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The evolution of reduced distribution functions is studied for an inhomogeneous dense classical fluid by
methods previously used to study homogeneous fluids. So long as only short-range order is present in the
fluid and the variation in properties caused by the inhomogeneity is negligible over distances of the order of
the region of a collision, then the evolution equations for the one-particle and s-particle distribution functions
are obtained. They take a simple Markovian form if the one-particle distribution changes negligibly in times
of the order of the duration of a collision. The operators involved in the evolution equations are studied.
Their physical meaning and relationship to the classical Boltzmann equation are considered.

ECENTLY, methods were presented by the author

for studying exactly the mechanical evolution of
reduced distribution functions (D.F.’s) describing a
homogeneous dense classical fluid.! In order to under-
stand transport properties, inhomogeneous systems
must be treated. This problem has been previously
attacked by the Brussels group.? In this paper, the
methods of T are used to simplify and generalize some of
the work.

In an inhomogeneous system, ensemble averages of
quantities dependent on individual particles are
averages over the one-particle reduced D.F., defined
thus:
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On using Egs. (1.7) and (1.8), this becomes
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which is to be compared with Eq. (I.11). The same
argument that gave Eq. (I.13) now gives
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Equation (I.15) may be used to treat the first term
in Eq. (3), yielding
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Because there were no discontinuities on the real axis,
the contour ¢ could be lowered to it. The z integral then
gave the delta function. The interpretation of Eq. (4)
using Eq. (1.6) gives what one would expect of a non-
interacting system: f1(0) evaluated at the position the
particle had at time zero, such that a straight-line
trajectory would bring it to x; at time £.

The second term of Eq. (3) may be treated similarly :
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The physical interpretation of the #; integral is the same
as that of the ¢, integral of Eq. (1.16). Once again, Eq.
(5) would be exact, thus impossibly difficult, if one did
not take advantage of the presence of only short-range
order. After no more than » particles have interacted
(»&<N), the group of colliding particles may be traced
back along their trajectories until after some 7eorr they
are outside the range of initial correlation and no longer
interacting. Only the free-particle motion carries them.
As in I, the contribution from Eq. (5) may be cut off
at 2= 1Tcorr, Since its subsequent contribution is shown
below to be correctly given by the first term involving
scattering. Also as in I, the final operator in Eq. (5) is
now given one explicit intermediate stage of non-
correlation. The analog of Eq. (I1.18) is then
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By the star notation is meant that at that point all
spatial correlation from the right is removed. The only
{x} dependence remaining is that of the external
gradient. In I, one could just insert the integration,
Q¥ S {dx}, but here there still is the {x} dependence
from the gradient; thus the star notation is convenient.

In Eq. (6), a particular set of dummy particles,
{v} .4, may be picked by introducing the factor N ¢/
(v—1)1, which for N> is the number of ways of
choosing (v—1) bodies from N. The =0 term of Eq.
(6) may then be written, using Eq. (1),
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The number of fy’s in the product is the number of
different particles involved in the (Ly—2)~" operator.
They are factorized because the separate particles are
uncorrelated. This clearly is just what the second term
of Eq. (3) gives for £>7e, as discussed following
Eq. (5). On using Eq. (1.9) and separating the #=0
term, this becomes
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In I, the counterpart to the first term of Eq. (7) was
zero by the argument of Eq. (I.21). Here, this argument
is not quite valid, since the configuration integral is of
the form

f (dn} L TL{ACx (= 1),0T),

where x,(—7) is the position particle » had on its
straight-line trajectory at time ({—7). The sign of L’ is
changed on the interchange {x,1} — {—x,1}. All this
interchange does to {fi[x,(—7),0]} is to move the
position of the pair of particles involved by a distance
of at most the range of the forces. Assuming the gradient
in fi to be small enough that its change is negligible
over distances of the order of the range of the forces,
the first term of Eq. (7) may again be dropped. Of
course, in cases of a more severe gradient (e.g., shock
waves in a dense fluid), such terms would have to be
studied.

The general approach of this paper is now illustrated.
The first term of Eq. (7) is dropped, and Eq. (1.5) is
used in the second term:
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As in deriving Eq. (5), the z integral yielded a delta
function, which was used to perform the # integral.
Because the exponential operator in # acts on Ly’ its
integral is nonzero only for times ¢ <011, as noted often
in I. Equation (8) is to be compared with the first term
of Eq. (I.23). The place of the (¢—¢,) in the latter is
here taken by the #; integral over the slowly varying
argument. The place of ¢x(0) is here taken by the last
exponential operator acting on the set of fi’s. This
shows, perhaps more vividly than in 7, the meaning of
the time factors arising in the integrands in I. They
represent times of free flight between collisions.

It would now be possible to study the terms in Eq.
(6) for >0 to get something analogous to the second
term of Eq. (I.23)., There would be one additional
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dummy time variable, its integral being to 7err. Then
more and more periods of uncorrelated motion could
be introduced, as in I, to give an exact equation for f.
This will not be done here in interest of brevity. The
notational problems leading to the star in Eq. (6)
would be magnified as more particles became involved
in the further scatterings.

The knowledge gained in I enables our directly
taking the partial derivative of Eq. (3) with respect to ¢.
The general form of the right-hand side is illustrated by
the contributions of Egs. (4), (5), and (8). ‘Differ-
entiating partially with respect to ¢ yields —2L.’f; plus
in every case a contribution from the delta function
which arises on differentiating the Heaviside function.
This latter contribution from Eq. (4) is zero for ¢>0.
This contribution from Eq. (5) may be simplified, since
the ¢, integral may be performed over the delta function:
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This is analogous to the last term of either Eq. (I1.26)
or (I.27). Similar treatment of Eq. (8) yields
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Comparison of this with Eq. (4) shows that the last
exponential operator acting on the product of fi’s is the
contribution of the form of Eq. (4) to [T { f1(v, t—12)}.
This is in complete analogy to what was found in I.
As further terms are included, one gets the equation
analogous to Eq. (1.27):
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This final evolution equation is valid in general for
inhomogeneous systems possessing only short-range
order in which the gradients in properties are negligible
over distances of the order of the region of a »-body
collision. For ¢>7er it simplifies to give a form
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analogous to Eq. (1.28):
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The equation is non-Markovian in the sense found in 1.
The spatial dependence of {fi(v)} is, as derived, that
for the particles at the moment they enter their collision.
But, Eq. (11) or (12) is valid only if the gradients in f;
are negligible over molecular distances. Thus, the
{x,} dependence of the fi’s may be taken to be all at
the same spot, say Xi.

Comparison of Eq. (12) with Eq. (1.28) shows that
the only real difference between the homogeneous and
the inhomogeneous cases, for small gradients, is that a
product of one-particle momentum D.F.’s in the
homogeneous case is replaced by a product of ¢*fi’s
in the inhomogeneous case. The spatial dependence of
each f,is the same, that of the location of the collision.

The approach to equilibrium demanded by the right-
hand side of Eq. (12) has been studied.? It leads quickly
to a Markovian form, as the {fi} become slowly

varying :
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The concentration dependence of Eq. (13) is not
obvious, but concentration dependence of similar
operators has been studied elsewhere.

Equation (13) represents a generalized Boltzmann
equation, valid to order ¢”. That Eq. (13) indeed is a
Boltzmann-type equation is easily seen. Since L,
=L4AL), the right-hand side of Eq. (13) becomes
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3 F. C. Andrews, Phys. Rev. 125, 1469 (1962).
4 F. C. Andrews, Physica 27, 1054 (1961).
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The first term in the bracket was zero for a reason
similar to that discussed in the paragraph following
Eq. (7). By using Eq. (1.15), this may be written

d v #1 d vf =1 vO
<v—1>z/{“ (dp} L.
X/ dty exp(—iLt) L) T { /1(»,1)}
= ax,} a{dp,} «1L,°
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The final bracket means that the first bracketed
quantity has the positions and momenta which the
particles would have had at time (¢{—¢;). Since the
fi's are slowly varying, their explicit ¢ dependence is
neglected.

For an arbitrary function of phase space and time,

(16)

Over a collision time, df;/d¢ is zero, and over a region
of a collision, L,°f; is zero. Thus, one may use the
equation
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to simplify Eq. (15):
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This equation has been much discussed elsewhere,’
where it was formulated from the Liouville equation
by more direct but less instructive methods. Here, we
shall simply consider the case for v=2. The fi’s, viewed
as functions of X;;=x;—X; and ris=x;+x, over the
collision region are functions only of xXj2, not of ris.
Therefore

V1'0/6X1+V2'6/6X2=V21'6/6X21,

5F. C. Andrews, J. Chem. Phys. 35, 922 (1961).
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where 9/0X21=0/9x2—9/dx;. Then Eq. (18) becomes
d

/ dxadpaivar——L (IO AQ)= ADAD)]
X21

=/dpndSzrV21[f1(1’)f1(2’)—fl(l)fl(Z)]- (19)

The notation is obvious, and Eq. (18) is the collision
integral of the classical two-particle Boltzmann equa-
tion. As surface of integration, one may choose a
cylinder about particle 1 with axis parallel to va;. The
base of the cylinder for which dSsi-vs1 <0 gives no
contribution, because there fi'=fi. The base of the
cylinder for which dSs-v21>0 gives the customary
collision integral.

The simple interpretation above of the operators
involved in I indicates that the terms in the equations
of I which seemed proportional to ¢ (i.e., to the time of
free propagation) actually were proportional to fv/l,
where v is the intermolecular velocity and / the mean-
free-path.

The way now is clear to write down the functional
equation for f, by analogy with Eq. (1.39). For in-
homogeneous systems, f; replaces ce;. As in I, the
equation is written without explicitly noting », but
it is implied. Realizing that the equation actually is
non-Markovian, like Eq. (I.39), we skip on to consider
its Markovian form, analogous to Eq. (1.42):

fs({s},t)=cs‘N98“N/{dX} A{dp} ) 3 (=N
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This equation is valid under the same conditions as
Eq. (13). It has been previously formulated from the
Prigogine diagram technique by the author.? It could
have been formulated from the Liouville equation by
less instructive methods.? Its existence was postulated
by Bogoliubov in 1946,7 and his suggestion was subse-
quently utilized by Choh and Uhlenbeck.?

The meaning of Eq. (20) is easily seen. On separating
the =0 term and using Eqgs. (I.9) and (1.15), Eq.

6§ J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, The Molecular
Theory of Gases and Liquids (John Wiley & Sons, Inc., New
York, 1954), Chap. 7.

7N. N. Bogoliubov, J. Phys. (U.S.S.R.) 10, 265 (1946).

8S.T. Choh and G. E. Uhlenbeck, The Kinetic Theory of
Phenomena in Dense Gases (Navy Theoretical Physics, Contract
No. Nonr 1224(15), University of Michigan, 1958).
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(20) becomes
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Equation (21) may be treated like Eq. (15), using
Eq. (17):
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The lower limit of the ¢, integral cancelled the first
term on the right-hand side of Eq. (21). The result,
Eq. (22), is extremely simple. As expected, under the
requirements imposed to derive Eq. (22), it merely
states that the reduced s-particle D.F. is a constant of
the motion during a »-body collision. This interpre-
tation of the Brussels operator has been presented
previously by less convincing means.?

9F. C. Andrews, Bull. classe sci. Acad. roy. Belg. 46, 475
(1960).
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The author feels that with the other papers of this
series,'34 this clarifies somewhat the philosophical
problem of the mechanical approach to equilibrium
in classical fluids. One takes certain information about
a system known not to be “in equilibrium” and builds
this information into an ensemble. One studies, then,
the mechanical evolution of the ensemble, using its
distribution function to calculate predictions of values
of observables for the system. As time goes on, most
of the information built initially into the nonequilibrium
ensemble becomes completely meaningless, as it is
diffused into “correlations” involving huge numbers of
particles. Finally, the simple mechanical motion of the
ensemble destroys enough information that the value
of any observable predicted for the system from the
ensemble is essentially time independent, the same as
that which would be predicted if one knew virtually
nothing about the initial state of the system and used
“equilibrium statistical mechanics” from the start.
Wall effects play no important role in the significant
aspects of the approach to equilibrium in such a
mechanical system.
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