consequently the coefficients
nss4"&(z) decrease until they vanish in the high stress
limit. At the same time the orbit radii of 4 2O) 4 3 "&, and
C4~" shrink as shown in Fig. 2 and thereby increase the
rate at which the overlap reduces with increasing stress.

The second effect is the expansion of the Bohr radius
of the valley function C r "& (r). It can increase the over-
lap, particularly in the case of donors which have a large
valley-orbit splitting and hence a very compact ground-
state wave function at zero stress. Figure 2 shows the
growth of a&&'&/a with increasing compression for the
three donor elements.

For Sb donors this second effect is negligible. We
therefore expect a decrease of the average overlap due
to the change of the valley contributions. This agrees
with the experimental observations.

TABLE I. Ratios of the effective Bohr radii.

Experiment
Theory

Large stress
aIrx(Sb)/ aax(P)/
aHx (As) aax (As)

1.10~0.02 1,06+0.02
1.05 1.02

Zero stress
aao(Sb)/ aao(P)/
aHO(AS) aFIO(As)

1.56+0.03 1.08+0.03
1.17 1.054

In the case of As and P donors both changes of the
wave functions are effective and one cannot tell in
advance which of the two is more important unless one
knows which angular average of the overlap enters into
the expression of the activation energy e2. The experi-
mental results indicate, however, that the expansion of
4»&'&(r) predominates in the case of As donors giving
rise to an increase in overlap with increasing compres-
sion. For P donors the two opposing effects seem almost
to compensate one another so that only a much smaller
increase in overlap results.

In Table I we compare the theoretical values for the
ratios of the Bohr radii of the different donor elements
obtained from Eq. (12) with the experimental values
listed in Table II of I. Although the theoretical and
experimental values show the same trend, the quantita-
tive agreement is not good. This, however, is not
surprising in view of the fact that we do not know how
and what angular average of the overlap determines the
activation energy e2 and the transition to metallic
conduction. Some other reasons for the discrepancy
may be: (1) The fact that saturation of the piezo-
resistance effect had not yet been reached for the P- and
As-doped samples, (2) that the ratio a/b of Eq (2).
might depend on the valley-orbit splitting and on the
stress, hence the angular average of the overlap might
yield a slightly different result for the different donors,
and (3) the fact that we neglected at zero stress the
effect on e2 of the higher lying threefold state, the wave.
functions of which are believed to be nearly the same
for the various donor elements. Furthermore, in the
previous section we treated the effect of stress on the
wave functions of isolated donors. Changes of the wave
functions due to the interaction of neighboring im-
purities have not been considered. These may play an
important role at the high impurity concentrations of
the samples used for the experiments. That the experi-
mental results show the characteristics of the isolated
donor wave functions at all may be due partly to the
fact that the conductivity is predominantly limited by
regions in the crysta1 where the average impurity
separation is larger than the statistical average.

In calcula, ting from Eq. (12) the ratios of the Bohr
radii listed in Table I we used E~0=9.2)(10 ' ev, the
effective mass ionization energy of the isolated donor.
It is known, " however, that the ionization energy
decreases with increasing impurity concentration. A

"G. L. Pearson and J. Bsrdeen, Phys. Rev. 75, 865 (1949);
P. P. Debye and E, M, Copyre11, jbjg, 93, 693 {)954).
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smaller value of E~o would bring the theoretical values
in Table I into closer agreement with the experimental
values.

According to Mott and Twose' the transition to
metallic conduction occurs at a critical separation
d.=haH. Using arr(eff. mass) =45 A as an appropriate
angular average of the Bohr radius in the effective-mass
approximation and scaling the Bohr radii according to
Eq. (12), we obtain the following values for X from the
experimentally determined d, . At zero stress X(Sb)
=3.15, )& (As) =2.36, X (P) = 2.42 and at maximum
stress X(Sb) =2.3, X(As) =2.14, X(P) =2.19. These
values are to be compared with X=3.7 of Mott and
Twose.

The experimental values are considerably lower than
the theoretical value. As far as the accuracy and the
interpretation of the experimental results are concerned
the same arguments apply to this case as those discussed
above in connection with the discrepancy of the values
listed in Table I.

Iv EFFEGT GF sTREss oN l%'"'(o)l'

Wilson and Feher' "were able to explain their results
on the stress dependence of the hyperfine splitting of the
electron spin resonance in germanium and silicon
without taking into account the changes of the in-
dividual valley wave functions C, &') (r). Both the theory
and the piezoresistance experiments show, however,
that these wave functions change considerably with
stress due to the corrections to the effective mass
approximation. In the following we try to estimate by
how much the stress dependence of

I

@&')(0) I

' is affected
if one considers not only the changes with L111j
compression of the coefficients n, &')(x) but also of the
functions C;&"(0).

First we calculate the relative change of the hyperfine
splitting under t1111 stress in the approximation of
Wilson and Feher. Assuming C, ")(0) to be constant
we can set C, &') (0)=C &) (0) and obtain with Eq. (10)

I+")(Q,x) I'/4ICo(o) I'
= s'L1+ (2—x)/2 (x'—x+ 1)'j. (13)

The curve in Fig. 3 shows the result of Eq. (13). In
Sec. II we obtained an asymptotic solution of Eq. (8)
for large distances from the donor ion. We can make
only a very rough estimate of the stress-induced changes
of C, &"(0). We assume: (1) that the amplitudes of the
envelope functions P;&') (r) at r =0 change with a, &') (x)
like the hydrogen-like functions of Eq. (2), and (2) that
the ratio a/b remains constant. One obtains then

P.&t) (Q x)/P. &t) (Q 0)
= La "'(o)/a "'(*)j'', (14)

with a, &') (x) given by Eq. (12). These assumptions are

1.0

—0.5

IV

cr

high stress
limit

I

6
tt =e/a, ,

lpu

Fro. 3. Relative change of the hyperfine splitting under L111$
compression in I-type germanium. The curve was calculated from
Eq. (13) based on the approximation of Wilson and Feher. The
points. calculated for the case of As donors include the stress
dependence of the individual valley functions 4;(').
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very crude but we believe that the results of this
calculation remain almost unchanged even if Eq. (14) is
replaced by a more exact expression. Including both,
the stress dependence of the coefficients n, "'(x) and
that of the valley wave functions C,:")(0), we obtain for
the relative change of the hyperfine splitting of As donors
the values represented by the points in Fig. 3. Up to
x=3 the two calculations agree almost exactly although
the wave functions change considerably. The decrease
of Ct&" (0) with increasing stress seems to be just
compensated by the increase of Cs34&')(0). A further
reduction of the hyperfine splitting due to the decrease
of Ct&" (0) is observable only at very large stresses,
where the contribution of the three upper valleys to
the ground-state wave function becomes very small.

The conclusions drawn by Wilson and Feher from
their experimental data remain correct since they
employed only moderate stresses. An extension of their
measurements to saturation stresses could determine
the correct stress dependence of Ct&" (0) and possibly
the stress dependence. of the valley-orbit splitting
parameter 6, mentioned at the end of Sec. II.

In addition to the decrease of the hyperfine splitting,
Wilson and Feher observed" in As-doped germanium a
motional narrowing of the spin resonance lines as they
increased the stress. This effect is due to the increase in
overlap and hence of the interaction between neighbor-
ing impurity states. It agrees with the decrease of the
resistivity of impurity conduction under I 111) com-
pression. In the case of Sb-doped germanium the
opposite should occur; the motional narrowing observed
at certain impurity concentrations at zero stress should
disappear at large L1117 compressions.

"W. D. Twose (private communication). "D. K. Wilson (private communication).
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APPENDIX. EFFECTIVE MASS APPROXIMATION'"'

The purpose of this Appendix is to emphasize the
assumptions on which the usual effective-mass treat-
ments' of the impurity wave function are based, and to
indicate the derivation of Eqs. (3) and (8) containing
corrections to this approximation in a form suitable for
interpretation of strain experiments.

The donor wave function is written as a sum of Bloch
functions

II. Only the lowest conduction band m= Q is considered.
III. Noj, (r) is independent of k in a range hk zr/aii
about each minimum at k;. IV. Eo(k) is expanded to
order k' about each k;. Then (A2) becomes

[&o(k)—FjCo(k)

+ d'k' d'r e'" "'&'V(r)Co(k'). (A5)

+(r) =2 d'k C.(k)g g(r). (A1) Putting

Co(k) = P n,C, (k—k,),
The subscript e labels the conduction bands. Let II be
the Hamiltonian of an electron in the conduction band
(with no impurity present), so that

multiplying by e'&"—"j)', and integrating over r, we
obtain

n'
~ Z 0

d'k' d'r e'&~ ""zz*„k(r)N„g (r)

X V(r)C., (1 ') =0, (A2)

where E is the energy of the donor electron. It is known'
that a good solution to (A2) is obtained by considering
the lowest conduction band only (zz= 0), and expanding
&o(k) to order k' about each minimum. Defining the
envelope function

F,(r) = d'k e'&" "~' 'Co(k —k,), (A3)

where k; is the wave vector to the jth minimum, Kohn
and Luttinger' And an impurity wave function of the
form of Eq. (1), with F, (r) satisfying the eRective-mass
equation,

[H;—EjF;(r)—= [p A,"y+V(r) —E]F,(r) =0. (A4)

A; is the inverse effective-mass tensor appropriate to
the jth minimum, and y is the momentum. Co(k) has
appreciable magnitude only in a range Ak zr/u& about
each conduction band minimum, where aJI is the average
impurity Bohr radius, since, from Eq. (2),

F(r)~e—"&'zz.

Hence integrals containing C(k) can in general be
extended over all k space with negligible error.

A slightly more complete equation defining F, (r) is
given below. For the purposes of a later brief discussion,
we list the assumptions made in its derivation; these
are all implicit in earlier treatments. I. V(r) varies
slowly over a distance of order the lattice spacing c.

' ' The Appendix is by W. D. Those, Institute for the Study
of Metals, University of Chicago, Chicago, Illinois.

and let V(r) be the impurity ion potential. Then the
coefficients C„(k) satisfy

[F.(k) —F]C.(k)

[H, Fj,F;—(r)

+Q & e~(kt kj) r—[H FjFi(r) = 0. (A6)

H, is as defined in (A4). The second group of terms on
the left arises because C&(k—k&) is large about k& only.
The o.; are numerical coefficients determined by the
requirement that the total donor wave function
[(A1) or (1)] have the tetrahedral symmetry of the
lattice.

It is interesting to note that even in this approxima-
tion there is a small splitting of the fourfold-degenerate
donor ground state. The 4X4 secular determinant
obtained from (A6) has equal diagonal elements
d E= (F; ~H, ~F,—) F. and equal o—R-diagonal elements

g
—Ek=(Fie'&"' "i&'~H; F.~F,). There —is one three-

fold-degenerate solution

&= (d —a)/(1 —k),

and one nondegenerate solution

8= (d+3g)/(1+3k).

Since contributions to g and h come only from regions
of space where (ki —k;) r&1, and ~ki —k;~ E, a
reciprocal lattice vector, these are essentially central
cell corrections to F. and F(r).

The inclusion of strain eRects into (A6) is straight-
forward. Using the deformation potential' approxima-
tion, "matrix elements of the strain are diagonal in the
Bloch functions f„o, hence to each H; we must add a
strain energy e, representing the shift of each conduction
band minimum. The "symmetry" coeKcients n; are,
however, now strain dependent also.

The main error in (A6) lies in assumption I, as
emphasized by Kohn and Luttinger. " In fact V(r)
varies rapidly in the central cell, due both to the
Coulombic nature of the potential near the impurity
ion and breakdown of the concept of a dielectric
constant z in that region. Equation (A6) can be cor-

' W. Kohn and J. M. I uttinger, Phys. Rev. 97, 883 (1955).
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rected by writing obtained in (A7) approximately of the form

V(r) = e'/—Kr+ U(r),

where U(r) is a correction potential localized in the
central cell. %e can suppose it to consist of two terms;
+e'/~r in the central cell only, and a term w(r, &,P)
which contains the detailed nature of the central cell
potential and depends on the type of impurity ion
(see Sec. II).The correction term to (A6) can be written
approximately

since U(r) is sharply localized. The complete equation
for Ii;, including strain, is then

It is fairly readily seen that the effects of higher
bands may be included in the correction potential U(r).
Physically this is due to the strong impurity potential
near the ion mixing Bloch functions from higher bands
into the impurity wave function. Using an interation
procedure on (A2),

C„(k)
jV

d'k' d'r V(r)e'&" "''Co(k'),

and on substituting this into (AS) an extra term is

(H;+»; E]u,F;(r—)+P e" ~ "»'$H;+»; E]n;F,(r)—
jul

+2 U() F (o)=o. (A7)

which is essentially a "contact" term since V'(r) is
small except near r=0. This term will introduce a
small strain dependence into U(r), since E„Eis —a
function of strain.

Corrections to F; due to the departure of E»(k) from
quadratic are of order c/a~ or smaller, where c is the
lattice spacing. For example, assuming a band of the
form E»(k) ~ sin'(k —k;) c leads to a corrected effective-
mass Hamiltonian

H,~f1+ ', (c/a~) 2j-y A "p e'/~r. —

The k-dependence of the periodic part of the Bloch
function, N„~(r), is unimportant for determining the
form of H;, since only the immediate neighborhood of a
band minimum need be considered. However, any
attempt to go beyond the empirical form of U(r)
introduced by Kohn and Luttinger" would necessitate
knowing Nk over the whole Brillouin zone due to the
sharply localized nature of U(r) It is. probably not
sufficient to regard eq as independent of k, since the
Fourier components of the charge density vary strongly
throughout the Brillouin zone due to the covalent
bonding in group IV semiconductors (see, for example,
Phillips and Kleinman, "who have studied the charge
density in diamond).

'0 L. Kleinman and J. C. Phillips, Bull. Am. Phys. Soc. 6, 109
(1961).


