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the kinetic energy of the S particles. It can then be
shown that this equilibrium form of gatv insert;ed in Eq.
(42) gives rise to the exact values of the equilibrium
correlations in an ensemble, previously known from the
Ursell-Mayer theory of static equilibrium statistical
mechanics. "

The operators of Eqs. (40)—(42) are further studied
in a subsequent paper' and shown to represent the
formation of correlations among s or fewer particles

"F. C. Andrews, Physics 27, 1054 i1961).

by collisions among v and fewer bodies. The equations
could have been deduced more directly by less instruc-
tive means. '
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The equation derived in a previous paper for the exact evolution of the momentum distribution function
of a homogeneous dense classical Ruid is studied. The Markovian form of this equation is found to drive
the momentum distribution monotonically to an arbitrary function of the kinetic energy of the system.
This function must be canonical if it factorizes in momentum space. Incorporation of the non-Markovian
e6ects in the evolution equation through a simple approximation does not destroy the approach to equi-
librium. Since reduced s-particle distribution functions previously were shown to be functionals of the
momentum distribution, they also monotonically approach equilibrium.

' 'N a previous paper, ' it was shown that y,v((p}),
the l7-particle momentum distribution function

(D.F.) for a homogeneous classical fluid possessing
only short-range order, evolves according to the
following equation for times longer than a properly
defined "molecular correlation time":

~v ~(t)= —g'0 sr
f,dx}L~' dt,

Xexp( —iLNti)L~'pi„(t —t,). (1)

a re~ (t) t,' 8'year (t)
PN (t tl) PN (t) tl +

Bt 2I BP
(2)

The ti integrand of Eq. (1) may be nonzero only over
the duration of a collision, ~„ll, involving v or fewer
particles. '

*National Institutes of Health Postdoctoral Research Fellow.
Present address: Chemistry Department, University of Wisconsin,
Madison, Wisconsin.'F. C. Andrews, Phys. Rev. 125, 1461 (1962) (referred to as I
throughout this paper).

All symbols and operators in Eq. (1) are defined and
discussed in I.

Consider Eq. (1) with q» (t—ti) expanded in a
Taylor series about y&(t):

Ke first study Eq. (1) with only the first term of the
expansion, Eq. (2), inserted. This simple Markovian
form, or generalized master equation, is valid if p&(t)
varies negligibly during w„».

8 @~(t)—= —X'0 ~ {dx}L~' dti
R

Xexp (—iL~t, )Lsr'(p~(t). (3)

It is convenient to find the symmetric and anti-
symmetric parts of the exponential integral operator
in L&, using the identity

dti exp( —iL~ti) =x8(L~)—iO'(L~ ').

The delta function is symmetric in L~', the principal
part of L& ' is antisymmetric. The antisymmetric part
is not needed, since it gives zero in Eq. (3). This is
because an operator antisymmetric in L& is necessarily
antisymmetric in lx}. The complete ix} dependence
of the integrand of Eq. (3) would then rest in the action
of three operators, each one odd in the interchange
(x}—+ (—x}.It therefore would vanish on integration
over configuration space. Only the delta function
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The I.~' operator on the left of the delta function
may give a zero result in one of two ways. The 8/Bp„,
of the function on which it. operates may be perpen-
dicular to the intermolecular force between particles r
and s. This could not hold for arbitrary {x}and {p},
however. The only other way is for the function on
which it operates to be independent of {p}:

6(L~)L~'p~'~=independent of {p}. (16)

This equation may be studied using the integral
representation of the delta function:

The only functions of the momenta of, say, particles
1 and 2 which are the same before and after any collision
between them are their kinetic energy (2m) '(Pi2+P22)
and their total momentum (pi+ p2). So the only
dependence on y» and y2 must be through these func-
tions. The same must be true for all pairs of particles
and also for all groups of more than two particles.
Clearly, the only such functions are the total kinetic
energy of the iV particles:

(21)

dti exp( iLv—t&)L~'pv'~=independent of {p}. (17)

In I, frequent use was made of exp( —iL~ti) as that
operator which takes the particles backwards over
their exact trajectories for a time t». Since it acts on
the intermolecular force between two particles con-
tained in the particular term of I~', the t» integrand
is only nonzero over a collision time, during which it
has the value

The (t—ti) notation means the {x} and {p} of the
particles at time (t—ti) on their trajectories. There is
no exP/icit t dependence of y~'~, of course.

It is useful to note that for an arbitrary function of
$ and phase space,

ad/dt = i 8/Bt LA" XL~'. — —

In the case of Eq. (17), the function rp.v'q is both time-
and {x}-independent; therefore

i—yg'~= —XI y'q g'~,

and the requirement of Eq. (17) becomes

and the total momentum of the .V particles, P, p, .
This latter is zero if the box containing the system is
at rest. Therefore, the momentum distribution is driven
monotonically by the generalized master equation to
an arbitrary function of H~p. The distribution then is
time independent.

Ke now show that this arbitrary function p&(Hz')
is of the form n exp( —PHv'), granted the necessary
and sufficient condition that y~'& factorizes in momen-
tum space. Factorization implies that the momenta of
different particles are not correlated when the particles
are extremely long distances from each other; i.e., there
are no correlations independent of positions. The only
requirement which might impose such a correlation is
that of given or finite total energy available to the
system. If the kinetic energy of one particle was an
appreciable part of the total available to the system,
then one would expect the probability of such a state
to be less than its value given by a canonical distri-
bution.

The necessity of factorization is clear, since
n exp( —PH~') is a product of terms n't exp( —/Hi").
That it is a sufhcient condition may easily be shown

by an approach reminiscent of that of Maxwell. '
Factorization requires

(22)

dti 'px (t t ) yv [{p(&oil)}7
d(t —t,)

(23)

—p&"L{p(—r„»)}7=independent of {p}. (19) The function in'& may be expanded as a power series
in its argument. Then Eq. (23) becomes

The difference between y~'& for the sets of momenta
before and after the collision must be independent of
momenta for any x. Yet, clearly there exist sets {x}
for which some {p}result in collisions and some other
{p} result in such grazing collisions they do not change
the momenta. Therefore, the constant must be zero:

(p+ 't {p(Tg&&ii)}7=y~' L{p(—r,»i)}7. (20)

Equation (20) is therefore necessary and sufficient for
an equilibrium momentum distribution. It must hold
for any collision process.

Only the coeKcients ap or a» may be nonzero. Squared
and higher powers of the sum would introduce cross-

2 See, e.g. , A. Sommerfeld, Tlzermodyrlamzcs and Statisti cat
3Iecharlics (Academic Press, Inc. , New York, 1956), Sec. 23.
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terms, explicitly coupling the various p, '-. Therefore

N

lnvpar=&o++t Q p',
(24)

So factorability in momentum space gives rise to the
exponential form of the D.F.

This paper is incomplete without some treatment of
the non-Markovian character of Eq. (1). This is not
easy, nor does it seem too useful. The exact equation
for yN(t) of I from which Eq. (1) was derived shows
from its form that for t greater than the duration of
several collisions, p& should not vary appreciably
during r„ii. Furthermore, v „i~, a function of the
particular collision process, may be very short for some
collisions. Thus, for some collisions, Eq. (3) would
suffice even if y~ was changing rapidly.

Instead of the expansion of Eq. (2), one might insert
into Eq. (1) some constant time lag T characteristic
of and less than an average r„~~.

Then, instead of Eq. (12), one has

r)c„(t)/r)t= rrVK, „c (t—)+rr) 'K„Tr)c„(t)(dt, (26)

with solution

c (1)=A exp( —rrX'K t((1 re-"K T)j. —(27).

This shows that, in general, the non-Markovian nature
speeds up the approach to equilibrium, as one would
expect. The effective nonequilibrium situation which
"drives" the irreversibility is not that at time t, but

th st at a prior time when it, s nonequi1ibriurn nature was
even greater.

It was shown in I that the s-particle reduced D.F.'s,
which give the spatial correlations among groups of s
and fewer particles as well as their momentum depend-
ence, are simple functionals of p&. Therefore, they
approach equilibrium indirectly as q ~ approaches
equilibrium. It has been shown' that the values given
by the dynamical theory for these equilibrium corre-
lations are the same as those given by classical, static
equilibrium statistical mechanics.

Perhaps the fmrsdamerrtal asslm pti ors of classical
equilibrium statistical mechanics is that the total
energy is the only important constant of the motion;
thus the equilibrium D.F. must be a function only of
the energy. ' It has here been prosed that the mechanics
of the scattering events in a Quid drive the momentum
D.F. to a function of the kinetic energy. Simultaneously,
reduced D.F.'s are driven to the exact values they
would have if the total energy were the only constant
of the motion.
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