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Exact Evolution of Reduced Distribution Functions in a Homogeneous
Dense Classical Fluid
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The exact evolution of reduced distribution functions is studied. for a homogeneous dense classical Quid hy
methods which are equivalent to the diagram technique of Prigogine and co-workers. No diagrams or
Fourier expansions are used in this work, however. So long as only short-range order is present in the Quid,
exact equations for the evolution of the momentum distribution function and for reduced s-particle distri-
bution functions are obtained. They are seen to be non-Markovian in a sense explicitly related to the finite
duration of a collision. Simple Markovian equations —a generalized master equation for momenta and a
functional equation for correlations —result only when the momentum distribution changes negligibly in
times of the order of the duration of a collision.

I. PRELIMINARIES
' ~OR the past five years, the group at Brussels under

the leadership of Prigogine has been developing a
means of studying mechanical systems obeying the
Liouville equation. ' The technique involves extensive
use of modern perturbation theory, e.g. , summations
over classes of diagrams, study not of the distribution
function but of its Fourier coe%cients, etc. The resulting
difhculties to the reader have kept this work from being
appreciated as much as it might otherwise have been.

It was the hope of the author in undertaking the
research presented here that by approaching the problem
from a somewhat different viewpoint, greater generality
and more mathematical and physical insight might be
obtained, at least for the problem of classical fluids.
Whether the type of a,pproach presented here will

prove as versatile as that characterized by diagrams
and Fourier expansions, e.g., in studies of plasmas,
quantum effects, turbulence, etc. , remains to be seen.

We shall study the time evolution of an ensemble of
classical systems, each system containing X particles
in a volume Q. The ensemble is described completely by
the X-particle distribution function (D.F.), f~. The
exact equation of motion is given by the Liouville

equa, t.ion':

&fx/~t =Life= (L~'+—~Lpr') fg. (1)

Lg =z
BU„,(x„,) 8

~PrsBXr

In this notation, p;, the momentum of particle j, is just
the velocity of particle j, v;, times the particle s mass.
Other notation used is

Xrs Xr Xs~ P«= Pr Ps~

8/By „,=8/Bp„8/sy—,
The phase space is of in6nite extent in the momentum

part. The configuration part is limited to the interior
of a box of volume Q. The effect of wall interactions is
eliminated by imposing either periodic or zero boundary
condition on f~ at the walls of the box. In such a space
the operator I.N is.easily seen to be Hermitian':

The P is viewed merely as a convenient counting
para, meter. At no time in this work is it assumed small.
For a. cia,ssical Quid, the operators are given explicitly by

.V ()
L v" = —'i Q v q.

Bx~

8 N 8Urs 8
(ni~L~~n)= d{x}{pdy}*L~p„=i {dx){dp)&p * —Q v," +

j=l BX& r(s=& QXr CjPrs

The functions p are any functions of phase space obeying the boundary conditions. This expression is integra, ted
by parts with the requirement that cp and p be zero at infinite momentum. Since the surface integral over the
walls of the box vanishes because of the boundary condition, this becomes

N N 8Urs
(m~L~~n)= i {dx}{dp}&p— —P v," +

BX, «s=l BX„QPrs

th eref ore
)* @ED

* National institutes of Health Postdoctoral Research Fellow.
Present address: Chemistry Department, University of Wisconsin,
Madison, Wisconsin.

' For an exposition of these techniques and for the literature
references, see I. Prigogine, Eon-Eqlilibrinm Statistical Mechani
(Interscience Publishers, Inc. , New York, 1961).

We now solve Eq. (1) formally. In general, throughout
this paper, {x}and {p) refer to the sets of positions and
momenta of the .V particles a,t time t. For the moment,
this is noted explicitly. The Liouville equation gives fv

cs R. C. Tolman, The Principles of Statistical mechanics (Oxford
University Press, New York, 1938), Chap. 3.
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finite. During the first increment, AtI('), this now-known
product is the integrand of the ti integral. To find the
integrand during the second increment, ht~(", the exact
equations of motion are used to calculate the positions
a,nd momenta the particles had at time [t—Ati"'].
Finding tv({x[t—Ati"']), {p[t—At, &"]), 0) then gives
the integrand for the second increment of the t~ integral.
The procedure is continued, following back in time the
trajectories of the particles.

All further particles are neglected after no more than
v of them have become involved in the interaction. It is
clear that if we were not able to do this, then Eq. (17)
would fluctuate endlessly as a function of t. Omitting
the possibility of bound states, further tracing back of
the trajectories eventually finds the particles on
straight-line trajectories that would have led them into
their interaction. From the time these straight-line
trajectories are reached, {p(t—ti)) remains constant
with further increase of tI, and the points represented by
{x(t—ti) }get further and further separated.

Therefore, if the region in which v or fewer bodies
were initially correlated is only a small fraction of 0,
after a time r„„they are far enough away from each
other that f~[{x(t—ti)), {p(t—ti)), 0] is independent
of {x(t—ti)). Then the D.F. contained in the t, integrand
of Eq. (17) mayberepresentedby0 ~p&[{p(t—ti)), 0],
instead of fz. For most systems one describes by
f~(0), the region of initial correlation of v and fewer
particles will indeed be very small, of the order of
several times the ranges of the intermolecular forces.
This is so because longer range correlations would have
been difFicult -to establish in the fluid and hard to
observe if they were there.

It will be shown below that Eq. (17), for t) r,.„„is
correctly given by terms in Eq. (14) with two poles
at zero rather than one. Since Eq. (17) was formulated
as if it had only one pole at zero, its contribution must
be terminated at r „.But of course, the terms in Eq.
(14) which have two poles at zero must then be treated.
They will lead to terms with three poles at zero, etc.
Terms in Eq. (14) with more and more poles a.t zero
must be treated in order to be consistent. Between any
two poles at zero, up to v particles may interact. This
will be a consistent treatment involving all effects of
up to v-body correlations in the evolution of the reduced
D.F.

For simplicity in this paper, the notation

{dx)g({x)) {dx)h({x))

is used without indicating that there are two sets of
dummy coordinate variables. The integral on the right
eliminates all spatial dependence. New spatial depend-
ence is introduced on the left through the function g.
This is then removed by the next integral.

A second pole at s=O in Eq. (14) might arise at any
(L~' —s) ' operator. The explicit location of this pole

may be marked by inserting the integral over {x}which

gives rise to such poles .'

27ri
ds exp( —ist)( —s) '

X {dx}Lv' Q (—li)"(Lp —s) '
~~=n

X [L&~(I &n s)
—i]~~11—N

X E (—l )"[L~'(L~"—s) ']"f~(O) (18)
n=n

ds exp( —ist)( —s) '

X {dx)L,g.. (L~ s) ' 0 ~q—v(0)

—'XQ ~ {dx}Iv'(Lg —s) 'fv(0) . (19)

qA ~'&=H(t) q v(0) —X {dx)LN'i

~corr

X dti H(t —ti) exp( iL~ti) f~(0)—(20).
The contribution to q~ from terms in Eq. (14)

containing two poles at zero is given by Eq. (18) or (19).
The m=O term of Eq. (18) vanishes, because it is of
the form

{dx)Lv'( —s) '[something independent of {x)]=0.
(21)

The {x) integral gives zero because the only {x)
dependence of the integrand rests in the forces in I ~-'.

Passage to Eq. (19) was by use of Eq. (9). The +=0
term has been separated from the rest of the
summation.

It now is apparent that the first term of Eq. (19) is
precisely of the form of Eq. (17) for t) r „.We seek
correct consideration of terms in Eq. (14) involving
more and more poles explicitly at zero. Thus to make
Eq. (17) represent only the contribution from terms
with just one pole at zero, the contribution from its tj
integral must be cut off at r „. Simultaneously, it
now is clear in what sense the additional poles at zero
have arisen. They represent states of spatial non-
correlation among groups of v or fewer particles between
interactions. If it were not for the throwing out of
correlations involving more particles, a second pole
at zero by itself could not rigorously arise. The contri-
butions to q~(t) in Eq. (11) from terms of Eq. (14)
which contain only one pole at the origin may be
written



D )STRD

~

the interchangeodd nThu, N

h o d u
P"' o P

and the integra

0
(9) Eq. 18

inversionpossessing

(22)

otenti»sFor in e
'

termolecu}a
symmetr

~BUT p N F IJ N NSREDUEV«EXACT

n odd function ofthe force is an o the coord»at es of the

27ri

00
—1ds exp( —ist) (—s)—s ' {d —X'L '—s)x}LN' Q (—), Lv

X iv v
' '—)'Q~ pv(0) —li {dxLv v — ' 0XfLv'(L.v' s) j—v' '— — d

2x1 c
}L '(Liv —s) fv—1 0)

' L —s) 'Lv' ziv( )—' Lv s—' 0 —li {dxs —' —s)'Q v {dx}Lv'(Lv s-ds exp( —ist) (—s

s ex — —s 'Q {dx}Lvi dtids exp( —zst) (—s)
0

expL —z(Lv-Lv —s)tij

dtz expL —i(Lv —s)tzjfv(dtz exp —z iv
— 0)0)—A {d }L ' dl exp—

2xz

e me

L ' exp( —iLvti)ds exp — t (—s)'Q v—{dxds expL —is(t —t&)] —s
X'i

2'j

XLvi z

an
'

s cr-ow and the s integrals pe now separated anrmsint erm
'

h brackets are nowE . 15). The two termwas made using Eq. 1The last step was m
foi me d by the residu t o

XLv'q v(0)+
0

A'

dt2
27ri

—is(t —t,—t,)$(—s 'Q-"ds exp —zs

exp( —zLvlz)fv 0Lv {dx Lv exp — l v 0X L 'exp( —zLv i)

exp(

L 'dti exp( —zLvti)2Q—v {dx}LNX ~v(o)+z
0

d — I. '(1!)-'(t—t,)H t- ti)zLvti) LN——'lizQ v {dx}Lv'z—z

0

)H(t l, t&)fv( )— —0 . (23)z e
'

l 1!) '(t —li —lzdt, exp( —iLvtz)( .dx LNz

ti exp( —zLvti)'X'Q-v {dx}Lv'i dti exp-'
0

X —X { }
0

e o erator.of the complete opg
nd

een change

ol
f Th fbf

The upp
tor „. is

be any o
at any time d

4+ CO1Ty

three po e
}1t to cons& er n o

e duration o
is written to i

It is important o

e rand is zero.
7,ii. Because o

be

op erato

contributes to r„ii.y
arl represents,

It ta e operotor.
(20) and (23) is

a scatterzrI, g o

The procedurei to oth b}
u of partlc es.

at S

t between a groupans of inte *
exp( —zI Nti op



RF WSF RANK

+z . , N(0)t ) exp( —iLNtt'+zXH(t —.j=l

y466

asi]y perf prme~~ i.ntegral ispnd the first.pple beypn
the fprmulausing

LN

0

{dx}

Xexp( —zLNt

hat Kq.(26) with (2g) show~Comparison o
(26) 1s &dentlcR

a PN(t)

f() $ 8 f(s)
(~+1) S I QS

Res

=BPQ {dx}LN zlied

00

dt exp( —zLNt&{dx}LN'z;e
0

2 NPN(t) = P O'0-
s=0

t t,)H(t —t,)—dtl exp —'
( zLNtz)L—N pN( —,

exacttained gi 'ng
~

e uati. pil
ne ng

The follpwing
q, b t pnly to th

articlesf ( prrelat .
h equationis not specific y

in them:ce is impbut its presence

LN

(~.) '(t—Z t,)'dt, +, s.
j=l

t, =0.

—iP H(r, .„— xt) {—dx}

Xcxp (—zLNt, y

s. i'H(t Q t;)—PN (0)s.
j=l j=

@+1

he evp uL '—X {dx}L,N i

CX ( zLNta+1) fN( )
t con tribntio

XH(t —P t,) exp —'

j=l

ter than r
rail. is wf the s=0 term

'
is clan e

Fp gl

The m eaning o e
n use in

term an(I the e
artie es no

d t complete

convention

vanish.
ela se o

scattering

0

o g
a collision. From t en

j=0

ev change pN.events whic c
i erentiated wi

d f

/ ~

t' ting the Heavisi ns
T '

det
the form r'6(r, so s

e . 0 the s=0 term is=0 term. For t)the s= e

r corr

p( iLNt, )fN—p —' . . 0).dtz 5(t—tz exp—dX INZ

r=O

/ ~

z

00

/

dt's cxp( —zLNt~ LN

r+1r+1

t;)'H(t —P t, ) qNZ N(0)x (z') '(t—

—X {

e erformed easily.

h b performe
index s
the rest, and

'
d its 1 in

X z
—'

t LN'y.y (t t,) (28)— .X dtz exp( —zLNtz LN &pN
— . 28

eries expansion

N(t) t&8yNt-(t)l~t+

first term is an a)d i Eq.
tion, then t e o m eP

equa iot on describes t e ev

8yN(t)
/ ~=O'Q N {dx}LN'z

ian in thatnon-Markpvian,n for yN is np-
oot only a

q
nds on nowp

t at all times,

' '
lM lconstant during 7;.ii. or

s

{dx}LN'i

Sec. 4.5.' Reference 3, S

r+2
dt„,(r!)-'(t- g t,)"

z ex
' LN' pN (t); (29)X dtz exp( —iLNtz) N pN, ' 29



EXACT EVOLUTION OF REDUCED D I S T R I B U T I 0 N F U N C T I 0 N S 1467

8 q)N(t)
=i7PQ N {dx}LN'(LN ie—) 'LN'(pN(t)

8

Equation (30) was obtained using Eq. (15). The term
in epsilon (an arbitrarily small positive quantity) was
inserted in order to damp explicitly the behavior at
infinity. It was shown above that behavior for t& &r„»,
let alone infinity, cannot affect the resul t. Ke call either
Eq. (29) or (30) the gerieralised Master equatiori

In a subsequent paper, ' Eq. (28) will be shown to
give a monotonic approach to equilibrium. The non-
Markovian behavior quickly leads to Markovian
behavior. The Markovian equation has the unique
stationary solution,

ttN(Z P")
i=1

Also in a subsequent paper, the operators of these
equations are further studied. It is shown that Eq. (30)
is of the type of the Boltzmann collision equation,
generalized to consider not just two-body, but v-body
collisions in a homogeneous system. It could have been
deduced directly from the reduced I iouville equation by
less instructive methods given elsewhere to formulate a
generalized Boltzmann equation. '

III. EVOLUTION OF THE REDUCED
s-PART ICLE D.F.

The reduced s-particle D .F. is customarily defined
thus:

f8(x&' ' xa~p&' ' 'pa)

N t

dx~+) '. dxÃdps+r' ' dpNfN &

(cV—s) ! (31)

This is the counterpart to Eq. (11). It is identical to
what one would get from Eq. (31) using Eq. (5), rather
than (7):

f, ({s})= tV' {dx} (,){dp} (,) exp( iL—t)f (0) (3. 3)

Once again, Eq. (6) may be used to interpret the
exponential operator. The {x,}and {p,}are given, since
their distribution is being calculated. These s particles
plus up to (v —s) others, which we call dummy particles,
are traced back over their trajectories during the period
from t to 0. In all cases in which f, is used to calculate
observables, {x,}is a set of points located very close to
each other. Their distances apart will be of the order, of
the range of the intermolecular forces. So for times
longer than that necessary for the v particles to finish
their interaction and pass outside the region of their
initial correlation, Eq. (33) is constant with respect
to further increases in t.

This constancy would never occur if we were not
throwing out terms in the expansion of the inverse
operator of Eq. (32) which involve correlations of more
than v particles. If such correlations were kept, E'q.

(33) would correctly give f, for all times. From the
study of Sec. II, it is clear how this problem should be
approached. Ke shall call the time after which Eq. (33)
becomes constant the ilitial time, v-;;~. For t &v;;~, the
contribution from Eq. (33) would be unchanged if

fN(0) were replaced by 0 N0 N(0). This is part of the
contribution from the expanded form of Eq. (32) with
one pole explicitly at s =0. Once again, treatment of this
expansion involving more and more poles at zero is in
order.

Here, as in Eq. (18), the explicit location of the first
pole at zero may be noted in the expanded form of
Eq. (32):

lim f, ({s})=&V' {dx}„!,) {dp}~(,!fN.
1v))s

Ns

f (&)=
27ri

ds exp( —ist) {dx}~(, ) {dp}~(,)

It is important to realize that if the intermolecular
forces are all two-body, then the ensemble averages
of significant macroscopic observables may be made
from f0, not fN "This is true .even at liquid densities.

Inserting the representation of fN from Eq. (7)
into Eq. (31) yields

( g) na(LNO s)
—l[LN (I ~0 s) 1]rno N— —

m=o

X {d }E (—~)"[L '(L '—.)-']"f (0);
n=o

f ({s})=
2%-i

ds exp (—ist) $7s

f (()=
2%i

ds exp( —ist) {dx}~(, ) {dp}~(, )

X {dx} (,) {dp} !,) (LN —s) 'fv(o). (32)

F. C. Andrews, Phys. Rev. 125, 1469 (1962}.
F. C. Andrews, Phys. Rev. 125, 1473 (1962).
F. C. Andrews, J. Chem. Phys. 35, 922 (1961).
See, e.g., J. H. Irving and J. G. Kirkwood, J. Chem. Phys.

18, 817 (1950).

(—y) ~[(LN0 —s) &LN'$" (—s) )g
m=o

X QN(0) —& {dx}LN'(LN s) 'fN(o)—
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the kinetic energy of the S particles. It can then be
shown that this equilibrium form of gatv insert;ed in Eq.
(42) gives rise to the exact values of the equilibrium
correlations in an ensemble, previously known from the
Ursell-Mayer theory of static equilibrium statistical
mechanics. "

The operators of Eqs. (40)—(42) are further studied
in a subsequent paper' and shown to represent the
formation of correlations among s or fewer particles

"F. C. Andrews, Physics 27, 1054 i1961).

by collisions among v and fewer bodies. The equations
could have been deduced more directly by less instruc-
tive means. '
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The equation derived in a previous paper for the exact evolution of the momentum distribution function
of a homogeneous dense classical Ruid is studied. The Markovian form of this equation is found to drive
the momentum distribution monotonically to an arbitrary function of the kinetic energy of the system.
This function must be canonical if it factorizes in momentum space. Incorporation of the non-Markovian
e6ects in the evolution equation through a simple approximation does not destroy the approach to equi-
librium. Since reduced s-particle distribution functions previously were shown to be functionals of the
momentum distribution, they also monotonically approach equilibrium.

' 'N a previous paper, ' it was shown that y,v((p}),
the l7-particle momentum distribution function

(D.F.) for a homogeneous classical fluid possessing
only short-range order, evolves according to the
following equation for times longer than a properly
defined "molecular correlation time":

~v ~(t)= —g'0 sr
f,dx}L~' dt,

Xexp( —iLNti)L~'pi„(t —t,). (1)

a re~ (t) t,' 8'year (t)
PN (t tl) PN (t) tl +

Bt 2I BP
(2)

The ti integrand of Eq. (1) may be nonzero only over
the duration of a collision, ~„ll, involving v or fewer
particles. '

*National Institutes of Health Postdoctoral Research Fellow.
Present address: Chemistry Department, University of Wisconsin,
Madison, Wisconsin.'F. C. Andrews, Phys. Rev. 125, 1461 (1962) (referred to as I
throughout this paper).

All symbols and operators in Eq. (1) are defined and
discussed in I.

Consider Eq. (1) with q» (t—ti) expanded in a
Taylor series about y&(t):

Ke first study Eq. (1) with only the first term of the
expansion, Eq. (2), inserted. This simple Markovian
form, or generalized master equation, is valid if p&(t)
varies negligibly during w„».

8 @~(t)—= —X'0 ~ {dx}L~' dti
R

Xexp (—iL~t, )Lsr'(p~(t). (3)

It is convenient to find the symmetric and anti-
symmetric parts of the exponential integral operator
in L&, using the identity

dti exp( —iL~ti) =x8(L~)—iO'(L~ ').

The delta function is symmetric in L~', the principal
part of L& ' is antisymmetric. The antisymmetric part
is not needed, since it gives zero in Eq. (3). This is
because an operator antisymmetric in L& is necessarily
antisymmetric in lx}. The complete ix} dependence
of the integrand of Eq. (3) would then rest in the action
of three operators, each one odd in the interchange
(x}—+ (—x}.It therefore would vanish on integration
over configuration space. Only the delta function


