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Nonlinear Propagation Theory
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Following the theory developed in Part I, a discussion is given of the properties of the third- and fourth-
harmonic waves generated within a plasma layer. The conversion loss for the hth harmonic is presented.
Conditions for the validity of the small-signal analysis are derived. Also, a technique for using the harmonics
as a means of measuring the plasma parameters is presented. A method is then given for reiterating the general
solution for the field at the hth harmonic. This reiteration procedure extends the range of validity of the
small-signal analysis and also allows the determination of a correction to the field at the fundamental fre-

quency. This correction takes into account the effects of the nonlinear terms, in the Boltzmann transport
equation, on propagation phenomena. A discussion is given of the corrected field as a function of the plasma
parameters. Under certain conditions the correction can be as large as 50 jq.

1. INTRODUCTION not only produce a wave at 6', but also a wave at 2~.
In I, the wave at 2' was derived solely from products
of waves at co and the other contributions were neglected
on the basis of the small-signal analysis. The effects
of these additional waves are now taken into account
by a reiteration procedure. A general equation for
computing the corrected value of the electric field at
the hth harmonic is given.

Of particular interest are the effects of the nonlinear
terms on wave propagation at the fundamental fre-

quency. These effects are contained within the general
equation for the electric field, af ter the reiteration
technique has been employed. In this paper the effects
of the nonlinearities on propagation at frequency cu are
discussed within the approximation that the electric
field at the second-harmonic frequency is the only field
that modifies appreciably the wave at frequency ~.

' 'N Part I (hereafter referred to as I) of this paper' the
theory of electromagnetic wave propagation through

an anisotropic i.onized layer, including the effects of
the nonlinear terms in the Boltzmann transport
equation, was presented. The method of solution of the
nonlinear equations involved an expansion of the
dependent variables in the transport equation in a
Fourier series in time. The differential equations
describing wave propagation were then solved for the
field at each frequency in the series, including the effects
of the reflections from the boundaries of all the waves
within the plasma layer. A solution in closed form was
obtained, under small-signal conditions, for the field
at the hth harmonic in the Fourier series. An iteration
technique was employed in order to solve the equations
and an approximation made such that the electric field
at the hth harmonic only depended upon the electric
fields at frequencies less than her where ~ was the
frequency of the
properties of the
was given.
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2. HIGHER HARMONICS

' R. F. Whitmer an

incident wave. A discussion of the The theoretical model to be discussed is as follows. A

waveat the second-harmonicfrequency wave at frequency co is incident on the plasma layer
from the left. The plasma layer is assumed to be of

rief discussion is given of the pro er- thickness d in the direction of propagation of the incident

s at the third Rnd fourth harmonic signal and infinite in all other directions. A uniform dc

the same set of assumptions as in I. magnetic field is imPressed uPon the Plasma layer in a

Rre discussed as a function of the direction normal to the direction of propagation. The

external dc magnetic fie]d, the steady- Plasma is assumed to be electrically neutral and of

ensity, the electron-neutral particle uniform electron density in the absence of electro-

y the fieM strength of the incident magnetic forces. The motion of the ions, as well as any

hickness of the plasma la er From thermal forces, is neglected. Plane-wave solutions for

onversionloss per harmonicisdeduced the fields Rre examined under the assumPtion of R

njc constant electron-neutral particle collision frequency.

or reiterating the general solution Due to the nonlinear nature'of the Boltzmann transport

e jsth harmonic is resented This
ure accounts for t}e fact that the the fundamental wave is assumed to exist within the

lar harmonic de ends not onl u on plasma layer. Refer to I for R detailed discussion of the
assumptions and the method for solving the nonlinear

rmonics. For example, the nonlinear
d 4 In I, an equation [Eq. (I.10)j vvas given for the

solution for the electric field of the hth harmonic as a
d E. B.Barrett, Phys. Rev. 121, 661 (1960). function of the plasma parameters. Through the use of
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Eq. (I.10), the power density in the hth harmonic can
be found to be
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where po is the permeability and c is the velocity of
light in free space, e is the charge and m the mass of an
electron, co„ is the plasma frequency, ~, is the electron
cyclotron frequ ency, v is the electron-neutral particle
collision frequency, d is the thickness of the plasma
layer, and co is the frequency and I 0 the power density
of the wave incident on the plasma layer. Qz is a
dimensionless function of the normalized plasma
parameters and the harmonic number under considera-
tion. The discussions in I were centered around the
dimensionless function Q which, in the present notation,
now becomes Q2.

It can be seen that the power density in the hth
harmonic is proportional to the incident power density
to the Igth power and inversely proportional to the
(h —1) power of oP. Q" is the parameter which varies as
a function of the electron density, the electron-neutral
particle collision frequency, the magnitude of the
external magnetic field, and the thickness of the plasma
layer, as well as the harmonic under discussion. For a
given value of the incident power and at a fixed fre-
quency, the efficiency with which power is converted
from the fundamental frequency to frequency
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FIG. 2. Fourth-harmonic power vs o&,/cu for a&„/co=0.4.

depends on Q". A brief discussion of Q3 and Q4 will be
presented and from this deductions on Q" can be made.
All these discussions will be given for the typical case
&ud/c=18. 63, since cod/c is not a particularly important
parameter in determining the harmonics.

A plot of Q3 vs co,/cu for ~„/co=0.2 is given in Fig. 1
for several values of v/&v. A similar plot of Q4 for
"„/&v=0.4 is given in Fig. 2. In general appearance
Q2, Q', and Q4 are very similar. There is one major peak
in each of the Q's and the position of this peak shifts
to lower values of cu,/" as ~~/a& is increased. In each
case the magnitude of the peak value decreases as
v/" is increased. The smaller resonances about the
main peak are due to internal reflections within the
plasma layer and these disappear as v/&g is increased.
The values of co./&o for which Q', Q3, and Q4 are a
maximum are identical and, therefore, by induction
from

(~ /")Q~ --= I-1—(~./")'3'+ (p/")' (2)
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Equation (2) gives the correct value of cu,/" for maxi-
mum harmonic output to an accuracy of 5%, providing
"~/co(0.8, v/co(0. 2, and a&d/c) 2m. This is well within
the range of interest, since the harmonic output
decreases rapidly outside of this range. By examining
the width of the resonance lines at the half-power
points, it is found that

FIG. 1. Third-harmonic power vs co.,/~ for co~/co =0.2. (ace,/co); = (v/cv) f1+e—&"—'&g. (3)
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This states that the linewidth of the second harmonic
is 2v/or, which is also approximately the width of the
absorption line of the wave at the fundamental fre-

quency. As the harmonic number increases the line-
width decreases, approaching the value v/or for h&4.

Equations (2) and (3) indicate that the harmonics
could be used to measure the electron density and
collision frequency in a plasma. Hy measuring the
linewidth, r can be obtained; and by measuring or, /~~

for peak harmonic power, the electron density can be
obtained. At first thought, this scheme appears some-
what academic since the same measurements can be
made on the fundamental. However, the absorption of
the fundamental becomes very large near resonance
and the peak of the absorption line is difFicult to
measure accurately. However, the second harmonic is a
maximum in the region of interest and the measurement
of the linewidth can be made accurately.

In the case of or, /or =0, Qs and Q4 are zero, while Qs is
finite. In the absence of a dc magnetic field the waves
at frequency 2' and 4' are purely longitudinal, or
electrostatic, and therefore do not radiate. However,
the interaction of a longitudinal wave at 2' with the
transverse wave at frequency ~ results in an electro-
magnetic wave at frequency 3&v through the term
esrrr. Therefore, Qs/0 for or,/or =0, although the
magnitude of Qs for this case is much less than the peak
magnitude in the presence of a dc magnetic field. This
generation of a third harmonic was predicted by
Margenau' and discussed recently by Rosen. ' However,
they did not obtain quantitative information on the
harmonic as a function of the plasma parameters.

A plot of Qs as a function of or„/or is given in Fig. 3
for the case of or,/or=0. It can be seen that Qs has a
maximum for or„/or=2. 0. This can be understood by
the following argument. ' In the case or./or =0 the

Boltzmann transport equation becomes (assuming v =0)

Bv,/Bt+ (v V)v, = (e/m) (E,)+ (e/m) (vX B)r, (4)

rtrr. /rtt+(v V)rr. = (e/m)(E. +i vrXBr), (5)
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where the subscript t indicates the transverse com-
ponent and x the longitudinal component of the wave.
For a transverse wave 8,=Oand—Eq. (4) can be solved
exactly, even though it appears to be nonlinear, since

(v'7) v, = (e/m) (vXB) r.

For a longitudinal wave, 8=—0 and Maxwell's equations
give

enrr +8D,/Bt= 0. (&)
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1'ro. 4. Third-harmonic power at resonance vs ~„/a& (dashed
curves indicate rejected power).
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FIG. 3. Third-harmonic power vs a&,/co for co,/~=0.

' H, Margenau and L. Hartrnan, Phys. Rev. 73, 309 (1948),' P. Rosen, Phys. Fluids 4, 341 (1961).' J. E. Hopson, (private communication).

After substituting Eq. (7) into Eq. (5) and linearizing
with respect to E„Eq. (5) becomes

it'E,/itt+ or„'E.= or, '(vr XB—,) (.8)

It can be seen that the transverse wave drives the
longitudinal wave. Now let us examine a wave at
frequency 2or. In this case, Eq. (8) yields

Es.=or„'(vrr XBrr)*/(4or' —or, '), (9)

which indicates that Es, is infinite (in the absence of
collisions) when or~/or=2. 0. Recall that it is the trans-
verse component of velocity, at frequency ~, multiplied
by the electron density variation, at frequency 2',
which produces the third harmonic. Equation (9)



NONI. I NEAR INTERACTION OF F I. FCTROMAGNETI C WA VF. T483

then indicates why the power in the third harmonic is
a maximum at cov/co=2. 0 (when or,./oi=0) since the
electron density is proportional to E2,. The minimum
at rov/oo=1. 0 can also be explained since ~ii ——0 at this
point (for v =0). No explanation has been found for the
dip when oov/co=0. 5, although it appears to be due to a
boundary effect.

Returning to the case of a finite external magnetic
field, Qs,„and Q4, are plotted vs oo„/oi in Figs. 4
and 5, respectively. The solid lines indicate the Q for
the transmitted waves and are similar to the curves
for Qs, . Through an examination of these curves it
can be shown that

logioQa, = (h —1.2)t —1.1—2.5 logio(v/o&)]. (10)
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Po= &Po+LPo+RPo+ Q (PIT+Parr+PI r,), (11)
h=2

where T is the transmission, 8 the reflection, and I. the
loss coefFicients for the wave at frequency co. From Figs.
4 and 5 it can be seen that Phz is, at most, equal to
Phz. Also, Phl, must be small since the medium is
practically transparent to waves at the higher fre-
quencies. In the linear theory T+R+L= 1; in the
present theory, because of the small signal assumption,
T+R+L= 1—e, where e is a small quantity. Therefore,
by combining Eqs. (11), (10), and (1), one obtains

where

2q Q (10QPo)" '(e,
h=2

100.2 [1.1+2.5 log(v/to) ]
7

(12)

0=2poe'/m'coo'. (14)

These results are valid to within 10% provided
0.1«o,/oo(0. 8, rod/c) 2s., and v/&o) 0.001. For v/co

&0.001, internal reflections within the plasma layer
can modify Qz

The dashed curves in Figs. 4 and 5 are plots of
Qs,„and Q4,„ for the reflected power. It can be
seen that the power emitted at the harmonic frequencies
in the direction opposite to the direction of the incident
wave is almost equal to the harmonic power emitted in
the direction of the transmitted wave. This occurs
because the moving electrons, which produce the
harmonics, radiate in both the positive and the negative
x directions. The detailed curves for the reflected
harmonic powers are very similar to those for the
transmitted powers plotted in Figs. 1 and 2 and will not
be presented here (the only difference is a slight shift
toward lower values of o~,/oi for the peak in the reflected
power for v/oi)0. 01).

The question of the convergence of the series used to
solve the nonlinear equations still remains. The total
power in all harmonics, and in the fundamental, must
equal the incident power. That is,
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Fio. 5. Fourth-harmonic power at resonance vs co„/co (dashed
curves indicate rejected power),

The series on the left-hand side of Eq. (12) must,

converge for the theory to be valid; therefore, applying
d'Alembert's test for convergence, one has

10~Po& 1. (15)

This places a limit on Po. Since Eq. (15) must hold, the
series may be summed, and Eq. (12) becomes

Po(e/100 (2q+ e). (16)

In the region of interest 0.1&q&1.0 and if ~ is assumed
to be less than 0.01, then Eq. (16) becomes,
approximately,

P &10 co 6 (17)

Equation (17) is only a necessary condition on Po such
that the Fourier series expansion is valid. The experi-
mental results (to be discussed in a subsequent paper)
indicate that &&10 ' in the experimental arrangement.

3. NONLINEAR PROPAGATION THEORY

In I the theory of harmonic generation was derived
on the assumption that the field at frequency her only
depended upon fields at frequencies less than bc'. Using
this approximation to determine the field Eh at the
hth harmonic, a reiteration technique will now be
employed to obtain a corrected value for Ei,. This
corrected field will account for the dependence of E~,,

on fields at frequencies greater than hen.

From Eqs. (I.6) and (I.S) the equation to be solved
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becomes, including terms at all frequencies,

2c2

zkcocoy ill,—], tn
[v —ihcp —pp, X)[VXV XE4,'+ (ihcp/c)'E~, ')—(ihcpcp„p/2) Ec,

'— (1—Sar) g v. X&p—.——(v. ' V) vp—.
a=l e

tn
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where E~' is the corrected field,

C,+p„—v,+4—XS.*—(zzz/e) (v,+p V)v,*

+ (zrz/ezzp) (v ihc—p pp. X—)4z,+pv, *, (19)

and C...+&* is obtained by reversing the subscripts and
conjugate signs in (19). In I the C's were neglected
since they involve fields at frequencies greater than hop

and it was assumed that these fields were negligible in
comparison with the fields at frequencies less than hen.

Ez' can be obtained by solving (18) after the terms on
the right-hand side have been determined by means of
the technique in I. Writing

Ep' ——Ep+Eg', (20)

where K~' is the correction to be added to Eq, then E~'
is given by, following I,

modify the wave at the fundamental frequency giving
rise to El'.

Referring to Eq. (18), this equation can be rewritten
as, for h=i,
I.(E,') = (1/cd) LG, (E,E,*)+G,(EzE,*)

+Gz(E4Ez*)+ ), (23)

where L is a differential operator and the G's are known
functions of the uncorrected fields. Because of the small
signal assumption used in I, Gl is the dominant term
on the right-hand side of Eq. (23). Therefore, in order
to simplify the calculation, the reiteration to be dis-
cussed here will only include the effects of the second
harmonic on propagation at frequency or. Since
g~pcc j~'p"/pp' ', where Fp is the incident field strength,
then from (23)

Ep'= E 2 2 E.-'
c, b m, n

Pr'=Pp Q A„(Pp/ppz)"
ri=o

(24)

X iI exp[Wik(„)rai. k(„)r); . (21)

where a, b are all pairs of numbers such that a—b=h,
for a, b)0; ns and e are the numbers of particular
partitions of cz and b, respectively, (arbitrarily ordered);
and

G,=G,=" =G =0 (25)

where Pl' is the corrected power density in the wave
at frequency co and A is a function of the plasma
parameters;

Assuming

2' (v')-=~, 2, (p )-=&, (22) Eq. (24) then reduces to

where q, and p, are numbers within the partitions zrz

and e, respectively. The product is taken over all i, j
and the sums over all & combinations, then over all

m, zz, and then for all cz, b. Although Eq. (21) appears
to be somewhat complicated, it does provide a formula
by means of which the solution for a particular case
can be written down in closed form. Using (21) the
boundary value problem for the plasma layer then
can be solved exactly, as was done in I, and this dis-
cussion will not be repeated here.

As an example of the results one obtains for Eg' from
such a procedure, a reiteration has been performed for
the case 8= 1. This is the case of most interest because
it describes the effects of the nonlinear terms on
propagation phenomena at the fundamental frequency.
Kl is identical with the held obtained from the usual
linearized equations' which describe propagation at
frequency co. Kl' is then the correction to the linear
propagation theory which accounts for the fact that
harmonics are generated within the plasma layer.
These waves, at the harmonic frequencies, interact and

' R. F. Whitmer, Microwave ].2, 47 (1959).

P, ' =A Pp+ BPpz/cu'+ CPp'/cd4, (26)

where A, 8, and C are functions of the normalized
plasma parameters. In fact, A is the usual transmission
coefficient for a plasma layer derived from the linearized
propagation equations.

Plots of 8 and C for the transmitted power at
frequency co are given in Figs. 6 and 7. It can be seen
that 8 may be either positive or negative, whereas C is
always positive. Both 8 and C have a minimum, whose
width depends upon v/cp, where Qz is a maximum and
both 8 and C .have a. maximum immediately to the
right (increasing cp,/cp) of this minimum. Depending
upon v/cp there is a value of pp, /pp below which 8 is
always negative. For cp,/cp approximately twice the
value for which Qz is a maximum, 8 oscillates about
zero and then remains negative for increasing values of
co~/co.

Equation (26) seems to indicate that, for fixed values
of cp„/cp, v/cp, cp./cp, and cod/c, the correction due to the
nonlinear effects increases as co decreases, for a fixed
value of Po. This, however, is not correct because Po
cannot remain fixed over a wide range of ~ because of



NON LI N EAR INTERACTION OF ELECTROMAGNETI C %AVE

the requirement for the convergence of the iteration
technique given by Eq. (17). Equation (17) gives the
maximum allowable value of I'0, and substituting this
into (26) yields

Pr/APs&1+10 "roseB/A+10 '4rosesC/A. (27)

Equation (27) indicates that the upper bound for the
corrected power, within the assumptions of the analysis,
is independent of co over any large variation in ~.
Assuming »=10 ', then B/A must be of the order of
10"and C/A of the order of 10"for the correction terms
to be of much importance. (B/A), „and (C/A) are
plotted vs rov/ro in Fig. 8. This figure indicates that the
correction terms are important in the region of co,/ro = 1.0
when oIv/aI &0.2 and v/ro &0.005. In this case the
correction terms can modify the transmitted power
by as much as 50%%uo. Similar corrections exist for the
rejected power. These results indicate that the eGect of
the nonlinear terms may be important when using
propagation phenomena as a probe to measure the
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plasma parameters and also in understanding propa-
gation through the ionosphere.

4. SUMMARY

The Boltzmann transport equation, coupled with
Maxwell's equations, has been solved, under a small-
signal plane-wave assumption, for a plasma layer
including the eRects of the nonlinear terms in the
equations. Employing a Fourier series expansion in
time for all the dependent variables, a solution to the
equations has been obtained, in closed form, for the
wave at the hth harmonic of the Fourier series, including
the eRects of the reflections of each wave within the
plasma layer. The second harmonic was discussed in
detail in I. In this paper the third and fourth harmonics
were discussed. The theory predicts a major peak in
the power at any harmonic for a value of the dc magnetic
field such that

ro./to = [1—(to„/co)s]j+ (v/~)-',
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FIG. 8. Relative magnitude of the peak value of the
correction terms vs cu„/co.

and the width of the resonance line is proportional to
v/ro and Is approaching v/rd for h&4. Minor resonances
occur on either side of the major peak because of the



existence of standing waves within the plasma layer.
The power density at the hth harmonic varies a,s the
input power density to the hth power for fixed values
of the normalized plasma parameters. The peak values
of the third- and fourth-harmonic powers, Qs . and
Q4, , have been discussed, indicating that they are
independent of co„/to in the range 0.1 (&o„/co (0.8.
Outside this range both decrease rapidly. The peak
values also vary inversely with v/co. Similar statements
hold for the harmonic powers rejected from the plasma
layer.

The question of the convergence of the series used to
solve the equations has been examined. A condition
on I'0, the incident power density at frequency co, is
derived such that the small signal analysis is valid.

An analysis of the effects of the nonlinear terms on
propagation at the incident frequency ~ is then dis-
cussed. This is accomplished through a reiteration

procedure, including only the effects of the second
harmonic, which yields a correction to the equation
for the power transmitted through the layer calculated
from the linearized equations. The results indicate that
the correction can be as much as 50% for coo/to(0. 2

and /vc0. 005. This may be of importance when

using an electromagnetic wave to measure the proper-
ties of a plasma and also when considering ionospheric
propagation phenomena.
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The thermodynamic behavior of liquid He' in its possible superBuid phase is investigated by extending the
methods of Brueckner et al. They suggest that such a correlated phase can exist at very low temperatures due
to the fact that there exist attractive D-state interactions near the Fermi surface. The free energy and the
energy gap of the system for D-state interactions corresponding to different pure azimuthal modes are
calculated at different temperatures. It is found that l =2, m=2 and l =2, m= 1 modes correspond to the
lowest free energy of the system near the critical temperature. In the intermediate range of temperatures
the free-energy curves for the two modes, when the computations are made numerically, come out to be very
nearly the same. But actually it can be shown by an analytical method that they are identical. The l =2,
m=0 mode yields a higher free energy for all temperatures less than the critical temperature. The mixing
of modes is investigated near the critical temperature. Any linear combination of all the modes l = 2, m=0,
1, —1, 2, and —2 does not seem to lead to a lower free energy than that of the l =2, m= ~2, and m= ~1
modes, The correlation lengths at di6erent temperatures are also analyzed. The specific heat and entropy
curves for the l =2, m =2 mode are given.

I. INTRODUCTION

ECKNTLY, it has been suggested by Brueckner,
Anderson, Morel, and Soda' ' and Emery and

Sessler' that liquid He' may have a superQuid phase at
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very low temperatures. They extended the method of
Bardeen et ul. 4 to a system in which the interactions are
represented by non-spherically-symmetric potentials
and found that a fermion system such as He' can become
superAuid due to the attractive interaction in the 3=2
state very close to the Fermi surface.

In the above-mentioned papers, the total energy and
the energy gap of the system for the ground state have
been calculated. The transition temperature T, as well

as the discontinuity of the specihc heat at T, have been

4 J. Bardeen, L. N. Cooper and J. R. Scbrieffer, Phys. Rev. 108,
1175 (1957).Hereafter we refer to this as BCS.


