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Spin Diffusion in Inhomogeneously Broadened Systems*
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The theory of cross-relaxation within inhomogeneous spin systems (spin diffusion) is discussed. The
qualitative theory of Bloembergen, Shapiro, Pershan, and Artman is generalized. For the special case where
the exchange- and concentration-independent contribution to the cross-relaxation linewidth are zero, the
diffusion time is given by r = T&s(r,'l t(Ts*) s. An exact theory of cross-relaxation in the limit Ts))Ts* is
also developed and spin-diffusion is shown to be governed by an integro-differential equation. The conditions
under which an. ordinary diffusion equation describes spin. diffusion is examined and the diffusion constant
derived. The expression for r given above is verified by this theory.

I. INTRODUCTION

'HE theory of cross-relaxation developed by
Bloembergen et at. ' has proven capable of ex-

plaining, at least qualitatively, a number of interesting
effects observed in paramagnetic resonance experiments
in solids. A number of these effects are discussed. ' ' In
this paper we shall consider in detail the application of
this theory to cross-relaxation in inhomogeneou sly
broadened systems. 4 Ke will first discuss briefly cross-
relaxation. In Sec. II, we will consider the qualitative
theory of spin diffusion presented in reference 1 and
some possible generalizations. In Sec. III we develop
an exact theory of spin diffusion.

The theory of cross-relaxation has shown that the
dipolar coupling terms in the Hamiltonian are capable
of maintaining spin temperature equilibrium in para-
magnetic systems.

More recent work' ' has demonstrated that the
*This research was supported by the Air Force Systems

Command, U. S. Air Force.
' N. Bloembergen, S. Shapiro, P. Pershan, and J.Artman, Phys.

Rev. 114, 445 (1959).' C. H. Townes, Quantufft Electronics (Columbia University
Press, New York, 1960), several papers from pp. 293—369.

J. Singer, Quantum Electronics (Columbia University Press,
New York, i961), Vol. II, paper delivered by N. Bloembergen.

4Hereafter we shall usually use the term spin diffusion to
describe cross-relaxation within an inhomogeneously broadened
system. Spin diffusion was 6rst discussed by A. M. Portis, Phys.
Rev. 104, 584 (1956), in a slightly different context. The theory
of inhomogeneous broadening was discussed by A, M. Portis,
ibid 91, 107 (1953)..

s A. Kiel, Phys. Rev. 120, 137 (1960).A number of errors occur
in this paper. The correct form of the cross-relaxation linewidth
is given in Phys. Rev. 123, 2202 (1961).

s M. Hironi, J. Phys. Soc. Japan 16, 66 (1961).' V. Kopvillem, Soviet Phys. —Solid State 2, 1653 (1961).

effective linewidth for cross-relaxation, ' (co,s)'*, can be
much greater than the paramagnetic resonance line-
width in dilu/e systems. This latter fact explains how
cross-relaxation can occur between pairs of energy
levels with resonance frequencies differing by hundreds
of megacycles per second whereas the linewidths may
be only tens of megacycles per second.

The second moment for cross-relaxation in a pure
dipolar system with two species of ions, ct and p (see
reference 5 for notation) is given by

jt'(co,')= -'L5(5+1)+I(I+1)——.s]g 'g 'P'

(1—3 cos'8of)' (1—3 cos'8„l)'
xp

r„(6

5(5+1) 11
+ —s 's'f +c 'c 's'f

)3 4

XP (1—3 cos'8„f)'r„f—'

I(I+1) 11—s 'S'f +s 's 'S'f
)3 4

Xp (1—3 cos'8of)sr„; '+exchange terms. (1)

In Eq. (1), 5 is the spin of the n-type ions, I the, t of
the p-type ions, g is the spectroscopic splitting factor,
and f the concentration.

We will often use the abbreviation C-R for cross-relaxation in
the following.
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It is the first term on the right in Eq. (1) which
results in the large cross-relaxation line width in dilute
salts since it is concentration independent. The fact.
that the exchange terms (including isotropic exchange)
contribute directly to the (&v,s) was first pointed out in
reference 5.

It is immediately evident that when 5=I=~ the
concentration independent term in Eq. (1) is zero.
Hence the C-R linewidth may be quite narrow in such
salts if the concentration is small enough so that the
exchange terms are not significant. Kopvillem~ has
investigated the case of cross-relaxation in the presence
of crystal fields. He shows that in some special cases
the concentration independent term will disappear in
this case as well.

A number of experimental studies' " have reported
effects which may be interpreted as spin diffusion
.within an inhomogeneously broadened resonance line.

For such effects to be experimentally observable we
will show that it is necessary for the concentration
independent term in (oi,s) to vanish (see below). If the
exchange terms are negligible, e = a~, g =g~, S=I=—,'.
( ')= (15/8) '(P'/h"-) f X13.3d s~1.7X10 "g'd 'f

where d is the lattice spacing (a simple cubic has been
assumed). For a concentration f equal to 0.1'%%u~,

d=7X10 'cm, g 2 we have(v, ')& 0.23X10s cps ( 8
gauss). In noncubic crystals of the same d, the C-R
linewidth would probably be smaller.

The cross-relaxation rates have been computed in
references 1 and 5 and are given by

Wis ——(tt /.V)te, Wis ——(tt /X)te,

te = (ir/8)g 'g, 'P4/h'

X (S+ Ms) (S—Ms+ 1)(I+Mr+ 1)(I Mr)—
Xr Zt' (1—3 cos'e, f)'r, r '7gis(tu). (2)

It is seen from Eq. (2) that if (&o,s)' is comparable to
or greater than the inhomogeneous line width (Ts*) ',
the system comes to spin equilibrium in a fraction of a
microsecond. This explains the difficulty in "burning
holes" in lines" and observing spin diffusion, in general.
(This explanation was first given by Bloembergen et al. ')

In reference 1 a simple qualitative theory of spin
diffusion is presented. It seems worth while to discuss
this theory and indicate some generalization of it
before deriving our exact theory.

IL QUALITATIVE THEORY OF SPIN DIFFUSION

The theory of Bloembergen et at. ' can be summarized
as follows: Consider an inhomogeneous resonance line

' K. D. Bowers and W. B. Mims, Phys. Rev. 115, 285 (1959).
's W. B. Mims, K. Nassau, and J. D. McGee, Phys. Rev. 125,

2059 (1961).The results of Mims et a/ , have been discussed by.

J. R. Klauder, Bull. Am. Phys. Soc. 6, 103 (1961), and J. R.
Klauder and P. W. Anderson, Phys. Rev, 125, 912 (1962)."T.M. Bray, G. C. Brown, and A. Kiel (to be published).

'2 J.A. Giordmaine, L. E.Alsop, F.R. Nash. , and C. H. Townes,
Phys. Rev. 109, 302 (1958).

to be made up of many "homogeneous" resonances,
that is, adjacent spins are assumed to have quite
different resonant frequencies. The overall linewidth
of the inhomogeneous line is designated (Ts*) '; the
linewidth of the homogeneous components is T2 ',
T2))T2*. T2 is a function of the concentration of the
ions while T2* is presumably independent of concen-
tration. (There is evidence that Ts* sometimes depends
on concentration but this does not alter what follows. )
Bloembergen et al. assume that the probability per
unit time (as a function of frequency) of a cross-
transition between two adjacent ions of resonant
frequencies co and ~~, respectively, will be large
(=Ts ') if ~tu —

&o~~ (Ts ' and essentially zero other-
wise. The problem hence reduces to a random walk
problem with steps of length T2 ' and reflecting
boundaries separated by (Ts*) '. After weighting the
step lengths of the probability that adjacent spins fall
within the frequency interval Ts ' Lthat is, multiply
Ts ' by (Ts*/Ts)7 one obtains for the diffusion time
in an inhomogeneous line

r = ((v ') lTs*)—'Tis, (3)

where (v,s) is the mean square cross-relaxation line
width and T~2 is the inverse of the maximum cross-
relaxation rate given in Eq. (2).

In the present case a single inhomogeneously broad-
ened spin species, Eqs. (1) and (2) become (a cubic
lattice is assumed and terms on the extreme right
assume S=—,')

(.)= (5/4)s(s+1) (g p/~)
X (13 3/d") f=3 55X10 '"'fd "', (1a)

T is ' = 7r(gP'/81t'-) f(S+M) (S M+1) (S+M'—+1)
X (S—M') (13.3/d') gi. (Ato)

= 5.3X \0 ssfd "g„(g~)— — (1b)

Taking g(&u)= (2ir(ot,.')) i expL(&u —o~s)'/2(&o, s)7, we ob-
tain

r=8.65X10"f 'd" (Ts*) ' (4)

For d=10 A, Ts*——10 ' sec, f=10 ', we get r=0.86
msec.

If the exchange term is not completely negligible, the
spin-diffusion time will be shorter than that predicted
above.

For concentrations of the order of one-half percent or
greater, the exchange terms will probably make the

'cross-relaxation linewidth greater than the inhomo-
geneous linewidth. This condition is the usual case for
paramagnetic systems.

r=T 4/T *'

This expression should be altered to take into account
the more accurate expressions (1) and (2). The formula
for the spin diffusion time w is then given by
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The previous description of spin diffusion is quite
crude in some respects. It wouM be worth while to
develop a more exact theory of spin diffusion. The
results given below are, except in a few special cases,
too complicated to be of much value in analyzing the
data presented in references 9—11.However, the method
is of some interest and so is presented here.

To consider spin diffusion in an inhomogeneous
resonance line, it is convenient to use as a model a
finite system of resonances coupled through the cross-
relaxation term. The resonance may be overlapping in
the frequency domain. We will finally go the limit of
an infinite number of resonances to obtain an integro-
differential equation describing the spin diffusion. We
shall restrict ourselves to a spin —,

' system.
The set of spins at a given resonance frequency cu;

will be referred to as the "spin packet" in what follows.
The rate equation for the spin packet i may be written
as (we use i, j, k instead of then, y used above)

a(x, t)
w(x, y) n(y)dy

n(x)
+ w (x,y) 6 (y, t)dy. (7)

The infinite limits of integration are of no importance
since both w(y) and n(y) fall off to zero. Equation (7)
is a general expression for spin diffusion in an inhomo-
geneous line.

We assume B(x)=0, t&0. We assume that n(x) is
uniform over the inhomogeneous line

n(x) =-'2nT, *,
~

x—x,
~

& T,*-'
=0, )x—x, ) & T,"'-i. (Sa)

Also

equation (x now becomes the frequency)
INHOMOGENEOUS RESONANCE LINES

(d/dt) a(x,~) =A (x x,—) [2—B(x x,—)+T, ']S—(x,t)

(d/dt) (n; n;+)—= (2w, ;/ V) (n;+n, n, n—,+)
+2B,g(n;~ n; ) 2(n—; u + —n,+u+ ), —(5)

n(y) w (x—y) dy =
&V 2

where w;; is the C-R rate w defined in (2); n,+, n, are,
respectively, the number of spins up or down with
resonant. frequency co;=2xv;, m;+', n; are the popu-
lations at equilibrium; m; is the total number of spins
in packet i; n is the total number of spins, n, +n, +
8;~ is the relative transition rate of spin packet i due
to an input frequency ~A, 0+, N + are the spin-lattice
relaxation rates "down" and "up, " assumed constant
through the inhomogeneous line; T,=1

/( u++ u+);
and X is the total number of lattice sites available to
the paramagnetic ions.

I.et —4,=n,+' n;+ n—; n——, ', A—,g
——(n; '—n,+')B,g.

Since we shall restrict ourselves to fairly narrow in-
homogeneous lines, (&oo,—coo;)/&v2,&&1 and we can take
(n;+'n; '—n; 'n;+') =0. Furthermore, n,+n; n, n,+-
=n) b„—n, A; and n, u~ n,+u+ .————6;/Ti. Substi-
tuting these relations into Eq. (5), we get as the rate
equation for spin packet i

dA~/dt=A, q p; (w,,n;/X—j2B,2+T, ')6;
+ (1/cV) P. .. ;6;. (6)

Naturally we obtain similar equations for all spin
packets. Subtracting the rate equation of the ith spin
packet from the equation for i+1, we get

(d/dz) (s;+,—a,)
= (A;+, „—A, k) —(1/.)V) P; (w,l, ,;A,~,—w, &,)n;

—g, 2(B,+i 2b„+i B,a,)+Ti '(~,+2 —~,)—
+(1/V) 2, ( '. ,".—",,)~,

We now assume m;+i —m; is infinitesimal. By taking
limits and noting that we can drop the derivative with
respect to x, we get the following integro-differential

w(x —y)dy, (f=n/'ll)

and

n(y)w(x —y)dy= fw(0) = W'(0),

((& .')'» (T *)-'). (Sc)

An important property of Eq. (Sc) can be derived
by integrating the equation with respect to x. It can be
easily proved that the integrals of the last two terms on
the right (the C-R terms) cancel. Therefore

A(x, t)dx= A (x—xp)dx
dt

[2B(x xo)+Ti 'ja—(x,t)dx (9).
In many practical cases 2B(0)Ti(T2 /T2)«1. &hen

for t& Tiz, where A(y) is spread over a large part of the
inhomogeneous line, we get (t»Ti2)

A(x)l)dx~e 'ir' A(y)0)dy

+(1—e '~ ')Ti A(y)dy. (10)

For B=o, t&0 the above is an exact expression for
t&0 (with of course the second term on the right zero)
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Also, if 8(x)(&W(0) and t is less than the spin diffusion obtain in the limit t»T)p, and W(0))&8(0), T,
time r, (the time required for the h(x, t) to become
uniform over the inhomogeneous line),

D(x, t)dx=t A (x—xp)dx

eT2* hv
8(x)dx. (11)

2 2kT

Equations (10) and (11) will prove valuable in the
following:

Another important characteristic of Eq. (7) is the
tendency toward cancellation of the last two terms on
the right when A(y, t) becomes broader than W(x,y).
If D(x) is uniform, the two terms cancel exactly if
e(x) is uniform. Also, for very sharp W(x,y) (for
example, a Dirac delta function), the two terms cancel
exactly.

All these properties follow from the simple notions
of cross-relaxation but it seemed worthwhile to derive
these here as an indication of internal consistency.

(vP) *«Tp*

(1 e i—/r') T A (x)
+ A (y)dy+ . (14)

W(0)W(0)

b= 8(x xp)dx, —

The power absorbed by the lattice is just
(k/Ti) J xA(x, t)dx At .equilibrium t& Ti, the second
term on the right dominates and the power absorbed
is approximately hP(kP/2kT))tB'(0), where 8'(0) is
the same as 8(0) except that T» replaces Tp.

For 8(0)QO and for W(0)t(1, Eq. (7) becomes
(making use of (Sc) and (11)]

(d/dt) t), (x,t)+ C
28 (x—x())+W(0)+ Ti ']6

N(x)/t(xp)bi(/(0) hv
=A (x—xp)+ .V 2kT

where

Let us now consider the usual (but not very inter-
esting) case of spin diffusion in an inhomogeneous line,
that is, (v.') &((Tp*. Equation (7) reduces fusing Eq.
(Sc)] to

A(x, t)=t) (x,0)e D(»"

v/T, *B(x x,) kv-
+ (1 ~

—D(») t)

2D(x) 2kT
(15)

D(x)t —(1—e D"')
+/ibW(0) (Tp»)'—

D'(x)
(d/dt)t) (x,t)=A(x, xp) —L28(x—x())+Ti ']6(x,t)

D(x) =28(x—x())+W(0)+T, '.
e(x)—W(0)6(x, t)+ i(/(0) A(y, t)dy (12).

If we assume the microwave signal is off, B=O, the
solution of

h(x, t) = 6(x,O) exp( —)W(0)+Ti ']t}

ii(x)
+ (e

—t/Tl —g [w(P) jl/Tl) i) g(y 0)dy (13)

The first term on the right of Eq. (13) describes the
decay of the initial population distribution while the
second term gives the diffusion of the initial excitation
through the inhomogeneous line. It is easily seen that
after a time of the order of W(0) ' ((10 ' sec) the
whole line comes to spin equilibrium. But as noted
above, when A(x, t) becomes uniform over the line,
the cross-relaxation terms cancel and the system then
will behave exactly like a homogeneous line, but of
width (Tp*) ' and population n Since for reali.zable
powers 8(0)&(W(0), these statements remain true
when 8@0.These statements may be proved by solving
Eq. (12) when BNO. This presents no difhculty if Eq.
(10) can be used. Using Eqs. (10), (Sa), and (Sc), we

Equation (15) describes the diffusion of spins for time
r(W(0) ' when the C-R linewidth is much greater
than the inhomogeneous linewidth which in turn is
much greater than 1/Tp

(v ') -'')&Tp*

I.('.t us consider now the more interesting case where

((pP) '*&)TP. If W(0)t&1, the width of D(x, t) becomes
larger than (p),')'. We write

D(y) = tIi(x)+6'(x) (y —x)+-,'6"(x) (y —x)'.

Substituting this into Eq. (7), and assuming e(x) is
uniform and W(x,y) = W(x —y) is symmetric, we obtain
the expression

da(x, t)/dt+[28(x —x.)+T ]S(x,t)
= (nhv/4kT)T2*8(x xp)+/(d'a(x, t)/dx', (—16)

where

W (x,y) (y —x)'-dy.

If ~x—xp~ )Tp ' so that 8(x—xp) may be neglected,
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e
—t/T1

a(x, t) =
(47rlrt)

6(y,0) exp[ —(x y)'/—4~t]dy. (18)

Note the concentration dependence enters only
through the parameter ~. The spin dift'usion time 7- is
roughly given by

r —(4~)
—i (x x,)2 ~[4~(T,*)2]—i

For a Gaussian C-R linewidth,

r = 2n.[W'(Av. 2) (Tg*)'j—'. (19)

this becomes

dD(x, t)/dt+Ti 'A(x, t) =«d'A(x, t)/dx' . -(17)
Equation (17) is very similar to the diffusion equation
and has the solution

Equation (19) is easily shown to be precisely equal
to Eq. (4). [W' is defined in (8).$ Equation (18),
however, also describes the spin-lattice relaxation. The
properties of (18) are too well known to dwell on the
properties of this equation further.

This is the expression which describes th'e decay of
the susceptibility in pulse saturation experiments when

spin di6usion occurs.
The general solution of Eq. (16) is naturally very

dificult but satisfactory solutions for cases of interest
should present no great obstacle.

When W(0)t(1, Eq. (15) may be applied except
that in the definition of the function D(x), W(0) must
be replaced by (T2*/2)fW (x)dx.

In a later publication, the application of these results
will be discussed in relation to relaxation effects in

Ka(Co, Fe) (CN)e.
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Ensembles of particles obeying Fermi-Dirac statistics are considered from a point of view which is analo. -

gous to some recent work of Mayer on classical particle statistics. The density functions p„are defined for n
much smaller than the average number of particles in the ensemble. Since the knowledge of only a few p is
sufficient for the computation of most averages of physical interest, it is important to compare different
ensembles with the same density functions, say p& and p&. The ensemble with the largest entropy is con-
structed as being the most significant. A number of simple examples are briefly considered.

INTRODUCTION

HE purpose of the present article is to give a
quantum-mechanical analog for a theorem which

was recently stated and proved by Mayer' for classical
statistical mechanics. The theorem for Fermi statistics
has the same intuitive content, but its statement and
proof is more involved. As for the general idea behind
the problem, the following may be said: Instead of
starting from an assumed kinetic energy, external 6eld,
and interaction energy for the particles in order to find
their correlation, it is shown how their assumed proba-
bilities of occurrence in certain states and their correla-
tions can be used to find, at least in principle, the
simplest Hamiltonian responsible for these probabilities
and correlations.

STATEMENT OF THE PROBLEM

An ensemble of Fermi-Dirac particles is more con-
veniently described if the total number of particles is
not assumed to be exactly known. The state vectors C

of the dynamical system will therefore not necessarily

' Joseph E. Mayer, J. Chem. Phys. 33, 1484 (1960).

belong to an exact total number of particles. It is then
also appropriate to use the formalism of second quanti-
zation, in particular the operators 4'(x) and +*(x) of
particle annihilation and creation, where the coordinate
x refers to the position and spin of one particle. The
Hilbert space H in which N(x) and 4'*(x) operate can
be described using an orthonormalized set of one-
particle wave functions q&„(x) whose label Ic refers, e.g. ,
to wave vector and spin direction, or to a lattice site
and rotational state, and so forth. Every state vector
of the whole system can be written as a linear combina-
tion of Slater determinants which are constructed from
an arbitrary subset of the set {y„(x)). The creation and
annihilation operators, +*(x)and+'(x), are then defined
in terms of the creation and annihilation operators
a„*and a,„ in the customary manner

'1'(x) =Z. a.v (x), +*(x)=Z. a.*v .'(x) (1)

The operators a„* and a„satisfy the anticommutation
relations

:aa ax+a)ax

a„ax+a&,a, =a„ax*+ax*a,*=0.


