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The exact evolution of reduced distribution functions is studied for a homogeneous dense classical fluid by
methods which are equivalent to the diagram technique of Prigogine and co-workers. No diagrams or
Fourier expansions are used in this work, however. So long as only short-range order is present in the fluid,
exact equations for the eveolution of the momentum distribution function and for reduced s-particle distri-
bution functions are obtained. They are seen to be non-Markovian in a sense explicitly related to the finite
duration of a collision. Simple Markovian equations—a generalized master equation for momenta and a
functional equation for correlations—result only when the momentum distribution changes negligibly in

times of the order of the duration of a collision.

I. PRELIMINARIES

OR the past five years, the group at Brussels under
the leadership of Prigogine has been developing a
means of studying mechanical systems obeying the
Liouville equation.! The technique involves extensive
use of modern perturbation theory, e.g., summations
over classes of diagrams, study not of the distribution
function but of its Fourier coefficients, etc. The resulting
difficulties to the reader have kept this work from being
appreciated as much as it might otherwise have been.
It was the hope of the author in undertaking the
research presented here that by approaching the problem
from a somewhat different viewpoint, greater generality
and more mathematical and physical insight might be
obtained, at least for the problem of classical fluids.
Whether the type of approach presented here will
prove as versatile as that characterized by diagrams
and Fourier expansions, e.g., in studies of plasmas,
quantum effects, turbulence, etc., remains to be seen.
We shall study the time evolution of an ensemble of
classical systems, each system containing N particles
in a volume Q. The ensemble is described completely by
the N-particle distribution function (D.F.), fy. The
exact equation of motion is given by the Liouville

(mlLNIn>=/{dX}{dP} <Pm*LN<Pn=if{dX}{dD} %*[— % Vi—+

equation?:
10 fn/0t= Ly fn= (LN"+NLN') fn. 1)

The N is viewed merely as a convenient counting
parameter. At no time in this work is it assumed small.
For a classical fluid, the operators are given explicitly by

N d
Ly'=—1 Z Vi, (2)
=1 dX;
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In this notation, p;, the momentum of particle 7, is just
the velocity of particle j, v;, times the particle’s mass.
Other notation used is

Xrs=Xp— X5, Prs=Pr—Ps,
9/9p,s=9/9p,—3/9p;.

The phase space is of infinite extent in the momentum
part. The configuration part is limited to the interior
of a box of volume Q. The effect of wall interactions is
eliminated by imposing either periodic or zero boundary
condition on fx at the walls of the box. In such a space
the operator Ly is.easily seen to be Hermitian!:
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The functions ¢ are any functions of phase space obeying the boundary conditions. This expression is integrated
by parts with the requirement that ¢, and ¢, be zero at infinite momentum. Since the surface integral over the
walls of the box vanishes because of the boundary condition, this becomes

a3 N 9V, 0

N
<m|L~ln>=—i/{dx}{dp}¢n[— Y vi—t+ % -—]«»m*;
r<s=1 O0X, OPrs

therefore
(m|Ly|n)y=n|Ln|m)*; QE.D.
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1 For an exposition of these techniques and for the literature
references, see 1. Prigogine, Non-Equilibrium Statistical Mechanics
(Interscience Publishers, Inc., New York, 1961).

=1 (")Xj

Wenow solve Eq. (1) formally. In general, throughout
this paper, {x} and {p} refer to the sets of positions and
momenta of the V particles at time ¢ For the moment,
this is noted explicitly. The Liouville equation gives fy

2 R. C. Tolman, The Principles of Statistical Mechanics (Oxford
University Press, New York, 1938), Chap. 3.
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Fi1c. 1. Contour of integ-
tion for Eq. (7).

Z-PLANE

as a constant of the motion?:

Inx@O} e ()},11= fx[{x(0)},{p(0)},0].  (4)
It is also clear that the solution of Eq. (1) is
In{x@},{p()},]
:exp(_iLNt)fN[{x(l)}){p(t)})ol (5)

as may be seen by applying #9/9¢ to Eq. (5) and by
noting that the right-hand side correctly reduc‘es to
fw(0) for £=0. The exponential operator may be viewed
as that operator which takes fn forward explicitly in
time. By combining Egs. (4) and (5), another interpre-
tation of the exponential operator is found,

exp(—iLwt) fn[{x()},{p()},0]

that of being the operator which moves the particles
backward along their exact trajectories.

A different representation of the solution, Eq. (5), is
preferred. Since Ly is Hermitian, its eigenvalues are
real. On using the Cauchy integral formula? Eq. (5)
is seen to be identical to

1
fu=— [dsep(—isd (L0150, ()

211 J ¢

where ¢ is the contour of Fig. 1. Clearly, with ¢ positive,
the contour ¢, located an infinitesimal amount above
the real axis, may be closed by a semicircle at infinity
in the lower half-plane, thus enclosing all poles from
eigenvalues of Ly. Equation (7) is the basis of this

study. )
It is convenient to prove here the following operator

identity :

(A4+B)'=4"1— A7+ (4+B)*
=A"1'— A (A+B)(A+B)"'+ 414 (A+ B)!
=A"1—A7'B(A+B).

Therefore

(Ly—2)~"

= (Ly"—2) ' =NLN—2) Ly (Ly—2)"1.  (8)
From time to time it will prove convenient to use Eq.
(8) solved by iteration:

(Ly—2)'= % (—N)"(Lad— 2 [Ly' (La®—2)"'T, (9)

n=0

3P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc., New York, 1953), Sec. 4.2,
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without proving its convergence. Summations over an
infinite number of terms of Eq. (9) are always made.
Physically meaningful results are consistently obtained
using Eq. (9), even in the hypothetical limit of singular
intermolecular potentials. It is felt that a rigorous
treatment based on the mathematical theory of di-
vergent series* would justify this usage.

From this point on, this paper departs radically from
the methods of the Brussels group.!:s

II. EVOLUTION OF THE MOMENTUM D.F.

A homogeneous fluid is one with properties which
do not change from point to point as a result of simple
translation through the fluid. For such a system, we
shall study the N-particle momentum D.F., ox({p},’),
which gives all information about momenta, but none
about positions:

et 0= [ o, 0
On using Eqs. (7) and (8) in (10), this becomes
1 .
¢N(Z)=§; /cdz exp(—izt)/{dx} (La"—2)"1fx(0)
~£r—i/;dz exp(—izt)/{dx} (Ly%—2)~!
XLy (Ly—2)"fx(0). (11)

Consider the (Ly’—3z)~! operators of Eq. (11) as
acting on the quantities to their right, expanded in
eigenfunctions of the operator L. The Ly° is then
replaced by its eigenvalue for each term of the expansion.
But, since each term appears under an integral over
{x}, only the eigenvalue zero may arise. This is because,
in {x} space, a constant is an eigenfunction of Z° with
eigenvalue zero:

Lt [ (i) =0,
for g({x}) an arbitrary function. Therefore,
[ tam@=sreian = (= [, a2
and Eq. (11) becomes

1
o= [ s exp(=is)—o) [t 10

A
- / 5 exp(— iat) (—z)
21t J .

X / {dx} Ly’ (Ln—2)""fx(0). (13)

* See, e.g., G. H. Hardy, Divergent Series (Oxford University
Press, New York, 1949).

8 F. Henin, P. Résibois, and F. Andrews, J. Math. Phys. 2,
68 (1961), 1. Prigogine and P. Résibois, Physica 27, 629 (1961).



EXACT EVOLUTION OF REDUCED DISTRIBUTION FUNCTIONS

The first integral may be evaluated immediately by
the residue method to yield H(f)en(0), where H(Z)
is the Heaviside step function

H()=1, t>0; H()=0, (<O.

It arises, because for ¢ <0, the semicircle closing ¢ must
be in the upper half-plane, thereby missing the pole
at 2=0.

The second integral is of course not so easy, since it
clearly represents the difference between ¢y(#) and
on(0). Indeed, if the (Ly—2z)~' operator is replaced
using Eq. (9), this second integral becomes

A
——/dz exp(—izt)(—z)—lf{dx}LN’
2t J .

X z_: (=N (L= )
XLy’ (La®— )77 (0).

There are infinities of pole to consider. The virtue of the
method here presented is its requiring the explicit
treatment only of poles at the origin. The effect of other
poles is given by operators which are easily handled
mathematically and interpreted physically.

A pole at zero among those of Eq. (14) means that
after a certain amount of interacting, a state of spatial
noncorrelation is set up, as seen by Eq. (12). Then new
correlation is instituted by the forces of the Ly’
operators to the left of the pole at z=0. We seek a
rigorous justification for considering only interactions
separated by poles at zero (generalized stosszahlansatz
or random phase approximation), when we know that
particles do feel the effect of their past, even their
distant past. Some realistic method must be adopted
for breaking up the N-body interaction to throw out
information about such correlations as are physically
meaningless.

To do this for fluids, which have only short-range
order, we only consider correlations involving groups of
at most v particles (v<<N). Information coupling
explicitly more than » particles is thrown away as being
physically meaningless. This should agree with physical
reality for two reasons: (1) In a system with only
short-range order, surely the only particles whose
correlation could affect reduced D.F.’s are the particles
within the region of the short-range order. (2) We
know of no experiment whereby explicit correlations
among larger groups of particles in a fluid may be
observed. If irreversibility is defined as the presence of
a way for information to be lost, then this retaining
only correlations among » or fewer particles introduces
irreversibility. It does so, however, in the same way it is
introduced in natural mechanical processes. We shall
see below that this single restriction is enough to force
the consideration of terms in Eq. (14) involving more
and more poles at z=0.

(14)
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Consider, then, the contributions to Eq. (14) in
which at most the number of different particles which
become involved through the operators Ly’ is ». Initial
correlations among groups of more than » particles
present in fy(0) will be averaged over by a simple
generalization of Eq. (12). Throughout this paper, use
is made of the following identity :

z/ dty exp[ —i(Ly—2)t1]
0 ’
= lTirn zf dty exp[—2(Ly—2)t]
“ Jo

exp[—t(Ly—2)T]—1
lim = (LN-‘Z)_I.
T->x — (LN— Z)

Il

(15)

The exponential gives zero because on the contour ¢,
Im 2>0. The second term of Eq. (13) becomes

A
—— | dzexp(—at)(—2)"' | {dx}Ln'3
i J e

©

Xf dty exp[—1(Ly—2)t1 ] f~(0)
Ao '
:_2—/ dtlf dz exp[ —iz(t—11) J(—2)!
X/{dX}LN/ exp(—iLyt1) fn (0)

=—) / {dx}Ly'i / wdzl H(t—1)

Xexp(—iLyt1) fa(0). (16)

This term has clear physical meaning. Changing the
upper limit of the integral to ¢ permits removing the
Heaviside function. Then, on utilizing Eq. (6), this
becomes

—in f i, [ (dx} L exp(—iLuts) Ix[{x()},{0(1)},0]

N / iy / (dx()} L' ()
DT XALG—w), (=1}, 01 (A7)

The operational meaning of Eq. (17) is as follows: The
distribution, en[{p(®)},t], of {p(¥)} is being calculated,
so the particular {p(f)} are given. A set {x(¥)} is
chosen, about which the differentials {dx(¢)} lie. This
fixes Ly’ (#), and fx[{x(8)},{p(#)},0] may be found for
this set. For a given term of Ly’, the coordinates of the
two particles involved in that term must be close enough
together that the intermolecular force between them is
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finite. During the first increment, A4, @, this now-known
product is the integrand of the ¢; integral. To find the
integrand during the second increment, At;®, the exact
equations of motion are used to calculate the positions
and momenta the particles had at time [{—AL®7].
Finding fa ({x[{— AL D7}, {p[t— ALV}, 0) then gives
the integrand for the second increment of the ¢, integral.
The procedure is continued, following back in time the
trajectories of the particles.

All further particles are neglected after no more than
v of them have become involved in the interaction. It is
clear that if we were not able to do this, then Eq. (17)
would fluctuate endlessly as a function of ¢4 Omitting
the possibility of bound states, further tracing back of
the trajectories eventually finds the particles on
straight-line trajectories that would have led them into
their interaction. From the time these straight-line
trajectories are reached, {p(!—f)} remains constant
with further increase of #;, and the points represented by
{x(1—11)} get further and further separated.

Therefore, if the region in which » or fewer bodies
were initially correlated is only a small fraction of £,
after a time 7. they are far enough away from each
other that fa[{x({t—t)}, {p({—1?1)}, 0] is independent
of {x(¢—?1)}. Then the D.F. contained in the ¢, integrand
of Eq. (17) may be represented by @~ on[{p(t—1)}, 0],
instead of fn. For most systems one describes by
fn(0), the region of initial correlation of » and fewer
particles will indeed be very small, of the order of
several times the ranges of the intermolecular forces.
This is so because longer range correlations would have
been difficult to establish in the fluid and hard to
observe if they were there.

It will be shown below that Eq. (17), for (> 7, 1s
correctly given by terms in Eq. (14) with two poles
at zero rather than one. Since Eq. (17) was formulated
as if it had only one pole at zero, its contribution must
be terminated at 7eor. But of course, the terms in Eq.
(14) which have two poles at zero must then be treated.
They will lead to terms with three poles at zero, etc.
Terms in Eq. (14) with more and more poles at zero
must be treated in order to be consistent. Between any
two poles at zero, up to » particles may interact. This
will be a consistent treatment involving all effects of
up to »-body correlations in the evolution of the reduced
D.F.

For simplicity in this paper, the notation

/ (dxyg((x}) / (dxyh({x))

is used without indicating that there are two sets of
dummy coordinate variables. The integral on the right
eliminates all spatial dependence. New spatial depend-
ence is introduced on the left through the function g.
This is then removed by the next integral.

A second pole at z=0 in Eq. (14) might arise at any
(Lx°—2)" operator. The explicit location of this pole
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may be marked by inserting the integral over {x} which
gives rise to such poles:

A
- / dz exp(—izl) (—z)!
2w

X / (L' 3 (N (Lyt—z)

m=()

X [Lv’ (LNO— Z)‘lj'"Q_N/{dX}

X 3 (=N'[Ly’ (Lat—2) Tk (0) (18)

n=0

A
=——~/dz exp(—1zt) (—2)™
27t J .

x /{dx}LN%LN—z>~l[sz—NsoN<0>
;)\Q_N/.{dX}LNI(LN—Z)_lfN(O)}. (19)

Passage to Eq. (19) was by use of Eq. (9). The »=0
term has been separated from the rest of the #
summation.

It now is apparent that the first term of Eq. (19) is
precisely of the form of Eq. (17) for ¢> reore. We seek
correct consideration of terms in Eq. (14) involving
more and more poles explicitly at zero. Thus to make
Eq. (17) represent only the contribution from terms
with just one pole at zero, the contribution from its #;
integral must be cut off -at 7er. Simultaneously, it
now is clear in what sense the additional poles at zero
have arisen. They represent states of spatial non-
correlation among groups of » or fewer particles between
interactions. If it were not for the throwing out of
correlations involving more particles, a second pole
at zero by itself could not rigorously arise. The contri-
butions to ¢x(¢) in Eq. (11) from terms of Eq. (14)
which contain only one pole at the origin may be
written_

ox O =H(t) on(0) =2 f {dx}Ly'i

X/norrdh H(t—tl) eXp(“"LLNtl)fN(O) (20)

The contribution to ¢y from terms in Eq. (14)
containing two poles at zero is given by Eq. (18) or (19).
The m=0 term of Eq. (18) vanishes, because it is of
the form

/{dx} Ly'(—32)"'[something independent of {x} ]=0.
(21)

The {x} integral gives zero because the only {x}
dependence of the integrand rests in the forces in Ly’
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For intermolecular potentials possessing inversion
symmetry,
Vii(xij) = Vij(—xij), (22)

the force is an odd function of the coordinates of the
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pair of particles. Thus, Ly" is odd in the interchange
{x} — {—x}, and the integral of this odd function
over all of configuration space vanishes.

On eliminating the m=0 term from Eq. (18) and
using Eq. (9), Eq. (18) or (19) becomes

A ©
<PN(2’=2—j/dz exp(—izt)(—z)—lf{dx}LN’ 2 (=N (Ly'—2)!
™ J e §$=0

><[LN'<LN0—z>~IJSLN'(LN°—z)—lw[¢.~<o>—x / {dx}LN%LN—z)—lfN(m]

)\2

T J ¢

=2—-. dz eXp(—iZIf)(—Z)2SZ_N/{dx}LN'(LN—Z)_ILNII:qu(O)—K/{dX}LN’(LN—"Z)_lfN(U)]

A2 w©
=5*_fdz exp(‘iZt)(—Z)ZQ_N/{dx}LN’i/ dty exp[—i(Ly—2)t1]
i J . . )

XLN'(¢N(O)—iA/{dx}LN/f dis exp[:-—i(LN—z)tz]fN(O)).

The last step was made using Eq. (15). The two terms in the brackets are now separated and the z integrals per-

formed by the residue method:

© N
¢w(2>=/ dllrfdzexp[—iz(t—tl)](——z)2Q‘N/{dx}LN’ exp(—iLnty)
0 T J e

© 0 )\3
XLN’goN(O)—i-f dh/ dtg———./dz exp[ —iz(t—ti—12) J(—2)2Q~ ¥
0 0 T J ¢

2

X/{dx}LN’ exp(—iLNh)LN'/{dX}LN’ exp(—iLnt2)fn(0)

=N / {dx}Ly"i / dty exp(—iLyty) Ly’ (1)~ (t— 1) H (t— 1)
: 0

X¢N(O)+i)\29—N/{dx}LN'i/ dty exp(—iLyt1) Ly’

0

X[—k/{dX}LNliv/qm"dtg exp(—iLng)(ll)—l (t—ll—lz)H(l— ll—t2)fN(0)]. (23)

The upper limit of the ¢ integral has been changed
from o to 7eor. This is because, just as before, for
2> Teorr, the contribution from the second term of Eq.
(23) could be made up from terms in Eq. (14) with
three poles at zero and not two.

It is important to consider the meaning of the
operator,

NN / {dx}Ly'i / diy exp(—iLyt)Ly', (24)
0

which acts on a function independent of {x}. It takes
one state of spatial noncorrelation into another by
means of interaction between a group of particles. The
exp(—iLnt1) operator acts here on Ly’ as well as on

whatever is to the right of the complete operator.
Therefore, the 4 integrand can only be non-zero during
the time that the two particles involved in a term of
Ly’ are within each others’ force fields. The two
particles concerned may be any of the » interacting, so
this non-zero interval may occur at any time during
the complete v-body interaction. But for times greater
than the duration of the »-body collision, 711, the
integrand is zero. The integral is written to infinity,
but it only contributes to 7e11. Because of the process
it clearly represents, the operator of Eq. (24) may be
called a scattering operator.

The procedure that gave Egs. (20) and (23) is
readily generalized to the case of any number, s, of
poles at z=0. One gets a scattering operator for each
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pole beyond the first. The z integral is easily performed
by residues, using the formula®

1) _1046)

S
gt 5l

dz* ,-,=().

The following equation is obtained giving the exact
evolution of ¢y (¢), subject only to the neglecting of the
effects of correlations of greater than v particles. This »
is not specifically noted in the equations of this paper,
but its presence is implied in them:

0

<pN(t)= Z [i)\ZQvN/{dX}LNIi/wdtj exp(~iLth)LN’]s

s=0

x[cz)—l(z— S ) H(— 3 15)on(0)

=1 =1

=1

Teorr s+l
-\ / {dx}La'i / B (s)TN— X 1)
0

XH(— 3 1) exp(—iLylas1) fN(O)]. (25)

=1

The meaning of the s=0 term is clarified by noting the
convention used in this paper:

tj=0.

7=0

Equation (25) is now differentiated with respect to
the time, ¢ Differentiating the Heaviside functions
yields delta functions of their arguments. This gives
something of the form 7°§(7), so is non-zero only for
the s=0 term. For >0, the s=0 term is

N / (dx) Ly / i 51— 1) exp(—iLaty) fx (0).

The ¢ integral can now be performed easily. The
differentiated form of Eq. (25) is given below. The
index s has been changed to 7--1. The s=0 term follows
the rest, and its #; integral has been performed:

don (1)
at

=y [MrN / (dx) Ly'i
=0
o (r+1)
X/ di; exp(—-iLNt,-)LN’:I
0

41 H
x[(r!)—l(t— S LyH(= £ 6)ex()

=1

Teorr 42 X
—)\/{dX}LN,Z/ dlr+2(7’!)_l(l—' Z tj)r
0

=1

6 Reference 3, Sec. 4.5.
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X H (t— %2 t;) exp(—iLN¢r+z)fN(0):|

=1
—i}\H(rcor,~—t)/{dx}LN’

Xexp(—iLnt) fn(0). (26)

Comparison of Eq. (26) with (25) shows that Eq.
(26) is identical to

den(?)

=iV / {dx}Ly'i

X/ dlfl eXp(—iLNll)LN/(pN(f—fl)H(t—f1>
0

—-i)\H(rcm-t)/{dx}LN’

Xexp(—iLyt) fx(0). (27)

The simplicity of Eq. (27) is striking, considering that
it gives exactly the evolution of any ensemble represent-
ing a classical homogeneous fluid having only short-
range order. The first term on the right side of Eq. (27)
is of the form of Eq. (42), discussed above. The second
term represents contributions in which the only pole
explicitly at 2=0 came as a result of the {x} integration
overall. This was discussed following Eq. (17) above.

For times greater than 7eorr and 711, the entire last
term and the Heaviside function of the first term
vanish. Particles no longer explicitly feel their initial
correlations, and enough time has elapsed to complete
a collision. From then on, it is only completed scattering
events which change ¢n:

don(t)
ot

=iNQN / {(dx} L'

X] dtl eXp(—iLNh)LquoN(t_tl). (28)
0

The equation for ¢n is non-Markovian, in that
den(f)/0t depends on knowledge of ¢y, not only at
time ¢, but at all times, (¢{—#,), for {; <7e11.

The non-Markovian Eq. (28) is exact for {> 7. It
becomes of simple Markovian form only if ¢y(¢) is
slowly enough varying that it may be treated as
constant during 7e11. More explicitly, if the Taylor
series expansion

en(t—t)=on(t)—tden(2)/t+- - -

is used in Eq. (28) and the first term is an adequate
representation, then the following simple Markovian
equation describes the evolution of ¢ny:

den (1)
at

=NV / {dx}Ly'i

)(/ dty exp(—iLnt) Ly’ on(); (29)
0



EXACT EVOLUTION

den(t)
at

=N f (A} Ly (Ly—ie) 'Ly’ ox ().  (30)

Equation (30) was obtained using Eq. (15). The term
in epsilon (an arbitrarily small positive quantity) was
inserted in order to damp explicitly the behavior at
infinity. It was shown above that behavior for &> 711,

let alone infinity, cannot affect the result. We call either

Eq. (29) or (30) the generalized Master equation.

In a subsequent paper,” Eq. (28) will be shown to
give a monotonic approach to equilibrium. The non-
Markovian behavior quickly leads to Markovian
behavior. The Markovian equation has the unique
stationary solution,

N
en (2 pd).

=1

Also in a subsequent paper,® the operators of these
equations are further studied. It is shown that Eq. (30)
is of the type of the Boltzmann collision equation,
generalized to consider not just two-body, but »-body
collisions in a homogeneous system. It could have been
deduced directly from the reduced Liouville equation by
less instructive methods given elsewhere to formulate a
generalized Boltzmann equation.?

III. EVOLUTION OF THE REDUCED
s-PARTICLE D.F.

The reduced s-particle D.F. is customarily defined
thus:

fs(xl' c e XgP1t 'ps)

N!

:(N )l/dxs+1'"dXNdps+l"'defN;
—3):

(31)
lim fu()= N / (dx) w01 {dD) st -

It is important to realize that if the intermolecular
forces are all two-body, then the ensemble averages
of significant macroscopic observables may be made
from f5, not fx.1° This is true even at liquid densities.

Inserting the representation of fy from Eq. (7)
into Eq. (31) yields

ATs

fs({s})=—~/dz exp(—1zt)
27t J .

X / {dx} «(1{dp} «ts) (Lv—2)7f¥(0). (32)

7F. C. Andrews, Phys. Rev. 125, 1469 (1962).

8 F. C. Andrews, Phys. Rev. 125, 1473 (1962).

9 F. C. Andrews, J. Chem. Phys. 35, 922 (1961).

10 See, e.g., J. H. Irving and J. G. Kirkwood, J. Chem. Phys.
18, 817 (1950). :
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This is the counterpart to Eq. (11). It is identical to
what one would get from Eq. (31) using Eq. (5), rather
than (7):

fs({s}))=N¢ / {dx} «1){dp} «ts) exp(—iLnt) fx(0). (33)

Once again, Eq. (6) may be used to interpret the
exponential operator. The {x,} and {p,} are given, since
their distribution is being calculated. These s particles
plus up to (v—s) others, which we call dummy particles,
are traced back over their trajectories during the period
from ¢ to 0. In all cases in which f; is used to calculate
observables, {X,} is a set of points located very close to
each other. Their distances apart will be of the order of
the range of the intermolecular forces. So for times
longer than that necessary for the » particles to finish
their interaction and pass outside the region of their
initial correlation, Eq. (33) is constant with respect
to further increases in ¢.

This constancy would never occur if we were not
throwing out terms in the expansion of the inverse
operator of Eq. (32) which involve correlations of more
than » particles. If such correlations were kept, Eq.
(33) would correctly give f; for all times. From the
study of Sec. II, it is clear how this problem should be
approached. We shall call the time after which Eq. (33)
becomes constant the initial time, 7init. For t> 7init, the
contribution from Eq. (33) would be unchanged if
fn(0) were replaced by @ ¥y (0). This is part of the
contribution from the expanded form of Eq. (32) with
one pole explicitly at z=0. Once again, treatment of this
expansion involving more and more poles at zero is in
order.

Here, as in Eq. (18), the explicit location of the first
pole at zero may be noted in the expanded form of
Eq. (32):

Ns
fsu):_'/dz exp(—izt)/{dX} A {dp} 25
27t J .

X 3 (=\"(Lad—2) [ Ly’ (Lad— 2y ]

m=0

X/{dx} i (=N Ly (Ly*—2)]"fa(0);

n=0
N (34)

fs(l)-—_.—

21

fdz exp(-izt)/{dX} <1{dp} <5}

XY (=N)"[(Lad—2) Ly J"(— 20V

m=0

ECEY (@)L (=11 O) |
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Use has been made of Eq. (9). On treating the m=0
term separately from the rest, this becomes

N\
fsa):ng—sv/A{dp} #{8}(/)1\)'(1)-'—/ dz exp(—1zt)
2wt ) ¢
X /{dX} <s{dp} 1) (Ly—2)7'Ly' (=)@~

x[m«»—x / () Ly (Ly— ) mw} (35)

The m=0 term was easily recognizable as giving
on(f) by comparison with Eq. (13). On using Eq. (15),
this becomes i

N

fs(l)zcsf{dp}g(s}WN(t)_z

(N

/dz exp(—izt) (—2)!
X/{dx}¢xs}{dp}¢fsli
X/codtl exp[—i(Ly—2)t JLy'Q™V

X[<pzv(0)—>\ /'{dx;LN%LN-erfN(())]. (36)

The second term of this is a form familiar from Sec. 11,
and the generalization to any number of poles at zero
may immediately be written down. There will be the
contribution from Eq. (33) for the case of no pole at
zero. This term must be cut off at .. Then there will
be contributions from each non-zero number of different
poles explicitly at zero:

fe()=N°H(rins—1)

X/{dx} =(s3{dp} (s} exp(—iLnt) fn (0)+c*

X/{dp};alszww(t)—csﬂs‘NX/{dX} < {dp} a1

0

X/ dtyexp(—iLyt)) Ly’ Y l:zkzﬂ—N/{dx}L,v'i
0

u=0
© u ut1
X/ dt; exp(—iLNlj)LN'] [(u!)‘l(l— Z ;)"
. 0 =1

u+1

XH (t— é:ltj)qDN(O)_)\/{dx}LNli

%2 t5)

=1

Tcorr ut2
X / Aloro(u)(1— X t;)*H (1—
0 =1

><exp<-iLNzu+2)fN(0>]. 37)

ANDREWS

Comparison of Eq. (37) with (25) shows that Eq.
(37) is identical to

fs(t)=63/{dp};ds}sﬂN(i)“E“Q“_N/{dX}#ls}{dp} #ls}

i / dty exp(—iLytONLy" on (1= ) H (1— 1)
0

+N5H(nm—t)/{dx} = {dP} x5}

Xexp(—iLyt) fx(0). (38)

This equation is exact and is the counterpart of Eq. (27)
for on.

Again, for times greater than riniy and 7,1, the
entire last term and the Heaviside function vanish.
The initial correlations no longer are explicitly felt. Only
collisions between previously uncorrelated particles
contribute to f,:

fs(t)=cs/{dp} ¢{81¢N(i)_6898_N/{dx} #(s}{dp} ={s)

0

XZ/ dty eXp(-"iLNh))\LN’(pN(t—il). (39)
0

The equation for f, is non-Markovian in the same sense
that Eq. (28) is non-Markovian. The non-Markovian
Eq. (39) is exact for £> 7inj.

Again, if on(f) varies slowly enough in .11 to be
essentially constant, the functional equation for f,
becomes of a simple Markovian type, which is given
below in three equivalent forms: '

fs(t)=c“/{dp} ;e{sWN(f)“CsQ“_N/{dX} #s1{dp} ()
xi / "t exp(—iLytM Ly’ ow ()3 (40)

f)=c f (dp) et o ()= QN / (%) 0 {dp} 10

X (Lv—ie) ALy on(t); (41)

fs(t)=659“N/{JX} =(1{dD} <(5)

X % (=N L (L= i) Ly Tron (D). (42)

n=0

We again emphasize that the non-Markovian behavior
in the evolution of ¢y through Eq. (28) leads mono-
tonically to Markovian behavier.” The Markovian
behavior of ¢wn, Eq. (30), leads monotonically to the
equilibrium form ¢y*t=a exp(—BHy"), where Hy° is
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the kinetic energy of the N particles. It can then be
shown that this equilibrium form of ¢n inserted in Eq.
(42) gives rise to the exact values of the equilibrium
correlations in an ensemble, previously known from the
Ursell-Mayer theory of static equilibrium statistical
mechanics.!t

The operators of Eqs. (40)-(42) are further studied
in a subsequent paper® and shown to represent the
formation of correlations among s or fewer particles

11 F. C. Andrews, Physica 27, 1054 (1961).
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by collisions among » and fewer bodies. The equations
could have been deduced more directly by less instruc-

tive means.?
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Approach to Equilibrium in a Dense Classical Fluid
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The equation derived in a previous paper for the exact evolution of the momentum distribution function
of a homogeneous dense classical fluid is studied. The Markovian form of this equation is found to drive
the momentum distribution monotonically to an arbitrary function of the kinetic energy of the system.
This function must be canonical if it factorizes in momentum space. Incorporation of the non-Markovian
effects in the evolution equation through a simple approximation does not destroy the approach to equi-
librium. Since reduced s-particle distribution functions previously were shown to be functionals of the

momentum distribution, they also monotonically approach equilibrium.

N a previous paper,! it was shown that ox({p}),

the N-particle momentum distribution function
(D.F.) for a homogeneous classical fluid possessing
only short-range order, evolves according to the
following equation for times longer than a properly
defined “molecular correlation time’:

don (1) ©
= —AZQ—N/{dx}LN'/ dh
at 0

Xexp(—iLnt))Ly' on(t—t). (1)

All symbols and operators in Eq. (1) are defined and
discussed in I.

Consider Eq. (1) with on(¢—%) expanded in a
Taylor series about ¢y(f):

don(t) 12 %en(1)
20 o9

on(t—t)=on()—t; @)

The ¢, integrand of Eq. (1) may be nonzero only over
the duration of a collision, 7.1, involving v or fewer
particles.!

* National Institutes of Health Postdoctoral Research Fellow.
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Madison, Wisconsin.

1F. C. Andrews, Phys. Rev. 125, 1461 (1962) (referred to as I
throughout this paper). ’

We first study Eq. (1) with only the first term of the
expansion, Eq. (2), inserted. This simple Markovian
form, or generalized master equation, is valid if ¢y (¢)
varies negligibly during 7¢on:

don(t) *
— ==\ ¥ {dx}LN'/ di
at 0

Xexp(—iLNtl)LN’gaN(l). (3)
It is convenient to find the symmetric and anti-
symmetric parts of the exponential integral operator
in Ly, using the identity

00

] dty exp(—iLnt)) =m8(Ly)—i®(Ly™). 4)

The delta function is symmetric in Ly; the principal
part of Ly~ is antisymmetric. The antisymmetric part
is not needed, since it gives zero in Eq. (3). This is
because an operator antisymmetric in Ly is necessarily
antisymmetric in {x}. The complete {x} dependence
of the integrand of Eq. (3) would then rest in the action
of three operators, each one odd in the interchange
{x} — {—x}. It therefore would vanish on integration
over configuration space. Only the delta function



