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The first term in the bracket was zero for a reason where 8/Bx2, ——8/Bx2 —8/Bxi .Then Eq. (18) becomes
similar to that discussed in the paragraph following
Eq. (7). By using Eq. (I.15), this may be written

dx2idp2iv2i pfi(1') fi(2') —fi(1)fi(2)]
()X2y

{dx„}„i{dp„)~iL„'
(v—1)!

dp2idS2i vmiL fi(1')fi(2') —fi(1)f, (2)]. (19)
X dti exp( —iL„t,)L„'II {fi(v, t))

{dx„}~i{dp„)~,L o

(v-1)!

«LL'II{f (,t))]L{x(t—t )},{p(t—t ))] (15)

The final bracket means that the first bracketed
quantity has the positions and momenta which the
particles would have had at time (t—ti). Since the
fi s are slowly varying, their explicit t dependence is
neglected.

For an arbitrary function of phase space and time,

id/dt =iB/Bt L„' )L„—'. —

Over a collision time, Bfi/Bt is zero, and over a region
of a collision, L„'f, is zero. Thus, one may use the
equation

id/dt = ) I.„', —

to simplify Eq. (15):

The notation is obvious, and Eq. (18) is the collision
integral of the classical two-particle Boltzmann equa-
tion. ' As surface of integration, one may choose a
cylinder about particle 1 with axis parallel to v». The
base of the cylinder for which dS». v» (0 gives no
contribution, because there f&'= fi The .base of the
cylinder for which ds» v»)0 gives the customary
collision integral.

The simple interpretation above of the operators
involved in I indicates that the terms in the equations
of I which seemed proportional to t (i.e., to the time of
free propagation) actually were proportional to tm/t,

where v is the intermolecular velocity and 1 the mean-
free-path.

The way now is clear to write down the functional
equation for f, by analogy with Eq. (I.39). For in-

homogeneous systems, fi replaces cp&. As in I, the
equation is written without explicitly noting s, but
it is implied. Realizing that the equation actually is
non-Markovian, like Eq. (I,39), we skip on to consider
its Markovian form, analogous to Eq. (I.42):
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00
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d(t —t,)
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V
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—II {fi(v,t)}] (18)

This equation has been much discussed elsewhere, '
where it was formulated from the Liouville equation
by more direct but less instructive methods. Here, we
shall simply consider the case for v= 2. The fi's, viewed
as functions of xi2 ——xi—x2 and ri2 ——x,+x2, over the
collision region are functions only of x», not of r».
Therefore

vi ' 8/Bxl+ v2 ' 8/BX2 —v2 i ' 8/BX21)

~ F. C. Andrews, J. Chem. Phys. 35, 922 (1961).

This equation is valid under the same conditions as
Eq. (13). It has been previously formulated from the
Prigogine diagram technique by the author. 2 It could
have been formulated from the Liouville equation by
less instructive methods. ' Its existence was postulated
by Bogoliubov in 1946,7 and his suggestion was subse-
quently utilized by Choh and Uhlenbeck. 8

The meaning of Eq. (20) is easily seen. On separating
the +=0 term and using Eqs. (I.9) and (I.15), Eq.

' J.0.Hirschfelder, C. F. Curtiss, and R. B.Bird, The Jjt/Ioleczdar

Theory of Gases and Jiguids (John Wiley 8z Sons, Inc. , New
York, 1954), Chap. 7.' N. N. Bogoliubov, J. Phys. (U.S.S.R.) 10, 265 (1946).

8 S. T. Choh and G. E. Uhlenbeck, The Einetic Theory of
Phenomena in Dense Gases (Navy Theoretical Physics, Contract
No. Nonr 1224(15), University of Michigan, 1958).
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(20) becomes

Xi dt) exp( —iL~4)XL~' Q f, (g)&). (21)

Equation (21) may be treated like Eq. (15), using
Eq. (17):

f, ((s},L) = 1V' {dx) ~, ~ (dp)

The lower limit of the t~ integral cancelled the first
term on the right-hand side of Eq. (21). The result,
Eq. (22), is extremely simple. As expected, under the
requirements imposed to derive Eq, (22), it merely
states that the reduced s-particle D.F. is a constant of
the motion during a v-body collision. This interpre-
tation of the Brussels operator has been presented
previously by less convincing means. '

'F. C. Andrews, Bull. classe sci. Acad. roy. Belg. 46, 475
(1960).

The author feels that with the other papers of this
series, ' ' 4 this clarifies somewhat the philosophical
problem of the mechanical approach to equilibrium
in classical fluids. One takes certain information about
a system known not to be "in equilibrium" and builds
this information into an ensemble. One studies, then,
the mechanical evolution of the ensemble, using its
distribution function to calculate predictions of values
of observables for the system. As time goes on, most
of the information built initially into the nonequilibrium
ensemble becomes completely meaningless, as it is
disused into "correlations" involving huge numbers of
particles. Finally, the simple mechanical motion of the
ensemble destroys enough information that the value
of any observable predicted for the system from the
ensemble is essentially time independent, the same as
that which would be predicted if one knew virtually
nothing about the initial state of the system and used
"equilibrium statistical mechanics" from the start.
Wall effects play no important role in the significant
aspects of the approach to equilibrium in such a
mechanical system.
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