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The results of nuclear quadrupolar spin-lattice relaxation time
Ti measurements in most of the III—V compounds and germanium
are presented and discussed. It is shown that the T&'s may be
correlated with the quadrupole interaction for a free atom and
appear to be relatively insensitive to different properties of the
materials except for the Debye temperature. A theoretical
derivation of the transition probabilities for a point charge
zincblende lattice is given. This derivation follows Van Kranen-
donk's treatment for the NaCl lattice. An attempt is made to
relate the point-charge model to the III—V compounds with the
aid of experimental multiplication factors. A theoretical deriva-
tion, which is based on the spin-temperature concept, and an
experimental verification of the dependence of the quadrupolar

relaxation time on the nuclear spin are given. The spin dependence,
1/T~ 0- f(I)= (2I+3)/Is(2I —1), is important in theinterpretation
of other experimental data. A theoretical derivation is given of a
relaxation time that is isotropic as the orientation of the static
Geld is varied with respect to the crystalline axes. This apparently
accounts for the absence of an experimental observation of any
systematic variations of the relaxation time with crystal orien-
tation in this arid other investigations. An experimental investi-
gation of the temperature dependence of quadrupolar relaxation
is reported. The observed temperature dependence veriGes Van
Kranendonk's predictions for a Raman "two-phonon" process.
Debye temperatures of several III—V compounds are obtained
from the temperature dependence of the relaxation times.

dynamic system —the spin system —and it is possible
to speak of the "spin temperature. " If the spin temper-
ature is unequal to the lattice temperature and if
equilibrium is to be achieved, there must be a thermal
contact between the spin system and the lattice. The
process whereby the spins achieve thermal equilibrium
with the lattice is called spin-lattice relaxation. In
many nonmetals the thermal contact is provided by
the interaction of the nuclear quadrupole moment with
the electric field gradients that vary in time because of
the thermal vibrations of the lattice. In such cases one
speaks of quadrupolar relaxation. Because the quadru-
polar transition probabilities for Am=~i, ~2 are
functions of I and m, it is necessary to consider the
effects of the nuclear dipole-dipole interactions in order
to obtain a unique relaxation time. If the dipole-dipole
interactions are ignored, the population distribution of
the Zeeman levels does not remain a Boltzmann
distribution. The spin temperature concept correctly
accounts for the effects of the strong dipole-dipole
interactions. A single, unique relaxation time is then
obtained without the necessity of a detailed consider-
ation of all of the possible dipole-dipole transitions.

The importance of the nuclear quadrupole moment
in determining the spin-lattice relaxation time was
first discussed and demonstrated by Pound. ' He pointed
out that one would obtain relaxation times of the
correct order of magnitude if one used the quadrupole
interaction with the lattice vibrations in a theory like
Wailer's' treatment of electron relaxation times.
%aHer considered the effects of the modulation of the
electron dipole-dipole interaction by the lattice vibra-
tions. Applying this method to the nuclear dipole-dipole
interaction, Heitler and Teller' had found that the
predicted relaxation times were greater than 10' sec.
Therefore, Pound concluded that the relaxation of

I. INTRODUCTION

'HIS paper presents a discussion of the results of
nuclear spin-lattice relaxation time measurements

on most of the III—V compounds and germanium. A
theoretical derivation and an experimental verification
of the dependence of the quadrupolar relaxation on the
nuclear spin are give@.' The spin dependence is im-
portant in the interpretation of other experimental
data. A theoretical derivation is given of a relaxation
time that is isotropic for all spin values as the orien-
tation of the magnetic field is varied with respect to
the crystalline axes. ' This apparently accounts for the
absence of an experimental observation of any system-
atic variations of the relaxation time with crystal
orientation in this and other investigations. ''" An
experimental investigation of the temperature de-
pendence of quadrupolar relaxation is also reported.
The observed temperature dependence agrees with the
predictions of Van Krariendonk. ' It is shown that the
spin-lattice relaxation times in the III—V compounds
and germanium may be correlated with the quadrupole
interaction for a free atom and appear to be relatively
insensitive to different properties of the materials
except for the Debye 0.

In many solids the nuclear spins interact more
strongly with one another than they do with the lattice.
These nuclei may then be considered to form a thermo-
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nuclei with quadrupole moments was a quadrupole
effect if the crystal was free of paramagnetic impurities.
Pound also described some saturation experiments that
could only be explained by quadrupolar relaxation
effects.

The first detailed theory was developed by Van
Kranendonk. Using the approximations that the
lattice vibrations could be described by a Debye
spectrum and that the lattice could be described by an
array of point charges located at the lattice sites, he
derived expressions for the quadrupolar transition
probabilities. The dominant mechanism for this model
was the Raman process i.n which one quantum of
lattice vibration is absorbed, another quantum is
emitted, and a nucleus makes a Am=&1 or ~2
transition. The difference in energy of the two quanta
is equal to the energy exchanged in the process with
the nuclear spin system. The effects of the Sternheimer'
polarization of the electrons surrounding the nucleus
and any other field gradient contributions, such as
changes in the covalent character of the electron wave
functions, were described by a multiplication factor for
the point charges. Van Kranendonk also derived the
temperature dependence of the relaxation time, which
varied from a T ' dependence at temperatures less than
0.02 of the Debye temperature to T ' dependence for
temperatures greater than the Debye temperature. The
angular dependence of the transition probabilities was
also obtained, and it was shown that for this model
the des= 1 transitions could vary by 50% with changes
in crystal orientation in the magnetic Geld.

Other theoretical calculations' "have been made on
relaxation mechanisms in the alkali halides and rather
complete data have been taken on these materials. '

The equipment and samples used in this work are
discussed in Sec. II. The theoretical work is discussed
in Sec. III. An order of magnitude calculation is given
in Sec. III(A) for the benefit of those who are mainly
interested in the experimental results. The detailed
calculations require considerable notation and the order
of magnitude calculations present a clearer picture of
some of the physics involved in the relaxation time
calculation. The experimental results are presented and
discussed in Sec. IV.

II. EXPERIMENTAL

Pulse techniques"" were used in making all of the
T& measurements reported in this paper. The equipment
consisted of a continuous-wave (cw) crystal oscillator,
a gated amplifier, four stages of class C power ampliG-
cation, a symmetric twin-tee bridge, a fast recovery

' R. M. Sternheirner, Phys. Rev. 102, 731 (1956).'T. P. Das, D. K. Roy, and S. K. Ghosh, Roy. Phys. Rev.
104, i568 (i956)."K.Yosida and T. Moriya, J. Phys. Soc. Js.pan 11, 33 (1956)."J.Kondo and J. Yamashita, J. Phys. Chem. Solids 10, 245
(i959).

' E. L. Hahn, Phys. Rev. 80, 580 (1.950)."H. Y. Carr and E. M. Pnrcell, Phys. Rev. 94, 630 (1954).

amplifier with phase sensitive rf detection, and associ-
ated pulse generating equipment. This equipment and
its performance have been discussed elsewhere. ""

The special merits of this equipment include the rf
phase sensitive detection that is achieved by introducing
a high-level cw signal between the last stage of rf
amplification and the detector. The signal from the
detector depends on the phase angle between the
amplified nuclear signal and the cw signal, hence the
name "phase-sensitive detection. " Since the nuclei are
rotated by the strong rf pulse, which has as a signal
source the same cw oscillator from which the reference
signal is obtained, there is a definite phase relation
between the nuclear signal and the reference signal.
The video signal obtained when these two signals are
mixed in the detector is a beat signal of frequency
yH —~,„.The envelope of the beat signal is the Bloch
decay. Since the rf circuitry is tuned to a given fre-
quency, the magnetic field is adjusted to resonance or
zero beat frequency. The relative phase of the nuclear
signal and the reference is adjusted by means of a
lumped constant phase shifter that is followed by a
limiter-amplifier iD the reference circuit.

The rf phase-sensitive detection permits operation in
the large-signal, linear portion of the diode character-
istic. Furthermore, the Bloch decay for a negative-
spin-temperature magnetization has the opposite sign
to the decay signal for a positive spin temperature.
This is very convenient when making a multiple
exposure of several Bloch decays of equilibrium recovery
from a negative spin temperature.

The equipment was tuned to operate at 7.5 Mc/sec.
This choice was dictated by the gyromagnetic moment
of As which is 0.73 kc/sec-gauss. The maximum field
available for most of this work was 10 500 gauss. The
data, on Sb'" were also taken with the 7.5-Mc/sec
equipment in a Geld of 13600 gauss. This Geld was
obtained in a 12-in. Varian magnet with the aid of
tapered pole pieces. I,ow-frequency pulse equipment
was constructed for making the TJ, measurements of
Ge" at 1.5 Mc/sec and of Rb" at 3.5 Mc/sec.

The basic timing for the T~ measurements was
determined by an audio oscillator. The oscillator drove
a trigger circuit that was the first stage of the pulse
circuitry. Changing the frequency of the oscillator
changed the time between the 180' and 90' pulses.
For the longer T& measurements the oscillator frequency
was divided by a scalar which then triggered the pulse
equipment. In this way it was possible to obtain pulses
several minutes apart. The audio oscillator was cali-
brated several times during the course of the work;
both the audio-frequency signals of %%V and a
Hewlett-Packard model 524B cycle counter were used
to make the calibrations. The long time and short time
stabilities were both about &1%; this was also about

'4 J. J. Spokas, thesis, University of Illinois, Urbana, Illinois,
1958 (unpublished)."J.J. Spokas and (,", P. 'Slichter, Phys, Rev. 113, 1462 (1959).
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the accuracy with which the oscillator frequency dial
could be set.

To obtain the best signal-to-noise ratio most of the
data was taken at 77.4'K. The liquid nitrogen was
contained in a brass pot placed in a Dewar. A brass
tube served as the ground conductor of a coaxial cable
and ran through the brass pot down into the neck of
the Dewar. The rf coil was contained in a shielding
can at the end of the brass tube. Since the nitrogen
was' contained in the pot and did not get into the neck
of the Dewar, it was possible to vary the sample
temperature with a heater wound around the tube
between the shielding can and the brass pot. A temper-
ature of 71'K was obtained by passing He gas through
liquid nitrogen for one T& measurement on InP. The
temperatures were measured with a copper-constantan
thermocouple. One end of the thermocouple was in
contact with the sample and the reference junction was
in an ice bath. The thermocouple was calibrated
against a standard platinum resistor.

Most of the relaxation time measurements were
made with a 180'—90' pulse sequence. When the
oscilloscope was triggered by the 90' pulse, the Bloch
decay of the partially recovered magnetization was
recorded by a Polaroid scope camera. After a wait of
about 10 relaxation times the sequence was repeated
with a different time spacing between the 180 —90'
pulses. If the relaxation time was not too long, several
exposures were made for the same pulse spacing in order
to obtain photographic integration. Several Bloch
decays were recorded on the same photograph without
moving the camera. Thus by reading the amplitudes
along any vertical line, the readings were normalized
to the amplitude of the fully recovered magnetization
of that line. Several readings could be made at different
positions on the same set of Bloch decays so that an
additional integration of the data was obtained.

For the very long relaxation times a saturation
recovery type of measurement was used. First a picture
of the equilibrium magnetization was taken. Then a
rapid sequence of pulses saturated the resonance. At
some later time a picture of the partially recovered
magnetization was taken. After a wait of about 10
relaxation times the sequence was repeated and recorded
on another photograph. Since the T~ of germanium was
about 6 min, the time required to take one satura-
tion recovery photograph was about 1 hr aud,
therefore, many hours were required to make the T&

measurement. By taking a picture of the equilibrium
magnetization before each saturation, it was possible
to eliminate errors due to any changes in gain of the
equipment.

Most of the samples used in this experiment were
polycrystalline. Although the impurity content was not
known for most of the samples, it was possible to show
in most cases that the T~ contributions of paramagnetic
impurities were negligible. Also, it was determined
that there was very little quadrupolar broadening of

the resonance lines by charged impurities and lattice
strains.

Since the phosphorus nucleus has spin of ~» its
relaxation is determined by paramagnetic impurities.
The T~ of P in InP at 77.4'K was about 175 sec.
Therefore, the expected paramagnetic contribution to
the 2.93-sec relaxation time of the In"' is negligible
since the uncertainties in all of the data are between
&5% and +10%.The ratio of the Ti's of the Ga" and
Ga" nuclei in GaAs agree within 10% with the ratio
predicted by their quadrupole moments; this indicates
that paramagnetic effects were small in this compound.
The relaxation time of AP' in AlSb is 400 sec at 77.4'K
and might be expected to have appreciable paramag-
netic contribution. Nevertheless, the Debye 8 given by
the temperature dependence of T~ agrees with the
Debye 0 determined by specific heat measurements (see
Sec. IV). The other long relaxation time was that of
375 sec for the Ge" nuclei. Since only this one measure-
ment was made on germanium, it is not possible to
say with certainty that there was no paramagnetic
contribution. Nevertheless, the sample used was a
high-quality single crystal of 20 ohm-cm, p-type
conductivity at room temperature and would have
about 10" impurities per cc. Since this is a higher
purity than even optical quality alkali halides, which
have much longer nuclear relaxation times due to
paramagnetic impurities, it is likely that the relaxation
time of the Ge" was entirely a quadrupolar effect.
Also, an independent T~ measurement using fast
passage techniques agrees within the experimental errors
with the value obtained in this experiment. ' The only
material in which paramagnetic impurities prevented
a measurement of the quadrupolar Tj was GaP. The
T~'s were about 3 sec at 77'K, and the T~ of P was
shorter than the T~ of Ga. No change with temperature
was observed.

At room temperatures some of the samples had to be
crushed because of a small skin depth, but most
measurements were taken at liquid nitrogen tempera-
ture, and it was not necessary to use powdered samples.
The possibility of quadrupolar broadening, which might
a8ect the use of the spin-temperature concept, was
checked by looking for quadrupole echo effects"
following a 90'—45' pulse sequence. This effect is quite
apparent in some of the alkali halides such as I"' in
KI. The only quadrupole echoes were found in ger-
manium and in one In"' resonance in a powdered
sample of InSb that was taken from the impurity end
of a zone refined bar. The germanium quadrupolar
broadening was observable only because of the very
narrow dipole-dipole root second moment of 0.15 gauss.
Order of magnitude calculations indicated that about
10' dislocations per cm' could cause the observed
broadening. Another indication of the lack of quadru-
polar broadening was the In resonances in InAs arid

' R. G. Shulman (private communication)."I.Solomon, Phys. Rev. 110, 61 (1.958).
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InP. Indium has two isotopes, In"' (96%%u&) and In'"
(4%), whose resonances are separated by only 15 gauss
in a field of 8000 gauss. In these two compounds the
In'" resonance was clearly resolved in the wings of the
In"' resonance, which was taken with a Pound-Knight-
%atkins spectrometer. The In"' was also visible on the
Bloch decays of In"' as a small, superimposed beat
signal. The absence of quadrupolar broadening in the
III—V compounds has been discussed by Shulman et al."

III. THEORETICAL

In this section the theoretical expressions for the
transition probabilities for the zincblende lattice are
derived using the point-charge lattice approximation.
Van Kranendonk's notation is used. The point-charge
lattice is not a good approximation for the strongly
covalent III—V compounds, although there might be an
ionic contribution to the relaxation time. Nevertheless,
the derived transition probabilities can be used in
connection with the spin temperature assumption to
give the spin dependence and angular dependence of
the relaxation time. Also, an attempt is made to relate
the theoretical results to the experimental T~'s using
multiplication factors that have been obtained from
quadrupolar broadening experiments.

A. Order of Magnitude Calculation

If the displacements of the nuclei from their equi-
librium positions are small compared to the interatomic
distance, the quadrupolar Hamiltonian may be ex-
panded in a power series of the displacements. The
total displacement of a nucleus by a given mode of
lattice vibration is given by the amplitude of vibration
of that mode; however, it is the relative displacements
of two lattice sites that determines the local distortion
of the lattice. This relative displacement, r, is given by
r (2~R/lt)q, where q is the amplitude of vibration of
a normal mode, X is the wavelength of the mode, and
R is the interatomic distance. The amplitude of vibra-
tion at high temperatures may be approximated by
considering a classical oscillator whose energy is

-'Mao'q'= -'k T

where M is now taken as the mass of the crystal. LThe
crystal mass, 3f, appears in the final expression, Eq.
(7), as the mass density, m= M/V, because the volume
of the crystal, V, appears in the density of states
expression, Eq. (6).) The relative displacement is now
given by

2xR kT ' R kT '
(2)

where v is taken to be the velocity of sound in the
crystal.

's R. G. Shulman, B.J. Wyluda, and H. J. Hrostowski, Phys.
Rev. 109, 808 (1958).

The quadrupolar Hamiltonian may be written

Xq ——Xq"'+Xq"'+Xq"+
X.,—(aXq/ar)r+ (O'Xq/Br')r',

(3)

X~(roi roj+reL) ~X~ dco~dM&. (5)

The integral counts all of the possible ways ia which a
phonon of lattice mode i can be absorbed and a phonon
of the mode j can be emi. tted. The integral is over all
lattice frequencies up to ~, the maximum allowed
frequency for a Debye distribution. The 8 function
requires that the energy difference of the initial and
final lattice states is just the energy exchanged with the
spin system. p(a&) is the density of lattice modes per
unit frequency interval. Since the Larmor frequency,
col„ is very small compared to most of the lattice
frequencies, it may be assumed that p(a&,) =p(ee;). For
a Debye distribution,

p (a&) = 3Vre'/2''v',

where t/' is the volume of the crystal.
The integration of Eq. (5) gives

1 9 1 e'yQ '(kT

Tt g~' O' R' (mal'

(6)

(7)

This order of magnitude term gives the T~ dependence
of the high temperature transition probabilities and
shows the dependence on the square of the quadrupole
moment. Using the values Q=10 '4 cm', m=3 gm/cc,
v=2.5X10' cm/sec, ~ =10" sec ' R=2.5X10 ' cm,
7=300'K, and y= 100 in Eq. (7) gives a relaxation
time of 1.0 sec. Because of the high powers of several
factors in Eq. (7), a different choice of constants
would vary the predicted T& by an order of magnitude.
However, the experimental values at room temperature
are in the range of 0.1 to 1.0 sec. The value of y is
chosen to give a reasonable TI. This multiplication

where 3C@&'& is the static interaction and is taken to be
zero, and the effects of terms of higher order than BC@

"~

are assumed to be negligible. For the order-of-magnitude
calculations these terms are approximated as follows:

Xq e'yQ/R', BXq/Br e'7Q/R',

O'Xq/rlrs~ e'yQ/R'

The term y is the multiplication factor that is intro-
duced to account for the contributions to the field
gradient due to the Sternheimer' effect, covalent
effects, etc.

The important mechanism is the Raman process that
results from a first-order perturbation treatment of the
second-order term of the Hamiltonian BC@(2'. The
transition probability 5' for this Raman process is
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factor is one of the most di%cult points of a quantitative
comparison between theory and experiment I see Sec.
III(F)j.

Similar order of magnitude calculations show that the
direct process is negligible at high temperatures by a
factor of 10 '. The Raman process is more effective
because all of the lattice modes can contribute to
relaxation and only modes at the Larmor frequency
can contribute to the direct process. Also, the Larmor
frequency is low on the lattice frequency seal. e arid,
therefore, the density of states is small at this fre-
quency. Another Raman process results from the
second-order perturbation treatment of the first-order
term BC~(') in the Hamiltonian. This process is also
negligible by a factor of 10 " because it involves the
ratio of the quadrupolar Hamiltonian to the much
larger energy of a lattice phonon.

B. Derivation of the Quadrupolar Transition
Probabilities for the ZnS Lattice

The first detailed calculation of the transition prob-
abilities due to the interaction of the nuclear quadrupole
moment with the lattice vibrations was done by Van
Kranendonk4 for the NaC1-type lattice. In his work
the ions are approximated by point charges located at
the lattice sites and the lattice modes of vibration are
approximated by a Debye distribution. An exact calcu-
lation of the transition probabilities can be made for
this model. Although this model is not completely
successful in predicting the absolute spin lattice relax-
ation for the alkali halides, ' it does give correctly
many of the features of the quadrupolar relaxation.

Although it will be shown that the relaxation prob-
ably occurs via a covalent interaction in the III—V
compounds, the following derivation of the transition
probabilities for the zinc-blende lattice will use the
point-charge model, will parallel the work of Van
Kranendonk, and will use his notation. Since it would

be extremely complicated to express the field gradients
in terms of the variations with the lattice vibrations of
the actual wave functions, an attempt will be made to
relate the ionic model to the true physical picture with
the aid of empirical multiplication factors.

Yosida and Moriya" have considered covalent effects
for the alkali halides. Their treatment is for the case
of a small admixture of covalent character into the
alkali halide wave functions, but the III-V compounds
are strongly covalent. Therefore, no attempt has been
made to apply their results to this work.

The quadrupolar Hamiltonian is discussed by Cohen
and Reif" and may be written

where

Qp=A(3I 2 I2—), Vg= V...
Q =A(I I+I I ), U =V&iV„
Q ..=HI ', U+~= 2 (V»—Vuv)~iV. v,

in which A =eQ/4I(2I 1),—I~ I,+——iI„, and the terms,

V, V,„, etc. , are the electric 6eld gradients at the
nucleus. The Q„are the quadrupole operators. Q is the
nuclear quadrupole moment and I is the nuclear. spin.

The V„'s may be expanded in a power series of the
relative displacements of the point charges about their
equilibrium positions as follows:

V„=A„+g A„, r;+'P A„;,'r;r, +.

In general the summations of i, j are over all lattice
sites, but in the following treatment they will be
restricted to the nearest neighbors. This restriction
simplihes the calculations and is a reasonable one since
the final expression for the relaxation time contains the
lattice constant to the —13th power. Also, the ionic
model is admittedly only a crude approximation of the
zinc-blende lattice, which is strongly covalent.

The first term in the expansion A„ is the static held
gradient aud it is zero for a lattice of cubic symmetry.
The other terms couple the nuclear spin system to the
lattice vibrations. The dominant interaction is a Raman
process due to the first-order perturbation treatment
of the quadratic term A„;;. The direct process and the
Raman process due to the linear term A„, are negligible
and were discussed above. The effects of the displace-
ments involving orders higher than the quadratic
would involve three or more phonons and are also
negligible.

The relative displacements must now be expressed
in terms of the lattice vibrations. If it is assumed that
all lattice sites are equivalent, then the total displace-
ment of sitei is

s,=g ag, „eg,„exp(ik R;),
k, p

where the summation is over all lattice modes; the

p sum is over the three directions of polarization, e ~,
and the k sum is over all allowed wave numbers. The
relative displacement of two lattice sites is

This may be rewritten by grouping together terms
involving +k and —k to give

r.;= s,—so=+ a~, ~eq, „Lexp(ik R,)—exp(ik Ro)]. (12)
k, p

Xq=+„Q„U „, r, = Pg' qgB, (k, s) e)„ (13)
"M. H. Cohen and F. Reif, Solid-State Physics, edited by

F. Seitz and D. Turnbull (Academic Press, Inc. , New York,
j.957), Vol. 5,.

where X=(k,p, s) and the prime indicates that the
summa, tion is only over +k. The functions q&, and
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8;(k,s) are

q&=8(S,1)(a& „+a k „)+z5(S,2)(ak, y a g, p))
14

8,(k, s) =5(S,1)I cos(k a,) —1)+8(s,2) sin(k a;),

where a, =R;—Ro, 8 is the Kronecker delta function,
and s takes only the values 1 and 2. The term 8;(k,s)
gives the relative displacement of the ith lattice site
from its equilibrium position and corresponds to the
2zrR/X which was used in the order of magnitude
calculations. The matrix elements of the qz give the
amplitude of vibration of the ) lattice mode. They are

(zz&+1
I q& I zz&) = (zz& I q~ I zzz+ 1)

= (k/Mcus) l (my+1) l (15)

where INq) is the wave function of the lattice with n
quanta in the X mode. M is the mass of the crystal and
co& is the frequency of the A mode. The average number
of quanta of the X mode is given by the Boltzmann
factor,

I x,,(x,x') I'=
4k'Q„' e'

M „(ka),
M'(uP (e*—1)'

(21)

where x= Ace/kT. The functions M„(ka) are

M„(ka) = Q w„*(X,X')w„(X,X')

a, e' tjlm
pijlmLsil, s'jm& (22)

The matrix elements of the Hamiltonian that cause
relaxation are now

(I xo„(~,X') I)
= (2/iQ„„/Mrs), )I (zzg+1)zzy']*'w„P. ,X'), (20)

where

Q„=(m+ p I Q„m).

The factor of 2 comes from the fact that w„(X,X')
=w„(X',X). Using Van Kranendonk's notation, the
Hamiltonian is now written as follows

n), ——I
exp(8&v&, /kT) —1] '.

The Hamiltonian is now

(16) where

S„,;) =A„;,'A„) *,

BCq
——Q Q„Q A„;, : Q B,B,'q q 'eze

=P Q„g w„(X,X')qgq), ,

(17)

where

w„(X,X') =Q,, 8 ;8,'A„;, : egeg.

The probability of a nucleus making a transition
from a state zzz to a state m+zz is

2'
14'(m, zzz+zz) =-

PE2

&m&m

p (a )p ((u') 8 ((u —co'+~„)

0 0

P{I
x q„(x,x')

I
)'d~d~'. (18)

p((u) = (V/4m'v)k', (19)

v here U is the volume of the crystal and m is the
velocity of sound waves, which is assumed to be a
constant for all P,

The integration counts all of the possible ways in
which a phonon of lattice mode )' is absorbed and a
phonon of lattice mode X is emitted. The 6 function
requires that the energy change of the lattice A(~ —e')
is the energy A~„exchanged with the spin system when
a nucleus makes a Am= p, transition. The Z sign stands
for the summation over p and s. The curly brackets,

), represent the average of the Hamiltonian over
all directions of k. Since the nuclear frequency is very
small compared to a typical lattice frequency, the
density of states, p(a&), for the emitted and absorbed
phonons may be taken as equal. For a Debye distri-
bution of lattice modes, the density of states for mode
X is

L„i,„„=(8(k, s) Bi(k, )s)( 8( k', s) 8 (k', s')).

The curly brackets still indicate an average over all
directions of k.

For the NaCl- and CsC1-type lattice there is no
mixing between sine- and cosine-like vibrations because
the lattices have inversion symmetry. The lattice site
for the zinc-blende lattice does not have inversion
symmetry and there is a mixing of the two types of
vibrations.

The only I (ka) functions which are not zero and
which are multiplied by nonzero LV functions are as
follows:

(s=s =1)) L„(„(
=-,'I 1—f(&3ak/2)]'=Lg, (i=l)
=-;I f(ak/~2) —f(.k/2)] =L„(z«)

(s= $ = 2), Lz~l, za
= 4z [3+f(&3ak/2) 4f (&3ak/4) ]z—=Lz, (i = l) (23)

,' [2+f(ak/K—2)+f(ak/2)

4 f (V3ak/4)]'=—L4, (i W l)

(s=1, s =2; s=2) s =1)) Ly;i za
=-',

I
1—f(v3ak/2)]L3+ f( 3ak/2)

4f(&3ak/4)]=LS, —(i=l)
,'$f (ak/K2) -f(ak/2) ]t 2—+-f(ak/K2)

+f(ak/2) 4 f(v3ak/4)]=L6—, (i~i)

where f(x) = (sin@)/x.
For the point-charge approximation the A„;;/0 only

for i= j. They may be obtained by expanding the
expressions for U„ in terms of small deviations about
an equilibrium position and keeping the coefficients of
the quadratic terms of the deviations, The V„'s for a
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point charge, ye, are

V()
——

yeL (3Z' —R')/R'],
V~g y——e/3Z (X+iY)/R'],

V~p ——yeL3 (X&iY)'/2R'],

where p is the same multiplying factor used in the
order of magnitude calculations. It represents the
effects of any contributions to the field gradients by
the Sternheimer polarization, covalent effects, etc. The
V„'s are rewritten with R= L(Xp+ x)'+( Yp+y)'+ (Zp
+s)']l, where Xo, Yp, Zp is the equilibrium position of
the charge and x, y, s is the deviation from equilibrium,
which is small compared to Ep. Expanding in powers
of x, y, s and retaining the coefficients of the quadratic
terms of x, y, 2, gives the components of the tensor A„;,.

The A „;;may be written

(xx)„(xy)„(xs)„cp——1

A.' = (~ec./R') (yx). (yy). (ys). , c+~=3 (25)
( ). ( ). ( ).

where (xx)„represents the coefiicient of the xx term in
the expansion for V„. For example, the (xx)„ terms are

C=24/3rd'v'a' T*=T/8D, c= k~a=2(6m')' d=M/V,
a=lattice constant, and 8D is the Debye temperature.
The term c is determined by the fact that the total
number of lattice modes must equal 3Ã, where N is
the number of lattice sites ia the crystal.

Van Kranendonk evaluated the temperature depend-
ence of the relaxation time for the NaC1 lattice. The
following calculations will be for the high-temperature
approximation and the temperature dependence will
be assumed to be given by Van Kranendonk's general
function E(T ), which is given in Fig. 3. This general
function is experimentally verified and discussed in
Sec. IV.

The functions D„(T*)may be evaluated numerically
for any given temperature. Van Kranendonk does this
for several temperatures for the D„(T*)'s pertinent to
the NaC1-type lattice. He also expands the D (T*) for
high temperatures as follows:

D-(T*)=L-o—AL-p(cT*)'+ ",
where

C

L.„= x3'L. (x)d—x.
C p

5 35X' 10X'
(xx) =.(3Z' —X')(— + + —1,

2E.' 2E.4 R'

If the transition probability is written

W(m, m+p) =C~Q„~~'T*'E„(T*),
where

(32)

5 35X' 5XZ
(xx)~,= Z (X+)Y)( +-

28' 284
(26)

5 35X'i 10(X'+iXY)
(xx)~, = (X+)Y)'(— + +1,

2R' 2R4 ) R'

N„g=N„Z N„p=p, IV„,;...=——Q; A„,, :A„;;,
iV„o=l),T„4 N„p=p N„;,,;;——=Q A„;;:A„;;.

~ 7

(27)

The subscripts 1, 2, , are the same as the subscripts
on the L's. The function M„(ka) is now

M„(ka)= Q N„L..
n=1

(28)

The transition probabilities may be written

where

W(m, m+p) =C~ Q„„~'T*'P N„„D„(T*), (29)
n=l

1jT* ~2~x

D„(T*)= T* L.(cT*x)dx,
(e*—1)-'

(30)

where E, X, I', Z refer to the equilibrium position of
the point charge and the 0 subscripts have been omitted
to avoid confusion with the p subscripts.

Using the general A„;, expressions, the E„;;& may
be added as follows Lg= 0.200,

L3=0.558,

L5=0.548,

L2 —— 0.013,
L4= 0.162,

L6 ———0.046.

The orientational dependence of the transition prob-
abilities is contained in the functions X„„and may be
obtained by making a general transformation of the
A„;,'s. The desired transformation matrix is the matrix
D, ' for the transformation of normalized second
order spherical harmonics. However, a similarity trans-
formation must be made because the functions V„are
not normalized. More details of the calculations are
given in the Appendix. This calculation is long but
straightforward and the results. are

iV 3) I (ye)'/r"] (576 36——0n')—
N)p= L(ye) /r4P]( —227.55+1231.]no)

(33)
Dye)o/y)o] (486+90n )

qr» I (&e)P/y)o](80. 22 —307.78n')

E.(T*)=N.~(D4+Dp+Do)+N, p(Do+D4+Dp),

then the quantities E„(T*)are approximately propor-
tional to each other and may be written as E„(T*)
=E(T*)E„(~).The temperature dependence of the
transition probability is now expressed as T*'E(T*).
The functions E„(p(3) are obtained from the above
expression for E„(T*) if the D„'s are replaced by the
Lnp's

The functions L„p have been numerically evaluated
for the zinc-blende lattice.
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where cr'=err'rrs'+ni'ns'+ns'ns', and ni, ris, ns are the
direction cosines between the magnetic held and the
I 100], L010], I 001) crystal directions. The E„(ao)'s
are now

E~i(~) =
I (ye)'/rm](723. 4—312ns),

(34)
Eys(00) = L(ye)s/rm](645. 4+7girs)

The final form of the transition probability for the
zinc-blende lattice is

W(m, m+ii)=CIQ„ I'T*'E(T*)E„(~). (35)

C. Relation between T& and the
Transition Probabilities

In a recent paper Hebel and Slichter" derive a
general relation between T~ and the transition proba-
bilities which is similar to a relation previously obtained
by Gorter. " The derivation is based on a spin temper-
ature description of the spin system. Casimir and
Du Pre" 6rst used the spin temperature concept in
connection with paramagnetic relaxation. Van Vleck"
also made early use of the spin temperature concept to
get an expression for the paramagnetic relaxation in Ti
and Cr alums in the form of a diagonal sum in order
to avoid solving a complicated spin Hamiltonian
involving combined crystalline and Zeeman splittings.
The final expression is

7L y m

The energy values E„are chosen such that the trace
of the energy matrix is zero. For the problem treated
in this work, E(m) = pAIIm. —

The validity of the spin temperature has been
examined by Abragam and Proctor. '4 For the pure
Zeeman case of equally spaced energy levels the spin
temperature describes the system in a time of the order
of magnitude of the spin-spin relaxation time T~ after
the perturbation causing a nonequilibrium situation is
removed. Therefore, the spin temperature will correctly
describe the spin systems in the III—V compounds if
(1) quadrupolar effects which would destroy the equal
level spacings are negligible, and (2) the transition
probabilities that cause spin-lattice relaxation and,
therefore, tend to create a non-Boltzmann population
distribution are much less than the transition proba-
bilities that bring about a Boltzmann distribution. A
more straightforward statement of (2) is that of Ts«Ti.

In Sec. II a discussion was given of the reasons for
believing that there was negligible quadrupolar broad-
ening of the resonance lines in the III—V compounds.
The T2's are of the order of 10 4 sec and the TI's range

' I. C. Hebel and C. P. Slichter, Phys. Rev. 113, 1504 (1959)."C. J. Gorter, I'aramagnetic Relaxation (Elsevier Publishing
Company, Inc. .. New York, 1947).

's H. B. G. Casimir and R, K. Du Pre, Physica 5, 507 (1938).
'~ J. H. Van Vleck, Phys. Rev. 57, 426 (1940)."A. Abragam and W. G. Proctor, Phys. Rev. 109, 1441 (1958).

from about 10 ' to 10' sec. Therefore, the spin temper-
ature should be a valid description of the spin systems
that are investigated here.

D. Spin Dependence of T&

In order to compare the relaxation times of nuclei
that have different nuclear spins (the III—V nuclei have
spin values of s, s, s, and s) it is necessary to have an
explicit expression for the spin dependence. Equation
(36) may be used to obtain an expression for Ti for
any value of the nuclear spin I. It is important to note
that, as a consequence of the spin temperature assump-
tion, Eq. (36) will predict a single relaxation time for
any value of nuclear spin. When the transition proba-
bilities given by Eq. (35) are substituted in Eq. (36),
the expression for TI is

1—=-,'I P (p)'IQ„„I'CT* E( T) E(~) ]/Lg„m'], (37)
T1 7I' uc

where the quadrupole matrix elements are given by

Q~, „=A(2m&1)L(I&m) (I&m+1)]',
Q~s,

——AL(I+m)(I+m —1)
X (I+m+1) (Iam+2)]'.

Equation (37) becomes

1/T i= L(2I+3)/40Is (2I—1)](eQ)'CT*'E(T")
&&LEi(~)+4Es(~)]. (39)

The term f(I) = (2I+3)/Is(2I —1) contains the entire
dependence of TI on the nuclear spin. Since the sum
involves the quadrupole operators, f(I) is general for
any lattice and the details of the lattice are contained
in the terms CE„(~).The same spin function appears
in the theory of relaxation in liquids for the case of
extreme motional narrowing. ""

E. Angular Depencence of TI

Van Kranendonk's work predicted that the proba-
bility of a Am= 1 transition would vary by 50'%%uo as the
field was changed from a L100] to a L111] direction.
Nevertheless, experimental measurements on the alkali
halides' ' and on InSb (this work) have failed to show
any systematic orientational dependence of the relax-
ation time.

In Sec. III(B) the angular dependence of the transi-
tion probabilities was derived. If these transition
probabilities are substituted in the TI expression, it
becomes

1/T, = (1/40) f(I)L(e'yQ)s/r"]CT*'E(T*)(3305). (40)

Therefore, the point charge model and spin temper-
ature assumption predict an isotropic relaxation time

2' A. Abragam, The I'rincip/es of lVnclear Magnetism (Oxford
University Press, New York, 1961)."R.K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1953).



QUADRU POLAR NUCLEAR RELAXATION IN I I I —V COM POUNDS 1545

ior the zinc-blende lattice because the angular depend-
ences of the transition probabilities exactly cancel in
the final T& expression. This isotropy holds also if one
uses Van Kranendonk's4 transition probabilities for the
NaCl lattice or Yosida and Moriya's" transition prob-
abilities for the NaCl and CsCl lattices. LBecause of a
different choice of quadrupole Hamiltonian their coefIi-
cients of n' in Es(~) are —,'s those of cP in E~(~). This
is balanced by a factor of 2 difference in the Q„'s
so that the predicted relaxation is still isotropic. ] An
isotropic T~ for the case of a spin of ~ has also been
derived'" by explicitly introducing the T2 energy-
conserving spin Qips into a differential equation for the
(equally spaced) level populations. This yields an
isotropic T~ when T2(&Ti which is also the condition
for the spin-temperature assumption.

F. Comparison of the Van Kranendonk Model
with the III-V Compounds

The multiplying factor & for the poi'nt charges has
been introduced to account for the difference between
the point charge model and the actual physical situ-
ation. For both the angular dependence and the absolute
theoretical calculation of the relaxation times there is a
question of whether or not the multiplying factor
correctly connects the model and physical reality. Also,
if it is correct to use such a factor, how is it determined
what its value should be?

It is shown in Sec. .IV that the experimental TI's are
apparently related to the values of the (r '), for a
p-valence electron of the free atoms. Townes and
Dailey" have shown that the static quadrupolar effects
in microwave spectroscopy are mainly accounted for
by the covalent parts of the wave functions and that
the ionic effects are relatively small.

It has been shown in Sec. III(E) that an isotropic Tq
is predicted by the point charge model for the NaCl
and ZnS lattices and by the covalent effects considered
by Yosida and Moriya for the NaCl and CsCl lattices.
However, the angular effects are contained in the
tensors A„,, and these tensors will be different for a
completely covalent effect. The general displacement
of a point charge might be replaced by a general
extension (compression) and rotation of a covalent
bond. In any case, for the point charge model A„,;/0
only if i= j, but for the strongly covalent case a
distortion of one bond might affect the field gradients
produced by a given distortion of the other bonds so
that A „;,~0 for i~j. Since the tensors appear as a
sum of self products and a sum of cross products in the
final transition probability expression, it is difIicult to
make any general statements about the effects of a
different method of obtaining the tensors. Since no
angular dependence of quadrupolar relaxation times
has been observed experimentally, it is possible that

"C. H. Townes and B. P. Dailey, J. Chem. Phys. 17, 782
(1949).

the process is isotropic in crystals of cubic symmetry
for any type of quadrupole-moment interaction with
lattice vibrations.

Shulman et al.28 have measured the broadening of
the In resonance line. while applying a reversible strain
to a single crystal of InSb. From the second moment
of the broadened line the field gradients at the nuclei
were determined. If these experimental field gradients
are compared with those calculated for a point charge
model for the same lattice strain an empirical y is
obtained. The line broadening is due to the first order
effects of the lattice strains. The relation between the
field gradients and the appli. ed stress is expressed by
Shulman in terms of a field gradient-stress four-tensor.
The number of independent components of this tensor
is much less than the 81 possible components of a
four-tensor. For a crystal of cubic symmetry there are
only two independent components. The same multi-
plying factor relates both of these components to the
point-charge model. Therefore, for this case, the
multiplication factor is a scalar. The empirical y is
63+13 if only nearest neighbors are considered.

Roderick" has made line shape measurements on
impurity-doped InSb. For charged Te impurities in
InSb a multiplication factor of 350 is required to
account for the observed broadening of the In"' line.

These two multiplication factors refer to different
types of interactions. The case of &=63 is for strain
e6'ects and the case of y= 350 is for electric field effects.
Since the p is squared in Eq. (40), the predicted T&'s

for the y's differ by a factor of 30. Equation' (40) gives
T~=24 sec for y=63 and TI——0.8 sec for y=350 when
the following values are used: Q=1.16XIO " cm',
2=5.8 g/cc, v= 2.26X 10' cm/sec, a= 6.48 A, tID

=205'K, T= 7/. 4'K. The experimental relaxation time
is 0.80~0.05 sec. The apparent agreement is accidental,
nevertheless, the closer agreement for the electrical y
may be significant. The effects of the long-wavelength
acoustical modes should be similar to the effects of the
static displacements of Shulman's experiment, but the
effects of the optical modes may not be properly
accounted for by the static strain multiplication factor.

Measurements" on doped GaSb give y(Ga) —250
and y(Sb)—50. The experimental T~'s give y(Ga)
=0.65'(Sb). Since the ratio of the y's in the same
material should be more significant than a single y,
it does not appear that other experiments on the III—V
compounds give a very reliable p to insert in the T&

equation for the point charge model.
The strain-broadening is due to the first-order

displacement effects of the lattice strains. The charge-
broadening is due to field gradients produced by
charged centers (with possibly some strain effects
present). The relaxation time is due to the second-order

"R. G. Shulman, B. J. Wyluda, and P. W. Anderson, Phys.
Rev. 107, 953 (1957)."E.H. Rhoderick, J. Phys. Chem. Solids 8, 498 (i959).

3O D. J. Oliver, J. Phys. Chem. Solids 11, 257 (1959).
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eGects of displacements caused by thermal vibrations.
Perhaps these phenomena really do have diferent p's.

10

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section the nuclear quadrupolar relaxation
times for most of the III—V compounds and germanium
are discussed. The theoretical temperature dependence
given by Van Kranendonk is verified experimentally by
results obtained in KI and InP. The isotropic relaxation
time and the spin function, f(I), are also experimentally
verified.

A. Temperature Dependence of T&

~Q'a
C:
O
CP

I.O—

IOOO

Theoreticel
(two phonon

100—

I
Io 50 IO0 500

TEMPERATURE (degrees Kelvin)

Fzo. i. Relaxation times of I'27 in KI. The "two-phonon"
process predicts TI oc T ' and the "four-phonon" process predicts
TIE:T

"G. R. Khutsishvili, J. Exptl. Theoret. Phys. {U.S.S.R.) 31,
424 (1956) Ltranslation: Soviet Phys. —JETP 4, 382 (1957)].

The temperature dependence of the Raman process
(two phonons) has been given by Van Kranendonk' as
1/Ti ~ T~'E(T*), where . T*=T/8 and E(T*) is a
numerical function (see I'ig. 3). This function, E(T*),
connects the high-temperature region of T*&1 in
which 1/Ti ~ T' to the low-temperature region of
T*(0.02 in which 1/Tt rc T'. Another temperature
dependence for the quadrupolar relaxation process has
been proposed by Khutsishvili. "He suggests a process
that involves four phonons and predicts 1/T, o- T' in
the high-temperature region.

Temperature dependence measurements were made
of I"' in a single crystal of KI between 77'K and
800'K. The results of these measurements are plotted
in Fig. 1 and two lines are drawn through the 300'K
point. One line corresponds to a T' dependence and

P.l-

IO 50 100 500
TEMPERATURE (degrees Kelvin)

FIG. 2. Relaxation times of In"' in InP. Because T&8, the
data deviate from the straight lines, T1 0".T '; the dashed line is
calculated using Van Kranendonk's function E(T~).

the other line to a T4 dependence. It is clear that the
data is very close to a T' dependence and that a T'
dependence is definitely ruled out. Other observations' "
of the Raman. square-law temperature dependence in
alkali halides have been reported.

In order to verify the function E(T*) temperature
dependence measurements were made of the In"'
resonance in InP. The deviation from a square-law
dependence can be seen in Fig. 2. The data are compared
to E(T*) by assuming a Debye temperature, since a
calorimetric value has not been reported, and plotting
E(T*)= Tii'E(Tg*)Tt(Tir)/T'Tr(T) vs T and fitting
the room temperature (Tir) point to the E(T*) curve.
This plot is Fig. 3. A Debye 0 of 400~25'K gives the
best fit to the predicted curve. The +25'K indicates
the range of Debye temperatures for which some of the
data points will lie on the curve. Less extensive temper-
ature dependence data were taken on InAs, InSb, and
AlSb. The best fit for the In"'As was for a Debye 8 of
240~30'K. The best fit for the In"'Sb data was for a
Debye 0 of 200&20'K and this agrees with the calori-
metric value of 200~5'K and the va, lue of 208'K that
is predicted by the elastic constant data. "TI measure-
ments on AlSb were made only at 77.4 and 300'K and
give 8=340 K, which agrees within the expected errors
with 0=350'K from specific-heat data, .'4

The Debye temperature of a material can be obtained
by fitting the experimental relaxation time data to the

» O. Kraus, Bull. Arn. Phys. Soc. 3, 166 (1958)."P.F. Potter, Phys. Rev. 103, 47 (1956).
34 P. V. Gul'tyaev and A. V. Petrov, Soviet Phys. —Solid State

1, 330 (i959).
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curve of E(T*) or by fitting the experimental specific
heat data to the general Debye specific-heat curve. It
is well know@ that the density of states of the lattice
vibrations for an actual solid is not a Debye distri-
bution. This raises a question whether or not the two
methods give the same Debye temperature. In terms
of the actual density of states, p(x), the relaxation time
prediction would involve integrals of the form

" p(x)e* t'p(x)
L„(cT*x) ldx,

(e*-1)' x'
(41)

while the specific heat would involve the integral

" p(x)e*
(x')dx.

(e*—1)'
(42)

Since the L„ functions are complicated and the p(x)
would in general be represented numerically, further
comparison of the two integrals would involve numerical
integrations. As discussed above, the two methods give
the same Debye temperature for InSb and AlSb within
the experimental errors. These are the only compounds
for which the methods can be compared at present
because calorimetric specific heats are not available for
InP and InAs.

It is known that the Debye 8 determined by specific
heat measurements show a temperature dependence
and it might be that the 8 values determined by
quadrupolar relaxation would also show a temperature
dependence. The scatter in Fig. 3 appears larger than
in Fig. 2 because the data have been divided by T'.
This scatter is too large to permit a definite statement
but the data around T=0.2 appear to lie somewhat

I.O

0.9-

0.8-

0.7-

0.6-

o.s-
4J

0.4-

0.5-

0.2-

O.I—

0 O.l 0.2 0.5 0.4 0.5 0.6 0.7 0.8 0.9 I.O
T
e,

FIG. 3. Van Kranendonlr's function E(T*). The experimental
data is plotted as E(T*)=Tn2E(Ta*)Tr(Ta)/T'Tr(T)

above the theoretical curve. It would probably be of
interest to make careful measurements on a material
in which the temperature dependence of the specific
heat Debye 8 is known.

The predicted temperature dependence of the relax-
ation time goes as T ' for temperatures less than 0.02
of the Debye temperature. It is probably not possible
to verify this for nuclear relaxation because the relax-
ation times in this temperature region are too long.
Due to its large quadrupole moment, In"' has a
relatively short nuclear relaxation time. For InP the
T ~ region would occur for temperatures less than 8'K.
But at 8'K the In"' relaxatiov time, as predicted by
the theoretical temperature dependence and the high-
temperature experimental relaxation times, would be
about 10' sec. Even if very pure material were obtained
by zone reining, it would be very dificult to make
measurements of such long relaxation times. Electron
relaxation times are much shorter and both the linear
temperature dependence of the direct processes and the
seventh-power temperature dependence of the Raman
processes have been observed by Feher. "

B. Spin Dependence of the Relaxation Times

It is important to verify the theoretical spin depend-
ence because this factor must be considered when the
relaxation times in. the different compounds are dis-
cussed. A direct measurement that verides the spin-
dependence function f(I)= (2I+3)/I2(2I 1) is po—s-
sible in those materials that contain isotopes of diferent
spin values. One such material is A1Sb, because anti-
mony has two isotopes of spins -', and —,'. Unfortunately,
the Ga" and the Sb"' resonances overlap in GaSb and
the Bloch decay consists of a mixture of the two
signals. Also, the resonance line of Sb in InSb is very
broad and the Sb'" resonance was unobservable.
Rubidium is another element that has two isotopes of
different spin values, —,

' and —', . Since a good single
crystal of RbC1 was available, T& measurements were
made in this material on both Rb isotopes at /7. 4'K.

The theoretical prediction for Sb is

(Sb121) -Q(Sb122) —2 fP) = (1.63) (0.425) =0.69.
T1(Sb122) Q(Sb121) f(s)

For AlSb the experimental ratio is 0.75~0.10. The
theoretical prediction for Rb is

T1(Rb") Q(Rb") ' f(2) = (4.28) (0.24) = 1.027.
T1(Rb") -Q(Rb") f(-')

For RbCl the experimental ratio is 1.23&0.40. The
larger experimental error for the rubidium results is due
to the small signal-to-noise ratio of the Rb 5 resonance.

There are two isotopes of gallium, Ga' and Ga",
with the same spin, ~, and their relaxation times should

'" G. Feher, Phys. Rev. 114, 1245 (1959).
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TABLE I. Experimental T1 s measured at 77.4'K.

Nucleus
and

compound

In»5sb
InSb"'
In»'As
In As'5
In»'P
InP"
Ga"Sb
Ga Sb123

Experimental
T1 ln

seconds

0.80& 0.05
0.51& 0.10
1.35+ 0.05
1.45~ 0.10
2.93+ 0.05

165.0 &15.0
12.0 ~ 0.5
1.55' 0.1

Nucleus
and

compound

Ga"As
Ga"As
GaAs75
AP'Sb
AlSb"'
A1Sb'"
Ge73
Rbs'Cl
Rb"Cl

Fxperimental
TI I

seconds

14.5 ~ 1.0
33.0 ~ 3.0
5.0 + 0.3

400.0 +20.0
2.0 ~ 0.1
2.65& 0.15

375.0 %40.0
4.0 + 0.3
3.25+ 0.75

D. Discussion of T~ Relations

The experimental Ti values measured at 77.4'K in
this experiment are listed in Table I. In Sec. III an
expression for the relaxation times of the point charge
model was derived. Many properties of the material,
such as the density, velocity of sound, lattice constant,
and Debye temperature appear in this equation. Since
these factors will be diferent for each compound, and
since all of the properties, especially the lattice constant,

be inversely proportional to the square of the ratio of
their quadrupole moments. For GaAs the experimental
Ti ratio is Ti(Ga~')/Ti(Ga6') =2.3&0.4 and the square
of the ratio of the quadrupole moments is

LQ(Ga")/Q(Ga"))-'= 2 52.

C. Angular Dependence Measurements

The experimental conhrmation of the isotropy of the
relaxation time in the III—V compounds was of interest
in this work because most of the measurements were
made on polycrystalline materials. Relaxation times of
the In"' resonance in a single crystal of InSb were
measured for several different crystal orientations in
the magnetic field. The measured relaxation time at
77.4'K was 0.80+0.05 sec; the ~0.05 sec represents
the random experimental variations. It was shown in
Sec. III(E) that the point-charge model predicts an
isotropic T~. Since the III—V compounds are not
accurately represented by a point-charge model, it is
possible that the isotropic quadrupolar relaxation times
are characteristic of any type of quadrupole moment-
lattice vibration coupling in crystals of cubic symmetry.

may not be properly included in the relaxation by the
point charge approximation, it is convenient to discuss
the ratios of the relaxation times of the two types of
nuclei io the same compound. Perhaps these ratios also
depend on the properties of the materials, but the
dependence should be less than that of the individual
relaxation times.

If the time-varying field gradients at the III and the
V nuclei were the same, then the ra, tio of the relaxation
times would be given by

& (III) Q(V) ' fP(V)j
Ti(V) -Q(III)- fP(III)j

(43)

&i(111) Q(V) V(V) ' fP(V)]
Ti (V) Q (III)q(III) fP (III)j

This assumption for the III—V compounds has as yet
no theoretical basis other than simplicity and an
intuitive appeal.

In Table II the relation given by Eq. (43) is investi-
gated. The last column gives the ratios of the T~ ratio
given by Eq. (43) to the experimental T, ratio. If the
field gradients at both nuclei were the same, then the
numbers in the last column would equal one.

In Table III the covalent situation is investigated.
Since a prediction of the field gradient at the nucleus
depends on a knowledge of (r '), for the electrons, and
this factor is not known for the various III—V com-
pounds, the field gradient due to a p-valence electron
of the free atom of the element in question is used.

The product Qq is measured in atomic beam experi-
ments. It is known accurately for the III elements but
not for the V elements. The values of Q and q which are
used in the above tables are listed in Table IV. The

where Q(V) is the quadrupole moment of the V nucleus
and fP(V)j is the spin function for the V nucleus.

The interactions that cause relaxation are the field
gradients at the nuclei due to the second order effects
of displacements caused by thermal vibrations of the
lattice. If it is assumed that the ratios of these. field
gradients at the III and the V nuclei are equal to
ratios of the static-field gradients, q(V)/q(III), due to
one covalent bond, then the ratios of the relaxation
times are given by

TABLE II. T1 relations for nuclei in the same compound.

Nuclei and compound Tg (III)/Tg (V) [Q(V)/Q(III) j' f[I (V)j/f [I(III)] [Q/Q]'[f/f] [Q/Q]'[f/f j[Tg (V )/T& (III)j
Ga"As75
Ga"As"
Ga"Sb"'
In115Sb121
In»5As75
gl27 Sb121
Ge"—GaAs75

2.9
6.6
7.75
1.57
0.93

200.0
75.0

2.50
6.25

32.2
0.21
0.067

12.5
2.25

1.0
1.0
0.102
4.32

18.0
1.0

18.0

2.50
6.25
3.28
0.91
1.21

12.5
40.5

0.86
0.95
0.42
0.58
1.30
0.062
0.54
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TABLE III. TI relations with covalent assumption.

Nuclei and compound Tz(III)/T&(V) LQ(V)q(V)/Q(III)q(III)] PQq/Qq7'(f/f] [Qq/Qq]'Pf/f jT&(V)/T&(III)

Ga"As"
Ga71As"
Gaz1Sb123
In115Sb121

In"5As75
Al27Sb121
Ge73—GaAs"

2.9
6.6
7.75
1.57
0.93

200.0
75.0

11.65
29.1

445.0
2.09
0.224

1180.0
3.87

11.65
29.1
45.4
9.03
4.04

1180.0
69.6

4.0
44
5.8
5.8
4.3
5.9
0.93

values of Q were taken from Townes. "The q values
were chosen to give the measured Qq values for the III
elements and were determined from atomic spectroscopy
data"" to give (r '), for bonding states of neutral
atoms for the V elements and germanium.

With the exception of AlSb, the quadrupole moments
and spin factors in Table II correlate with the experi-
mental ratios within a factor of 2. (Note that the
first two rows consider GaAs so that the difference in
the numbers in the last column represents the error of
the experimental ratios. ) Since all of the experimental
ra, tios have less than &20%%u~ uncertainty, and the
quadrupole moments of Al aud Sb are known with
reasonable accuracy, the AlSb data cannot be ignored.
Of course, there is no reason to expect the field gradients
to be the same at both nuclear sites; even if the point
charge model were a good approximation, the effects of
factors such as Sternheimer polarization would give
different multiplication factors for the different ele-
ments.

The numbers in the last column of Table III are
about 4.3 for the arsenic compounds and 5.8 for the
antimony compounds. Because of the &20% uncer-
tainty in the experimental ratios, perhaps these numbers
should be considered as 5~1. Nevertheless, since the
numbers do not vary with III elements, it is dificult
to see why they should vary with the V elements.
Perhaps the difference is due to an incorrect Qq value
for As or Sb. In any case, the AlSb data now agree
with the data on the other compounds when the Qq

ratios are considered. This number, 5~1, represents
the difference in the ratios of the square of the held
gradients due to the second order effects of the lattice
displacements and the ratios of the square of the field
gradients of the p-valence electrons of the free atoms
which are listed in Table IV. At the present there is no
explanation for the magnitude of this number or for
its approximate uniformity for all of the compounds.

The relaxation times of a given nucleus in different
compounds may also be compared if the various
properties of the materials and their imQuence on the
relaxation times are known. Table V makes a com-
parison in which only the effect of the Debye tempera-
ture is considered. , The relaxation time is multiplied

by (T/0)sE(T/0) to eliminate the temperature depend-
ence. The Debye temperatures of GaAs and GaSb were
calculated using their elastic constants. " The Debye
temperatures of InP, InAs, InSb, AlSb, and GaP (the
GaP numbers are taken from AVeber et rtl 4') were.
determined by the temperature dependence of the
relaxation times.

Evidently the "strength of coupling" to the lattice is
about the same for a given nucleus in the compounds
GaP, GaAs, GaSb, InAs, and InSb. Apparently InP
and AlSb require consideration of other factors in
addition to the Debye temperature. This may result
from InP and AlSb being composed of the elements

TABLE V. Comparison of 71's for a given nucleus
in diQ'erent compounds.

TABLE IV. Quadrupole moments Q and atomic Geld gradients q. Nucleus and
compound T, (T/e)2x'(T/e)

Ap'
P31
Ga69
Ga71
Ge73
As75
In"'

Sb123

100.0
100.0
60.2
39.8
7.6

100.0
95.8
57.2
42.8

Nucleus % Abundance Spin

0.15~0.01
0 00 o ~ ~

0.19~0,01
0.12&0.01
0,20+0.10
0.30~0.20
1.16+0.05
0.53&0.10
0.68&0.10

7,23
~ ~ ~

18.9
18.9
31.2
40.8
22.3
70.4
70.4

Q (10 '4 cm') q (10'4 cm ') InSb"'
GaSb"'
AlSb"'
Ga"Sb
Ga"As
Ga"P'
In115P
In"'As
In"'Sb
InAs75
GaAsz5

0.054
0.050
0.041
0.56
0.58
0.58
0.032
0.086
0.084
0.092
0.088

200
265
340
265
355
400
400
240
200
240
355

36 C. H. Townes, F~.ncyclopedq'a of Physics, edited by S. Fliigge
(Springer-Verlag, Berlin, 1958), Vol. 38/1."T. P. Das and K. L. Hahn, Solid-State Physics, edited by
F. Seitz and D. Turnbull (Academic Press, Inc. , New York,
1958), Suppl. 1."R.G. Barnes and W. V. Smith, Phys. Rev. 93, 95 (1954).

a Taken from reference 40.

3' T. B.Bateman, H. J. McSkimin, and J. M. Khelan, J. Appl.
Phys. 30, 544 (1959).

"M. J. Weber, L. Rimai, and L. Neuringer, Bull. Am. Phys.
Soc. 6, 225 (1961).
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TABLE VI. Comparison of all relaxation times.

Nucleus and
compounds

Al(sb)
Ga (P,As, Sb)
In (As, Sb)
(Ga,In)As
(Ga, In) Sb
Ge

» (T/s M (T/e)Q'I (I)
5.9
1.1
0.85
1 ' 1
4.7
1.8 (0.5 ~ 4.0)

TI (T/8)2E(T/8) (Qq)' I(I)
3.0
4.0
4.2

18.0
23.1
17.5

with larger separations in the periodic table than the
elements of the other compounds.

Since the above product of T~ and the temperature
factor for a given nucleus is almost independent of the
compound in which i.t appears, the values in Table V
have multiplied by Q'f(I) and by (Qq)'f(I) for each
element. These results are given in Table VI.

The first column of numbers in Table VI shows that
the field gradients due to the lattice vibrations for the
Ge nucleus are about as strong as for the III—V nuclei
even when the uncertainties (as given in the brackets)
due to the uncertainties in the value of Q for Ge are
taken into consideration. Since the Ge relaxation time
must be a pure covalent effect, the covalent effect
should also be important in the III—V compounds even
if the ionic effect is also important. The last column
shows that when the Qq values are considered the III
elements give a constant and the V elements and Ge
give another constant. The ratio of the numbers is,
of course, the factor of 5~1 that appeared in Table IV.
The value for Al is available only from the AlSb data;
values from A1As and A1P (which were not available)
would probably be closer to 4 for the last column.

Table IV shows that the T~ ratios of the nuclei in the
same compound may be correlated with their Qq ratios.
Table V shows that the strength of coupling to the
lattice for a given nucleus is the same in the different
compounds with the exceptions of AlSb and InP.
Table VI shows that consideration of the temperature
factor, Qq values, and f(I) gives a very good correlation
of all of the experimental data. Therefore, it appears
that, except for the Debye 8, the coupling to the
lattice is relatively insensitive to changes in the proper-
ties of the materials from one compound to,, another.

The results given in Tables V and VI should be
considered only a correlation of the experimental data.
The factor C= 24/md'v'a' that appears in Eq. (40) has
not been used in the above correlation. It is surprising
that the T&'s in different compounds may be correlated
so simply. Even if the point charge model is replaced
by another coupling mechanism, the theoretical T&

expression based on a Debye model for the lattice
vibration should contain a term involving the mass
density, velocity of sound, and the lattice constant.
Attempts to correlate the data with properties of the
materials other than the Debye 0 have not been
successful.

It would certainly be of interest if a relaxation time
calculation based on covalent effects could explain the
correlations of Tables III, V, and VI, the slightly
different behavior in AlSb and InP and, of course, the
absolute values of the relaxation times.
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APPENDIX. CALCULATION OF THE
ANGULAR DEPENDENCE OF A„;;

To investigate the angular dependence of the transi-
tion probabilities it is necessary to carry through the
calculations with the components of the 3„;, tensors
expressed in terms of the angles between the magnetic
6eld and the crystal axes. One way to do this would be
to express the positions of the charges, X, I', Z, E, in
terms of the angles. It is more convenient, however,
to evaluate the tensors for the case of the magnetic
field along one of the crystal axes and apply a general
transformation to the 3„;, tensors. The correct trans-
formation matrix is the matrix D (n,P,y) for the
transformation of normalized second-order spherical
harmonics. A similarity transformation must be made
because the potentials V„ from the A„;, were obtained
are not normalized.

The transformation matrix is (following Rose4')

(A1)

where n, P, and y are the Euler angles. For j=2 the

4' M. E. Rose, E/emeritury Theory of A rIgular Morneetum
(John Wiley R Sons, Inc. , New York, 1957).
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expression for d' is

c4

2cs
d2 6)c2$2

2cs
s4

—2c s
c4—3c's'

6&(c's—cs')
3c's' —s'

2cs

6 c2s2

6&(cs'—c's)
c'+s' —4c's'
6'*(c's- cs')

6&G'S'

—2cs
3c's' —s4

6&(cs2- c's)
c4—3c's'

[2c2s

s4

—2c$3

6&c's',
—2c s

G4

'

(A2)

where c=cos(P/2) and s=sin(P/2). Since the angle 42

corresponds to a rotation about an axis parallel to the
magnetic field, the term e ' '

may be dropped. D2(Py)
is then

g 2

whereas the potentials for a point charge, which were
used to obtain A „;;,are given by

2z(x+iy)

(A3)

where a= e''y.

The normalized spherical harmonics of second order
are

V= — ——' 3s'—r'

2z(x—iy)

(x—iy)'

Since V=M V requires the matrix

(A5)

2z(x+—iy)
(15 : 1

12=
j
— (2)-:(3z2—.2)

(22r 4r2
2z(x—iy)

(x—iy)'

0
%=const 0

0
0

the matrix d' becomes

0 0 0 0
—1 0 0 0

0 (-', )'' 0 0,
0 0 1 0
0 0 0

(A6)

c4

—2G s
2G2$2

2cs
s4

2G8$

c4—3c2s

2 (cs' —c's)
s4 —3c2s
—2cs

3G $

3 (c's—cs"')

c4+s4—4c's'
3 (c's—cs')

3c~s

—2cs
s4—3c's'

2 (cs'—c's)
c4—3c's

2G $

s4

2cs

—2G s
c4

(A7)

For the particular case of the zinc-blende lattice, if the x, y, z axes are taken to be the $100j, L010j, $001j
crystalline directions, then the nearest neighbors are at the positions (111), (111), (111), (111).If the A„;; are

calculated for these positions, then the above transformation may be used to express them in terms of the

Euler angles.

which gives, for example,

~'=D'(Pv)~ =D'(&&) 4o

A 2

(AS)

+ 2 D2W 2+D21+ 1+D20+ 0+D2—1~—1+D2—2+—2 (9A)

The transition probability calculations are carried out as described in Sec. III.[In the final expression the

Euler angles may be expressed in terms of the direction cosines between the magnetic field and the crystalline

directions.


