EXACT EVOLUTION

the kinetic energy of the N particles. It can then be
shown that this equilibrium form of ¢n inserted in Eq.
(42) gives rise to the exact values of the equilibrium
correlations in an ensemble, previously known from the
Ursell-Mayer theory of static equilibrium statistical
mechanics.!t

The operators of Eqs. (40)-(42) are further studied
in a subsequent paper® and shown to represent the
formation of correlations among s or fewer particles

11 F. C. Andrews, Physica 27, 1054 (1961).
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by collisions among » and fewer bodies. The equations
could have been deduced more directly by less instruc-

tive means.?
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Approach to Equilibrium in a Dense Classical Fluid
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The equation derived in a previous paper for the exact evolution of the momentum distribution function
of a homogeneous dense classical fluid is studied. The Markovian form of this equation is found to drive
the momentum distribution monotonically to an arbitrary function of the kinetic energy of the system.
This function must be canonical if it factorizes in momentum space. Incorporation of the non-Markovian
effects in the evolution equation through a simple approximation does not destroy the approach to equi-
librium. Since reduced s-particle distribution functions previously were shown to be functionals of the

momentum distribution, they also monotonically approach equilibrium.

N a previous paper,! it was shown that ox({p}),

the N-particle momentum distribution function
(D.F.) for a homogeneous classical fluid possessing
only short-range order, evolves according to the
following equation for times longer than a properly
defined “molecular correlation time’:

don (1) ©
= —AZQ—N/{dx}LN'/ dh
at 0

Xexp(—iLnt))Ly' on(t—t). (1)

All symbols and operators in Eq. (1) are defined and
discussed in I.

Consider Eq. (1) with on(¢—%) expanded in a
Taylor series about ¢y(f):

don(t) 12 %en(1)
20 o9

on(t—t)=on()—t; @)

The ¢, integrand of Eq. (1) may be nonzero only over
the duration of a collision, 7.1, involving v or fewer
particles.!
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1F. C. Andrews, Phys. Rev. 125, 1461 (1962) (referred to as I
throughout this paper). ’

We first study Eq. (1) with only the first term of the
expansion, Eq. (2), inserted. This simple Markovian
form, or generalized master equation, is valid if ¢y (¢)
varies negligibly during 7¢on:

don(t) *
— ==\ ¥ {dx}LN'/ di
at 0

Xexp(—iLNtl)LN’gaN(l). (3)
It is convenient to find the symmetric and anti-
symmetric parts of the exponential integral operator
in Ly, using the identity

00

] dty exp(—iLnt)) =m8(Ly)—i®(Ly™). 4)

The delta function is symmetric in Ly; the principal
part of Ly~ is antisymmetric. The antisymmetric part
is not needed, since it gives zero in Eq. (3). This is
because an operator antisymmetric in Ly is necessarily
antisymmetric in {x}. The complete {x} dependence
of the integrand of Eq. (3) would then rest in the action
of three operators, each one odd in the interchange
{x} — {—x}. It therefore would vanish on integration
over configuration space. Only the delta function
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contributes to the master equation:
don (1)
a¢

= '—WAZQ—N/{dX}LNla(LN)LN/<pN(l). (5)

It is desired to expand ¢y (¢) in eigenfunctions of the
operator acting on it in Eq. (5). First, this operator is
proved to be Hermitian in momentum space with
positive eigenvalues:

(m[Q‘N/{dx}LN’(S(LN)LN’]n)
- / {dp} @, N / {dx) Ly'5(Ly)Ly'®,.

The ©’s are arbitrary functions of momenta, vanishing
for infinite momenta. The first Ly” may be integrated
by parts in momentum space, and the result simplified
by noting that Ly*=—Ly":

Q_N/{dx}{dp}(LN’®M)*5(LN)(LN/®7L).

The quantities (Ly’'®) are now expanded in eigen-
functions ¢ of the Hermitian operator Ly :

Ly'®On=3iays LyNO.=> by,

The matrix element becomes

(6)

Q*N/{dx}{dp}zi a8 (Ln)2 i by

The delta function by definition picks out the eigen-
function associated with zero eigenvalue. This is true
equally for the ¢.* and the ;. The reason is that if .,
is an eigenfunction of Ly with eigenvalue A, then ¢,,*
is also an eigenfunction of Ly with eigenvalue —A,,
as is proved below :

LN‘//mzAm‘pﬂu LN*\bm* = Am*!ﬁm*-
Since Ly*= — Ly, this becomes
Ll\ﬂpm = m*‘l/m>l=

= _Am'l/m*;

since the A,, are real; Q.E.D. The matrix element is thus
(m|@™ / {dx} Ln'5(Ly) Ly | )

—a [ (axpanayia oot (1)
By the same process, however, its Hermitian adjoint is
(n]Q‘N/{dx}LN’é(LN)LN’!m}*b

=N / {dx} {dp}bapod (Ln)ao*do*.
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This clearly is the same as the matrix element of Eq.
(7), since 6(Lny)=[8(Lw)]*. The scattering operator
is thus Hermitian.
Furthermore, its eigenvalue K, is positive. To prove
this,
Q*N/{dx}LN’é(LN)LN’Xn=K,,X,,. (8)
Therefore

K,,,Z<le_Nf{dX}LN/5<LN)LNI [ n)

On expanding Ly'X, in eigenfunctions of Ly, as in
p g g

Eq. (6),
Ly'Xn=2": aniXs, 9)

K, is seen from Eq. (7) to be
Kn=9_N/{dX}{dp}dno*\[/()*5(LN)an0¢0; (10)

which is a positive form.
This proved, ¢n(#) may now be expanded in the
eigenfunctions X; of Eq. (8):

on () =2 ci(DXs.
Then Eq. (5) takes the form
Z,‘ [a(;i(l)/at]xiz — A2 Zj KjCj(t)Xj.

This equation may be multiplied by X,,* and integrated
over momenta to give

O (8)/0t= —TNK en(t),

(11)

(12)
with solution

cm(t)=A exp(—mNK 1), (13)

where K, is positive and given by Eq. (10). Therefore
the coefficients in the expansion, Eq. (11), are driven
monotonically to zero by the master equation. The A2
of Eq. (13) may of course be put to unity. Its presence
merely calls attention to the fact that the approach to
equilibrium is only through collisions between particles,
involving their intermolecular forces.

The only stationary solution of Eq. (3) or (5) would
be a multiple of X, i.e., as seen from Eq. (8), a solution
of

Q_N/{dX}LN/lS(LN)LNIQDNcq=0. (14)
This must hold for arbitrary {p} in ¢»°?. Examination
of the proof given above from Egs. (5) to (10) indicates
that not only has the entire operator of Eq. (14) been
proved positive in momentum space, but the same proof
shows the operator Ly’6(Ly)Ly" to be Hermitian and
positive in phase space. Therefore, not only must Eq.
(14) hold for ¢y, but it implies that its {x} integrand
must be zero for arbitrary {x}:

LNI(S(LN)LN'<pNeq=0. (15)
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The Ly’ operator on the left of the delta function
may give a zero result in one of two ways. The 9/9p,s
of the function on which it operates may be perpen-
dicular to the intermolecular force between particles 7
and s. This could not hold for arbitrary {x} and {p},
however. The only other way is for the function on
which it operates to be independent of {p}:

6(Ln)Ly" on**=1independent of {p}. (16)

This equation may be studied using the integral
representation of the delta function:

0

/ dty exp(—iLyt) Ly’ px°d=independent of {p}. (17)

0

In I, frequent use was made of exp(—iLyt1) as that
operator which takes the particles backwards over
their exact trajectories for a time ¢. Since it acts on
the intermolecular force between two particles con-
tained in the particular term of Ly’, the {; integrand
is only nonzero over a collision time, during which it
has the value

j dtl[LN’(pNeq](t—fl).

The (¢t—?1) notation means the {x} and {p} of the
particles at time (¢—¢;) on their trajectories. There is
no explicit t dependence of on°4, of course.

It is useful to note that for an arbitrary function of
¢t and phase space,

id/dt=1d/dt— Ly'—\Ly'. (18)

In the case of Eq. (17), the function ¢x® is both time-
and {x}-independent ; therefore

d
i—@n®i=—ALxy" on,
di
and the requirement of Eq. (17) becomes

0

d
[ wdtl d(z—thDNeq(t_tl)z enL{p(reon)}]

— on[{p(—7con)} ]=Independent of {p}. (19)

The difference between ¢yt for the sets of momenta
before and after the collision must be independent of
momenta for any x. Yet, clearly there exist sets {x}
for which some {p} result in collisions and some other
{p} result in such grazing collisions they do not change
the momenta. Therefore, the constant must be zero:

‘pNeq[{p(Tcoll)}]: ‘FNeq[{p(—Tcoll)}]- (20)

Equation (20) is therefore necessary and sufficient for
an equilibrium momentum distribution. It must hold
for any collision process.
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The only functions of the momenta of, say, particles
1 and 2 which are the same before and after any collision
between them are their kinetic energy (2m)1(p2+ po?)
and their total momentum (pi+ps2). So the only
dependence on p; and p, must be through these func-
tions. The same must be true for all pairs of particles
and also for all groups of more than two particles.
Clearly, the only such functions are the total kinetic
energy of the V particles:

N
Hy'= (2m)™' 30 pd,

=1

(21)

and the total momentum of the N particles, Y_; p:.
This latter is zero if the box containing the system is
at rest. Therefore, the momentum distribution is driven
monotonically by the generalized master equation to
an arbitrary function of Hy°. The distribution then is
time independent.

We now show that this arbitrary function oy (Hx")
is of the form «exp(—pBHx"), granted the necessary
and sufficient condition that ¢x® factorizes in momen-
tum space. Factorization implies that the momenta of
different particles are not correlated when the particles
are extremely long distances from each other; i.e., there
are no correlations independent of positions. The only
requirement which might impose such a correlation is
that of given or finite total energy available to the
system. If the kinetic energy of one particle was an
appreciable part of the total available to the system,
then one would expect the probability of such a state
to be less than its value given by a canonical distri-
bution.

The necessity of factorization is clear, since
a exp(—BHy’) is a product of terms o!/¥ exp(—BH{").
That it is a sufficient condition may easily be shown
by an approach reminiscent of that of Maxwell.2
Factorization requires

(X p2)=TI ex(p),

=1 =1

(22)

v N
Inen (22 A =2 e1(pH). (23)

=1 =1

The function Ingy may be expanded as a power series
in its argument. Then Eq. (23) becomes

hoxn(S p2)=ark(3 pDart- (5 p2ast- -

=1 =1 =1

=§ Ing:(p?).

=1

Only the coefficients @o or a1 may be nonzero. Squared
and higher powers of the sum would introduce cross-

2 See, e.g., A. Sommerfeld, Thermodynamics and Statistical
Mechanics (Academic Press, Inc., New York, 1956), Sec. 23.
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terms, explicitly coupling the various p2 Therefore

N
Iney=ao+a1 ) p3,
i=1 (24)

N
ev=aexp(—f’ Z ) =a exp(—BHN).

=1

So factorability in momentum space gives rise to the
exponential form of the D.F.

This paper is incomplete without some treatment of
the non-Markovian character of Eq. (1). This is not
easy, nor does it seem too useful. The exact equation
for on(t) of I from which Eq. (1) was derived shows
from its form that for ¢ greater than the duration of
several collisions, ¢n should not vary appreciably
during 7eu. Furthermore, 7,1, a function of the
particular collision process, may be very short for some
collisions. Thus, for some collisions, Eq. (3) would
suffice even if ¢x was changing rapidly.

Instead of the expansion of Eq. (2), one might insert
into Eq. (1) some constant time lag 7" characteristic
of and less than an average reoi:

en(t—t)=on(t—T)= ox()—Tden(1)/d1. (25)
Then, instead of Eq. (12), one has
Icm(t)/ = —1NK 1uCon (1) +TNK . Tdc,n (1) /0L,  (26)
with solution
cn(t)=A exp[ —7NKt/ (1—7NK,T)].  (27)

This shows that, in general, the non-Markovian nature
speeds up the approach to equilibrium, as one would
expect. The effective nonequilibrium situation which
“drives” the irreversibility is not that at time ¢, but
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that at a prior time when its nonequilibrium nature was
even greater.

It was shown in I that the s-particle reduced D.F.’s,
which give the spatial correlations among groups of s
and fewer particles as well as their momentum depend-
ence, are simple functionals of ¢y. Therefore, they
approach equilibrium indirectly as ¢y approaches
equilibrium. It has been shown® that the values given
by the dynamical theory for these equilibrium corre-
lations are the same as those given by classical, static
equilibrium statistical mechanics.

Perhaps the fundamental assumption of classical
equilibrium statistical mechanics is that the total
energy is the only important constant of the motion;
thus the equilibrium D.F. must be a function only of
the energy.* It has here been proved that the mechanics
of the scattering events in a fluid drive the momentum
D.F. to a function of the kinetic energy. Simultaneously,
reduced D.F.’s are driven to the exact values they
would have if the total energy were the only constant
of the motion.
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