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mesons emitted. For example, in the case of nucleon-
antinucleon annihilation at rest, the initial chirality is
zero, and, since the final state contains no nucleons,
we would have (X,);=0, i.e., the amplitude for the
emission of very low energy pions would be unusually
small.

The notion of 5 invariance or chirality conservation
can be extended to composite systems and strange
particles.* There is also a possibility that the K meson
plays a role similar to the pion in the conservation of
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strangeness-changing chirality current. It is likely,
however, that even if such a symmetry existed in
essence, the large mass of the K meson would tend to
make it more approximate in nature than for the case
involving pions, except perhaps at sufficiently high
energies.
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The problem of pion-pion scattering is studied on the basis of the model of a four-particle direct interaction
without derivative coupling. Renormalization is carried out for this model with a detailed analysis of
overlap insertions. To every finite order in the renormalized coupling constant, it is shown that the unitarity
relation holds and that the Feynman integral representation is still valid, and hence renormalization has

no effect on analytic properties.

1. INTRODUCTION

INCE the pion is a pseudoscalar boson, the simplest
coupling among pions is a local ¢* coupling.
Furthermore, this leads to a dimensionless coupling
constant. If this coupling is taken to be correct, then
the problem of pion-pion interaction is the simplest
among all problems involving strongly-interacting
particles. It is the purpose here to study the pion-pion
interaction under this coupling using perturbation
theory.

In order that the perturbation theory be meaningful,
it is necessary to have a consistent procedure to remove
the infinities due to integrations over large momenta
and to interpret this removal as mass renormalization
and coupling-constant renormalization.! In the much
more familiar case of electrodynamics, the procedure
of Ward? seems simpler than that of Salam?®; hence, in
the present case, differentiation with respect to external
momenta is to be used for the purpose of treating
overlap divergences, which are of main concern here.
However, the problem of which path to use in carrying
out the differentiation is quite complicated in the
present case. In quantum electrodynamics, the treat-
ment of the photon self-energy has been carried out by
Mills and Yang,* and their treatment is the starting
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point for the present consideration. Thus, this case of
electrodynamics is considered first in Sec. 4 after a
preliminary study of the case of the ¢* coupling.
Renormalization is completed in Sec. 7, and some
properties of this procedure are discussed in Secs. 8-11.
In particular, the validity of the Feynman integral
representation implies that renormalization does not
change the domains of analyticity to every order of
the coupling constant.

This paper is concerned mainly with the formal
question of renormalization within the framework of
perturbation theory. Thus, on the basis of the particular
Lagrangian under consideration, all the equations here
are exact in the sense of being true to every finite order
of the coupling constant. In a later paper, the problem
is considered concerning the derivation of a closed
system of equations for the approximate description of
the pion-pion system at low energies.

2. STATEMENT OF THE PROBLEM

Let ¢, ¢o, and ¢_, respectively, be the field operators
for the creation of the pions 7+, 7% and 7. Let ¢s=¢,,
and the triplet of operators (¢1,¢2,¢3) transform as a
vector in the space of isotopic spin; then with the
usual phase conventions

¢o="TF ($1=Eidn)/V2. (1

Since #% is its own antiparticle, ¢; are Hermitian.
Throughout this paper, the Lagrangian density is
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assumed to be
L= L0+L1, (2)
where

4 3 3
Li=—} % Y(0¢/np—m ¥ 62, (3)

p=1 i=1 =1
and

3 3 .
Li=2r'\N( X ¢2)2+30m 3 ¢ 4)
i=1

=1

Here the metric used is (—1, 1, 1, 1) with xs=1ix¢; m is
the physical mass of the pion; and the last term in (4)
is the counter term for mass renormalization.

For this Lagrangian density, the Feynman rules are
those given in Fig. 1, provided that the states are
normalized by

(K| ky=2ko(2m)% (k—K'), )

where ko= (k2*4m?):. In other words, to get a matrix
element of the .S matrix with respect to states satisfy-
ing (5), multiply the various factors of Fig. 1 together
with the é-function expressing over-all energy-momen-
tum conservation, carry out the necessary integrations,
and divide by the intrinsic symmetry number § of the
graph, i.e., the symmetry number of the graph with
the external lines kept fixed. A few examples of § are
shown in Fig. 2. Note that lines are permitted to end
on themselves.
It is convenient to use that quantity obtained from

a graph without momentum differentiation by the
Feynman rules but omitting the over-all § function
and the factors corresponding to external lines. For
graphs with four external lines, let all external mo-
menta point toward the graph; A (ki,ks ks ks) be the
above-mentioned quantity corresponding to the isotopic
spin indices 1, 1, 1, 1; and B(ky,ks; ks,ks) be that corre-
sponding to the indices 1, 1, 2, 2. More precisely, for
5%,
(0,35 03[ S|kyi; ki)

= (27r)8A (k: k,7 '_P) ”‘1’,)54(’3“{‘]3/—?_?/):
(035 58| STk j; K, )

= (ZW)BB(ky k/) =P, —P/)54(k+k/_P‘_P/):

k 1
t —_— "
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F16. 1. Feynman rules.
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and

@ 24
(ps; 0,718 ki; K,j)

=—(2m)*B(k, —p; K, —p")o* (k+K'—p—p'). (6)

Equation (1) then gives the value of the § matrix
between the various charge states of the pion.

3. CLASSIFICATION OF FEYNMAN GRAPHS

The renormalization program is going to be modeled
after that of quantum electrodynamics by Dyson,!
Ward,? and Mills and Yang.* Since the absence of the
gauge group and the divergence of graphs with four
external lines complicate the present problem consider-
ably, this program is to be written down in detail.

The main interest here is to have an adequate
treatment of overlap divergences; it is taken for granted
that other difficulties do not actually occur. More
precisely, Dyson’s divergence of the first kind! is
ignored, displaced poles! do not cause additional
divergence, and partially renormalized propagators and
vertex functions behave in the same way as the corre-
sponding bare propagators and vertex functions in the
limit of large momenta except for logarithmic factors.?

This renormalization program occupies the following
sections. In this section, the Feynman graphs are
classified according to Dyson; in Sec. 4, the procedure
of Mills and Yang is reviewed and modified for adap-
tation to the present case; in Secs. 5-0, a possible rule
of differentiating the self-energy and four-vertex graphs
is given. The integral equations are finally written
down in Sec. 7.

Since momentum differentiation is to be used, the

5 S. Weinberg, Phys. Rev. 118, 838 (1960).
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trivial equation
(8/0k,) (R4+m2—ie)™ = — 2k, (F*4-m?—ie)™

completes the Feynman rules of Fig. 1. It may be
emphasized that the alternative procedure of differ-
entiation with respect to mass® leads to very serious
difficulties because the renormalization constants all
depend on the physical mass, although independent of
momenta.

Analogous to, but not quite the same as, quantum
electrodynamics, the following definitions are to be
used :

1. Vacuum graph—graph with no external lines.

2. Self-energy graph (or simply SE)—connected
graph with two external lines and no momentum
differentiation.

3. Self-energy prime graph (or simply SE’)—con-
nected graph with two external lines and one momen-
tum differentiation.

4. Admissible graph—connected graph with at most
two momentum differentiations such that, if there are
two differentiations, they are not on the same self-energy
insertion. :

5. Self-energy double prime graph (or simply SE’’)
—admissible graph with two external lines and two
momentum differentiations.

6. Proper graph—admissible graph that cannot be
made disconnected by cutting one internal line.

7. Superproper graph—admissible graph that cannot
be made disconnected by cutting two internal lines.

8. Vertex graph (or simply V)—proper graph with
four external lines and no momentum differentiation.

9. Vertex prime graph (or simply V')—proper graph
with four external lines and one momentum differ-
entiation.

10. Irreducible graph—admissible graph that does
not contain any SE, SE/, or V insertion.

11. Reducible graph—admissible graph that is not
irreducible.

12. Primitive divergent graph—divergent admissible
graph which becomes convergent if amy one of the
variable momenta is held fixed.

For the purpose of classifying admissible graphs, the
following two statements are useful.

Lemma 1. If a proper graph'is primitive divergent,
then it is either SE, SE’, SE” ¥or V. The divergence
is quadratic in the first case, and logarithmic in the
others under symmetric integration.

F1c. 3. An improper graph.

6 J. C. Ward, Phys. Rev. 84, 897 (1951).
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Lemma 2. A divergent irreducible graph is primitive
divergent and proper.

Lemma 2 may be proved as follows, again in a
manner similar to that of quantum electrodynamics.
Consider a primitive divergent irreducible graph. If it
is not proper, then it must be of the form of two bubbles
connected by one internal line, as shown in Fig. 3. By
energy-momentum conservation, the internal line shown
must carry a fixed energy-momentum. Thus at least
one of the bubbles, considered as a graph by itself, is
divergent. If the other bubble contains a line of variable
momentum, then that can be held fixed and the entire
graph is still divergent. Since this contradicts the
definition of a primitive divergent graph, the second
bubble can contain no line with variable momentum.
Thus, the first bubble, considered as a graph by itself,
must be primitive divergent. This process of splitting
into two bubbles can be repeated, and finally a proper
primitive divergent graph is obtained. By Lemma 1,
this is either SE, SE’, SE”| or V. Since the original
graph is assumed to be irreducible, this must be SE”.
However, by definition of admissible graphs, this is
not possible. The conclusion is therefore reached that
a primitive divergent irreducible graph must be proper.
Next consider a divergent irreducible graph with F
internal lines, of which F; internal lines carry variable
momenta. Each of these /', momenta can vary or may
be held fixed; in this way there are no more than 271
different choices. Since of the various choices some still
give divergent integrals, let F; be the minimum number
of variable momenta not kept fixed such that the
corresponding integral is still divergent. Let G’ be a
graph obtained from the original graph by cutting some
internal lines to make two external lines out of each
such that G’ has F, internal lines and is divergent.
Since the original graph is irreducible, G’ is irreducible.
Furthermore, since G’ is primitive divergent by con-
struction, it is proper, and is indeed either SE, SE’,
SE”, or V. Since the original graph is assumed to be
irreducible and thus in particular admissible, G’ must
be the same as the original graph. This proves Lemma 2.

Admissible graphs

A
—
non-vacuum vacuum
A
~
reducible irreducible
A
~
proper and convergent
primitive divergent
SE SE SE" vV

T'16. 4. Classification of admissible graphs.
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These two statements taken together give the classi-
fication of admissible graph shown in Fig. 4.

4. PHOTON SELF-ENERGY GRAPHS IN QUANTUM
ELECTRODYNAMICS

The prescription of Mills and Yang? for the differ-
entiation of a photon self-energy graph without self-
energy insertion is as follows: 1. Split the graph into
two pieces by cutting two internal electron lines. 2.
Repeat this process for each piece until no further
splitting in this manner is possible; hence the result
is an ordered sequence of pieces where the first and last
pieces are vertex graphs and each of the middle pieces
has two electron lines to the right and two electron
lines to the left. 3. Differentiate all electron lines that
point to the right. 4. Differentiate each of the middle
pieces in the ordered sequence in an arbitrary manner,
the only limitation being that topologically identical
pieces must be differentiated in identical manner. The
main point is that if each irreducible photon self-energy
graph is differentiated in a completely arbitrary and
independent manner, then in the above language
identical pieces may be differentiated differently and
then overlap divergences in the photon self-energy
cannot be properly disentangled. To illustrate this
difficulty, consider the prescription for differentiation
as shown in Figs. 5(a) and 5(b), where the boxes split
the original graphs into pieces as stated above. Then

(c)

Fic. 5. Examples of the path of differentiation,
as indicated by the arrow.
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(b)
F1c. 6. Graphs obtained from that of Fig. 5(b).

the differentiation in Fig. 5(b) leads in particular to
the graph shown in Fig. 6(a), whose skeleton is shown
in Fig. 6(b) but is not a graph that can be obtained
from differentiating some photon self-energy graph.
The prescription of Mills and Yang is designed to avoid
this kind of situation; to be consistent with the pre-
scription shown in Fig. 5(a), the graph of Fig. 5(b)
must be differentiated as shown in Fig. 5(c). The
particular example discussed is one of the simplest;
since this is already a twelfth-order diagram, the
prescription has no appreciable effect on actual explicit
computations by perturbation theory in quantum
electrodynamics. Since the coupling constant is no
longer so small in the problem of pion interaction, the
prescription for differentiation is of more practical
importance here.

It is therefore desired to adapt the Mills-Yang
method to the pion case. The first step is to modify the
prescription so that it does not depend on the direction
of the electron line. So far as the original rules are
concerned, pieces that differ only in the direction of
the electron lines are considered to be different and
hence may be differentiated independently. For ex-
ample, the method of differentiation as shown in Fig. 7
is acceptable. For the sake of definiteness, consider the
eight graphs shown in Fig. 8, where each graph contains
two pieces without any symmetry property besides the
two vertex parts, and the eight graphs differ from one
another only in the direction of the electron lines. By
Furry’s theorem for an even number of photon lines,
the directions of these electron lines are actually
irrelevant and may be omitted from the graphs. By
adding these graphs, these eight graphs may be replaced
by the one shown in Fig. 9(a), where the number 4
merely means that an extra factor of 4 is needed. It is
entirely equivalent if each of the eight graphs is replaced
by that shown in Fig. 9(b). Insofar as each piece is
concerned, the above argument also implies that an
average should be used; more precisely, in the case
shown in Fig. 7, the corresponding ‘‘average” pre-
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F1G. 7. An example of the paths of differentiation
for related graphs.

scription is given in Fig. 10(a), which in particular
implies that the graphs in Fig. 10(b) need be included.
Once Fig. 10(a) is found, the original prescription
shown in Fig. 7 may be forgotten, i.e., there is now an
alternative prescription to that given by Mills and

Yang.

As stated above, the advantage of this alternative
prescription is to be free of the arrows carried by
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Fic. 8. Differentiation of eight graphs that differ only in the
directions of the election lines.
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F16. 9. Average
differentiation.

electron lines, which have no analog in the pion case.
So far as symmetry is concerned, it is even advantageous
to go one step further. By taking the average of the
prescription of Fig. 10(a) and its right-left image as
shown in Fig. 11(a), the result of Fig. 11(b) is obtained.
In the next two sections, the present problem of the
pion interaction is to be treated in an analogous but
somewhat more complicated manner.

5. MOMENTUM DIFFERENTIATION FOR
VERTEX GRAPHS

Since the operators ¢, ¢2, and ¢3 are Hermitian, the
pion lines do not carry an intrinsic arrow, unlike the

FNp.
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10. An example of the average differentiation
of a piece of a graph.
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(b)

Fic. 11. Further averaging.

case of quantum electrodynamics. Accordingly, it is
easier to adapt the modified prescription as discussed
above than the original prescription of Mills and Yang.
For the case of the vertex graph, the prescription is as
follows.

1. Remove all SE insertions.—This is unambiguous.
Also note that V is by definition proper.

2. Split the vertex graph into two pieces by cutting two
internal lines. Repeat this process until no further splitting
in this manner is possible—First note that each internal
line can be cut at most once and that each piece
obtained by this splitting is a vertex graph when taken
by itself. A moment’s reflection indicates that, if a
graph can be split by cutting two internal lines such
that the external lines 1 and 2 are attached to one
piece while the external lines 3 and 4 are attached to
the other piece, then it is impossible to split in this
manner such that the lines 1 and 3 are attached to one
piece while the lines 2 and 4 to the other piece. This
fact in particular implies that the splitting can be
carried out in the following way : First split the original
vertex graph into an ordered sequence of vertex graphs
similar to the case of quantum electrodynamics, then
split each piece into an ordered sequence, repeat this
process until no further splitting in this way is possible.
The final pieces are of course superproper. An example
of such a sequence of splitting is shown in Fig. 12(a).

3. After the repeated splitting, differentiate in accord-
ance with the rules shown in Fig. 13.—For example, the
differentiation of the graph in Fig. 12(a) from right to
left leads to the sum of the graphs shown in Fig. 12(b)
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Fic. 12. Differentiation of a vertex graph.
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Frc. 13. Basic rules for differentiating a vertex graph.

to (d). It remains to specify how each superproper V
should be differentiated.

4. For each superproper V, remove all V insertions.—
To show that overlap insertions do not cause any
trouble, note that all overlap insertions must be of one
of the forms shown in Fig. 14. The cases of Fig. 14(b)
to (d) cannot occur since all SE insertions have been
removed at the beginning. The case of Fig. 14(a) just
represents a way of drawing three successive V inser-
tions.

S. For each superproper irreducible V, differentiale in
any manner consistent with the symmelry of the graph.—
See, however, the discussion in Sec. 11 in connection
with the Schwinger-Edwards identity.

6. Usethe same ruleof differentiation for each successive
V insertion. For the SE insertions, use the rule to be given
in the next section.

This completes the prescription for the differentiation
of a vertex graph. Note that the rules imply that all
differentiated vertex graphs can be obtained from the
irreducible ones by independent SE, SE/, and V inser-
tions. Indeed, this is the main purpose of the pre-
scription.

WY
@ @

(c) (d)

F16. 14. Four possibilities of overlap V insertions.
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Fic. 15. An example of splitting a self-energy graph.

With these prescriptions, it is possible to find the
“weight” to be attached to each internal line when the
corresponding values for the external lines are given.
Unlike the case of the self-energy in quantum electro-
dynamics, a vertex graph here has four external lines,
and hence there are many independent derivatives.
Therefore, it remains to specify the weight attached to
each external line; i.e., to specify which linear combi-
nation of derivatives is to be used. For the sake of
maintaining the symmetry properties possessed by the
vertex graphs, it is convenient to use the momentum
carried by the external line as its weight. Examples of
this rule are to be found in Fig. 17.

6. MOMENTUM DIFFERENTIATION FOR
SELF-ENERGY GRAPHS

Similar to, but somewhat more complicated than,
the case of the vertex graphs, the prescription for the
self-energy graphs may be stated as follows.

1. Split the self-energy graph into proper parts.—This
is unambiguous, and it is thus sufficient to specify how
proper SE should be differentiated.

2. For each proper SE, remove all SE insertions.—
This is again unambiguous for a proper SE.

3. Without using the external lines, remove all V
insertions.—In other words, all V insertions whose
external lines are internal lines of the original proper
SE are removed. Insofar as overlap insertions are
concerned, the situation is identical to that of step 4
in the last section.

4. Split the proper SE into an ordered sequence of
pieces where the first and the last pieces are vertex graphs
and each of the middle pieces has three lines to the right
and three lines to the left.—This splitting is supposed to
be maximal in the sense that no longer sequence of
this nature is possible. The situation here resembles
rather more closely that for quantum electrodynamics
than that for the vertex graph. The splitting is unam-
biguous, but it is no longer true that each internal line
can be cut only once. Instead, it is required that two
different systems of three cuts each have at most one
internal line in common. An example of this splitting is
shown in Fig. 15.

———— A
H 1
! 1 L
3T = =3
1
Y| o L F1c. 16. Rule for differentiating each
3 N piece of a self-energy graph.
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5. After this splitting, differentiate in accordance with
the rule shown in Fig. 10.

6. For each piece with three lines to the right and three
lines to the left, differentiate in any manner consistent
with the symmetry of the piece.—Again however, see the
discussion in Sec. 11.

7. Use the prescription of last seclion to differentiale
successive V insertions.—This gives a definitive pre-
scription as to how SE may be differentiated once,
provided that there is no SE insertion.

8. At the place where the fivst differentiation is executed,
convert the internal line into two external lines by cutting.
—This process transforms a proper SE’ into a V, since
SE insertions have been removed at step 2.

9. A proper SE is differentiated a second time by
applying the prescription of Sec. 5 to the V oblained in
step §.~—TIt only remains to consider SE insertions.

10. For SE insertions, repeat the prescriptions of this
section.—Note that the steps are arranged so that
differentiating a SE once gives only SE’ and differ-
entiating SE twice gives only SE’’; in particular, the
two momentum differentiations never appear on the
same SE insertion.

This completes the prescription for differentiating a
self-energy graph twice. Again note that all fwice
differentiated self-energy graphs can be obtained from
the irreducible ones by independent SE, SE’, and V
insertions. The prescriptions of these two sections
therefore completely disentangle the problem of overlap
divergences.

The results of applying the above prescriptions to a
few graphs of low orders are explicitly shown in Figs.
17-18. In Fig. 17, the pair of numbers that appear
below the vertex graphs indicate the symmetry of the
graph; the first number is just § mentioned above,
while the second symmetry number 8’ indicates the
symmetry with respect to the attaching of external
lines, i.e., 24/8’ different graphs may be obtained from
the one shown by permuting the external lines. The
meaning of symbols that appear in Fig. 18 is as follows.
A dot near a symbol for momentum differentiation
indicates that this particular differentiation is obtained
by step 9 above. The number in the upper right corner
of a graph indicates whether their skeletons are identical
or not; for example, 1 means the first irreducible graph,
while 2 and 2’ differ only in the position of the dot.
The presence of a letter indicates a reducible graph;
for example, 1¢ means that this graph may be obtained
from graph 1 by an insertion at a vertex designated by
a, while 1¢b means that it may be obtained from 1 by
insertions at the two vertices ¢ and . It is interesting
to note that graphs that differ only in the position of
the dot may carry different numerical coefficients,
which include the symmetry number §; for example,
the graph 3’ does not appear at all in Fig. 18. The
graph shown in Fig. 19 is the simplest one where the
prescriptions so far does not determine uniquely the
method of differentiation.
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Fic. 17. Examples of the momentum differentiations of vertex graphs.

7. RENORMALIZATION

As seen from the examples in Fig. 18, each SE’ or
SE” carries a numerical coefficient, to be designated
by 7. For graphs without momentum differentiation,
this coefficient is simply the inverse of the intrinsic
symmetry number 8. Furthermore, this coefficient can
also be defined for V', being just the number shown in

the right column of Fig. 17 divided by the § for the
corresponding V. For those admissible graphs that
contain at least one momentum differentiation and do
not appear in the process of carrying out the differ-
entiation as prescribed, 7 is defined to be zero.

Given an admissible graph G, let Fo(k1,l1; kI n;
@,®8,C; G) be the value obtained by applying the
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I1c. 18. Examples of the momentum differentiations of self-energy graphs.

and the functions ®, ®, and @4 are taken so that the
rules of Fig. 1 are used, then &, differs from a partial
matrix element of the .S matrix only in the absence of

generalized Feynman rules shown in Fig. 20 to G,
carrying out the necessary integrations and multiplying
by 7.If G does not contain a momentum differentiation,
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the factors that correspond to external lines and the
é-function expressing over-all energy-momentum con-
servation. For invariance under a rotation in isotopic-
spin space and crossing symmetry, the function €, may
be taken to have the form

Cy (k1,Il; k2,Iz; ks,Is; k4,14)
= e(k1,k2; ks,k4)5([1,[2)5(I3,I4)
+@(k1,k3; kz,k4)6(!1,[3)5([2,l4)
+C (k1 ks; koyks)d(11,10)8(I5,I5), (7)

where 6 denotes the Kronecker delta, and @ is a Lorentz-
invariant function with the symmetry

Ck1,ke; ksyks) = C(koyky; kaks) = C(ks ks kiyks).  (8)
Since (7) is always satisfied, define

EF()(kl,l‘l; . 'kn,I'n; a;@))eo; G)
=$(k1711; "'kﬂy In; a)(BJG;G)- (9)
If
AR (R) = (B4-m2—ie)

is the Feynman propagator for the free field, then the
generalized rules reduce to the original ones when

@=A, ®=—2, and @=—i. (10)

With the notation of Dyson,! the following sums over
graphs are defined:

Z(k)=2 F(k, I; A, —2, —iX; G); (11)
SE
ZHE)= X Sk 1;A8 —2,—iN;G); (12)
proper SE
2 (k)ky
=—=24+ > Tk, I;A —2,—iN;G); (13)
proper SE’
Zo* (k28,25 (B kb,
proper SE”’
Fo(k;,[l; kz,[g; kg,lg; k4,I4)=Z g(kl, Il; kZ, 12;
v
ks, Is; kay Io; AF®, —2, —iN; G);  (15)
Ao(ky,v; ko o; ks I35 kayTy)
=To(k1,I1; koI 2; ks T 3; ka,J o) FIN[8(I1,12)8(I3,14)
F8(I1,13)8 (10,1 ) +8(11,19)8(I,15)]; (16)
Ap(B)=Ar"(R)+AP(R)Z(B)A(RY);  (17)
and
Am(kl,Ix; kz,[z; kg,I:;; k4,I4)=Z g(kl, Il; k2, 12;
v
ks, Ia; k4, I4; AFO, —"2, —"D\; G) (18)

Both I'y, Ag, and Ay are admissible as @o; i.e., they are
expressible in the form (7). Call the corresponding
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V

AN L
\I;x-ai /
l-x-2
7] s
2}—x
VY 5N\
X%
(a)

(b)

F16. 19. Simplest vertex graph with arbitrariness in differentiation.

functions T, A, and A;. Then it follows from (16) that
A(klykz; k3,k4) = P(kth; k3)k4)+i)\. (19)

Other relations between the functions defined above are

S=3*(1+ANZ) =T+ Z*A 2%, (20)
Ap= AP+ AT A, (21)
22*=21*+2=2E*l, (22)
St =43+, (23)
(1— A% (14+-A,5%) =1, (24)
Ap'=Ap(Z¥ 1), (25)
A1o= DA, (26)
and
A1= gDA, (27)
k
Propagator — A (k?)
k Bk
Momentum differentiation  +-»-#~>-- B (K?)k,,
N e
Four - vertex L \‘,(\" fe Golki 15 ko Ips kay Ia5 Kayly)
ks’l/ “wKa
3 g
Mass term _'f,_,_,"‘. sm?
i i

F16. 20. Generalized Feynman rules.
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where

S):Z#(kl#a/akln‘f‘kz”a/akzu
: +k3,9/0ksutk1,d/ Okay).
Since all proper SE”” and V' can be obtained from
the irreducible ones by independent SE, SE’, and V

insertions, the following equations are results of (14)
and (18):

2o (B8, +25* (B ks

(28)

irred. SE”
and
Am(kl,ll; kz,]z; ks,[s; k4,[4): Z g(kl,ll; k?,IZ;
irred. V/
k3,[3; k4,]4; AF,21*,F ’ G) (30)

Note that in irreducible SE”” and V’, the mass term
om? cannot appear. Equations (29) and (30) are the
Dyson integral equations, when (22), (20), (21), (26),
(27), and (19) are used. Their iterative solution repro-
duces all the original graphs. This is true even though
(23) is ignored.

Besides A, this system of equations contains two
constants due to (22) and (27). The constant from
(22) may be chosen at will by suitably selecting ém?
Thus the system of equations may be rewritten as

follows:
ko,
21*(]32): —2+L2+'13' ZM,V(BW”— P >
X Z 3:(k/)I) AF721*)F; G)

irred. SE”

k'=k

)
kot tem?

o2

-1
Ap ()= [M(k?)-l— 3 / dk’ﬁ[zl*(k’2)+2]} :
and -
1 da
I‘(kl,kz;ks,k4)=_i)\+LA+/ — 2 F(aki,1;
0 « irred.V’
1

, B

0

akgl,l 5 akg’,Z 5 Oék4/,2 5 AF,El*,F 5 G)

where 1 denotes evaluation at the point £/=k; for all
i, and 0 means evaluation at the ‘“symmetry point”
k2=—m?, (ki+k;)?=—4%m? for all i#j. Formally,
the numbers Ls and Lj are given by Ly=Z*(—m?)
and L;\:A(kl,kz} kg,k4) l 0-

If the solution of (31) is designated by Z1*(\,Ls,La),
Ap(N\,Ls,Ly), and T'(\,Ls,Ly), then it may be verified
that

3%\, Ls,Ly) =Z2:%()\,0,0),

AF()\,LzyLA)=Z——1AF(5\7070)7 (32)
and

I'(\, Lz, L) =Z2T'(X,0,0),
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provided that

and the renormalized coupling constant X is given by

AN=Z2(\4iLy).
Furthermore, for any graph G, formally
g[kh[l; o kn;I’VH AF()\yLEJLA) > Zp* ()‘7LE)LA) )

P(}\,Lj,LA) s G:]ZZ"/sz[kl,[l; . 'kn,In;

This gives the wave-function renormalization.

It may be of interest to notice a difference between
this procedure and that for quantum electrodynamics.
In carrying out the momentum differentiation in the
latter case, all derivatives are considered. Thus in
integrating back, certain integrability conditions must
be satisfied. In the case of quantum electrodynamics,
these conditions are trivial, because a four-vector that
depends on only the position four-vector is necessarily
the gradient of a scalar. In the present case, these
corresponding conditions are extremely complicated
and are very difficult to satisfy iteratively. What is
done here is to consider only certain combinations of
derivatives such that there is no integrability condition.
The purpose of momentum differentiation is to dis-
entangle the overlap divergences, and there is no need
to consider all possible derivatives.

8. FEYNMAN INTEGRALS

In this section, renormalized quantities are of main
concern. Like the coupling constant, let a bar denote
the renormalized quantity; for example,

El*——— 21* (5\,0,0)

It then follows from (31) that the renormalized system
of integral equations is

. kuk,
Zo(k)=—2+3 Z“'”<5“”_ 2 )
K=k
X Z g(k/yly ZF,El*,F; G) ) (34‘1)
irred. SE” krP=—m?
k2 -1
Ap(k)= —2[ f A3 (w)] . (34b)
and -
~ _ Vda
D (kks; ksyks) = —iN+ / — 2 F(aki,1;
0 « irred. V'
1
aky 1;aky\2;akd 25 Ap, 2% T5G)| . (34c)
0

The solution of (34) gives the renormalized propagator
and the renormalized vertex function. However, it is
also useful to define the contributions G(G) from
individual graphs G inductively as follows. First, om?
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is ignored. Suppose the contributions from individual
graphs with N—1 four-vertices minus momentum
differentiations are defined. Consider an admissible
graph with N four-vertices minus momentum differ-
entiations. If its skeleton is convergent, then its
contribution is defined in an obvious manner using
insertions, whose contributions are known. Overlap
insertions can cause no trouble. If the graph is a SE’,
then its contribution is defined to be

k'=k

k.k,
k0=t T8~ o )T 68,6
h e ?

(35a)

where G’ are the graphs obtained from G by one further
momentum differentiation. If it is a SE, then

9<k,6>=< / . f

where G’ are obtained from G by differentiation. If it
is V, then

S(kl,k% ky,ka; G)

&/ 2=—m2

)Z"'G’ dky Gu(k',G),  (35b)

1

, (35¢)

0

' do
= / i ZG’ Q(akl,akg; akg,ak4; Gl)
Jo «

where G’ are again obtained from G by D.

It is the purpose of this section to show that Feynman
integrals are still applicable to these renormalized
quantities. First, consider a convergent graph G with
7 external lines and N four-vertices but no momentum
differentiation. In this case, the number of internal
lines is 2N —%#, and the number of independent loops
is N—%n+1. Let a; be the Feynman parameter associ-
ated with the internal line 7. Given external momenta
k1, ++ -, ka, let p; be the momentum associated with the
internal line ¢+ when a circuit analog is used, i.e., p; are
determined by momentum conservation at each four-
vertex and the condition that 3 (Za;p;)=0 when
summed over a closed loop. If the “power” dissipated
in the graph is defined by

Qla) =2 aipd, (36)
then it has been shown by Nambu” and Symanzik® that

Q(G)=constXNi%"“I‘(%—n——Z)/ o / day- -
0 0

Xdosy 36 (1—22: 0i)d () [ Q(ai) +m2—ie 7272, (37)

where d is a polynomial in «; with non-negative coeth-
cients such that Qd is a polynomial in «; and the
invariants formed from external momenta. The con-
stant in (37) is real ; and the factors of ¢ arise as follows:

7Y. Nambu, Nuovo cimento 6, 1064 (1957).
8 K. Symanzik, Progr. Theoret. Phys. (Kyoto) 20, 690 (1958).
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use of the representation

(pﬁ—i—m“’—ie)”l:i/ da; exp[ —ta;(pi+mP—ie) ]

0

gives ?¥—#" the Feynman rule for the four-vertices
gives (—i)¥, the Gaussian integrals lead to ¥—inH
because the metric is 34-1, and the integration that
leads to the & function also gives i~#». Equation (37)
requires 7>4.

Secondly, consider a graph G’ obtained from G by a
momentum differentiation on the internal line j. Then
a modification of the proof of (37) gives

G(G") = const\Vsi»H] (3n— 1)/ - f day- -
0 0

Kdasy_3ud(1 =25 i) D p piuku®

Xd (i) [Q(ar) +m2—ie] 4+, (38)
where k£,(? is the vector indicating the amount of
variation on this internal line; in the case of V, k,(? is
a linear combination of k;, as prescribed in Sec. 5.
Note that (38) only requires #>2 and hence is appli-
cable to a vertex graph. Consider such a case of n=4;
it follows from (38) that

ZG’ Q(akl,akz; Olk;;,ak,;; Gl)
ZCOHStS\Nisf . f d(Y1' . 'dagAr_ga(l-Zi ai)
0 0

Xa?Q(ai)d (o) [ Q(es) +mP—ie ], (39)
where Q(a;) pertains to the external momenta &y, ks, ks,
and k4 and is thus independent of a. For such a primitive
divergent G, use of (35¢) gives

G(kyyko; s,k G)=const5\1"i3/ .- / day- - -
0 0

X dagN_25 ( 1— Zi a,;)d(a,;)ﬁQ{ ln[Q (a1;> —I—mﬂ - 1;(:]

—In[Qo(a:)+m*—iel}, (40)
where Qy(a;) is the value of Q(a;) at the symmetry
point. The new features are: (1) the appearance of a
logarithm, and (2) the presence of an extra constant
term. Insofar as analytic properties in perturbation
theory are concerned, these features introduce no
modification at all.

More generally, consider a convergent graph with
the representation

G(G)= consti\¥ / f day - - ~dogy_3a'd(a)')
0 0

Xexpi Q(ai)+(m*—ie)2 s i’ ].
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In fact, (37) can be derived from this by the change of
variables a/=a;s and an integration over s. Then, if
D is any differential operator operating on the external
momenta,

> 9(G’)=DQ(G)=consti5\/ / day - -
0 0

Xdasy_1'd(a)7*D expil Q(ai')+ (m2—ie) Y i ai'],

where G’ is a graph obtained from G by any method of
carrying out the differentiation. Moreover, Symanzik’s
proof® of (37) can be used to derive this last equation
provided only that all G’ are convergent. Accordingly,
a further generalization shows that if G is a self-energy
graph such that all corresponding double-prime graphs
are irreducible, then

k2 © ©
Q(G)zconstfx"'/. dk’2/ . / dey - - - dasy 1'd ()
—m?® 0 0

Xm2Qo (i) {expi[[ Q (B0 ) + (m*—i€) 2 o]
—expi Qo(a’)+ (m2—ie)X; ]}

k2 % )
=const5\N/ dk'2/ .. / doy- - - dooy_yd ()7
—m? 0 0

X&(1—=225 i) (—m2)Qo () {In[Q (k"2,cx;)
+m2—ie]~ ln[Qo (al) +m2—ie:|}

= constA¥ f / doy -+ - daan_1d ()
0 0

Xo(1—22: ai) ([Q(A%a) +m*—ie]
X {In[Q (R ) +m2—ie]—In[ Qo (crs) +-m2—i€]}
—Q (k) + Qo).

This is the desired Feynman integral for a self-energy
graph in the simplest case.

Thirdly, insertions are to be considered. This can
easily be done by using for example, the integral
representation,

In[Q-Fm2—ie]—In[Qo+m?—ic]

* da
= -—/ —{exp[ —ia(Q+mi—1ie)]
—exp[ —ia(Qo+m>—ie)]}.

The rest of the computation is very similar to that used
in the derivation of (37). The conclusion is therefore
reached that G(G) is given by the expected Feynman
integral together with certain linear combinations of
the Feynman integrals for reduced graphs. Note that
logarithms appear when % <4 and that the integrations
over the Feynman parameters should be carried out
after linearly combining the various terms. If the
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integration is carried out first, the result may be
divergent.

9. ANALYTIC PROPERTIES

Since the Landau® curves are still applicable after
renormalization, it is only necessary to show that the
zeros of d do not affect the domains of analyticity.
For this purpose, consider an integral

I(m?)= /day - -da, F(m?), (41)

where both I and F depend on some complex variables
ki, and F also depends on the o’s. Let R be a star-shaped
domain in the & space where 7(1) is analytic; then by
dimensional consideration [(m?) is analytic in mR,
where k&EmR if k/m&ER.
Next suppose
F=(8/dm®)F,

and
I(m2)= /dar <do, F(m). (42)
Then for any M
M2
f(m2)=l_(M2)—/ dm' I (m™). (43)

Thus I(m?) is analytic in mR if I(M?) is. Insofar as
Feynman integrals are concerned, note that the factors
of d can be removed from the denominator by differ-
entiation with respect to 72, and that when m is chosen
sufficiently large the Feynman integral over real o’s is
analytic in any compact set. Thus the zeros of d are
completely irrelevant.

This also shows that the difficulty of Nakanishi®® can
never occur; his integral does not come from a Feynman
diagram.

In particular, the representation

Ar(E)=Ap (k) + / AM2 o (M) (B4 M2—ie)~  (44)

follows to any finite order in A.

10. UNITARITY

Without considering the various problems associated
with renormalization, Zimmermann'' has shown that
the unitarity relation can be applied to each Feynman
graph individually. More precisely by the unitarity
relation the following is meant. Let U be the set of
vertices of a given connected Feynman graph G. A
“cut” is defined as a way of choosing a subset U of U,
with Vy=0—7U;. Let £ be the set of lines ! of the
graph such that one of the ends, /y, is in U; while the

9 .. D. Landau, Nuclear Phys. 13, 181 (1959).
10 N. Nakanishi, Progr. Theoret. Phys. (Kyoto) 25, 155 (1960).
1W. Zimmermann (private communication).
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other end, /s, is in U,; then the removal of all the lines
in £ splits G into Gy and G, corresponding respectively
to U; and V.. Let S(G), S(G1), and S(G;) be the
S-matrix elements obtained from G, Gy, and G, respec-
tively; then the unitarity relation is

ImS(G)zZ/ constS (G2)S*(G1) T1 iat(la,li), (45)

es

where A* is the usual positive-frequency part of the
propagator for the free field; the integral is over all
free variables including, for example, the sum over
isotopic spin if any; the sum is over all possible cuts;
and the constant is a number that depends on the
normalization used for the S matrix. Summing (45)
over all graphs gives formally the unitarity of the .S
matrix.

Zimmermann carried out his proof in the coordinate
space and the proof is purely combinatorial. The only
relevant consequence of the integrations over the
internal coordinates of the graph is that many cuts can
give no contribution to the right-hand side of (45)
because of energy-momentum conservation.

It is seen in Sec. 8 that, for each admissible G, G(G)
can be expressed as a finite sum of Feynman integrals,
provided that the sum is taken before integrating over
the Feynman parameters. Accordingly, G(G) can be
expressed as a finite sum of integrals of products of
Ap® again provided that the sum is taken before
integrating over the internal coordinates of the graph.
Thus Zimmermann’s proof is applicable after noticing
for example that the constant in (40) arising from
integrating In[Qo(a;)+m?—ie] is purely imaginary.
Thus the renormalized .S matrix is unitary.

This argument also shows that the point used in
renormalizing the coupling constant can be any point
satisfying

k12=k22=k3 =kl= —mZ,

(k1+k2)2> —4m2, (k1+k3)2> ""47%2,
and
(k1+k4)2> —4m?2.

But of course the symmetry point is most convenient.

In general, unitarity holds when there is a system of
subtraction rules to give finite results, but renormal-
izability further requires that the number of subtrac-
tion constants is finite. It is indeed a major advantage
of using Feynman graphs that unitarity and crossing
symmetry are trivially preserved.

One may ask why is (45) referred to as unitarity,
since there is no requirement that on the mass shell the
incoming and outgoing particles are separately included
in the subsets U; and V.. The answer is that this is
compensated by the requirement that the A+ functions
in (45) all refer to internal lines. To see this, consider
a simple example where 142 — 34-4+35, and let the
set £ consist of two lines called 6 and 7. In what is
ordinarily called the unitarity relation, there occurs in
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1
N Z(x+3) /'g
$0-43)
4
1-3(x+7)
%(“5)1 3 | l%(x—ﬁ)
—5(1-4x+4;)
$0-43)
1 ——
3,/ Soep

FAN
3
F16. 21. Rule of differentiation obtained from those of Fig. 19.

particular a term arising from the intermediate states
142 — 34647 — 344+5, where in the second step
3 does not interact and hence that portion of the S
matrix is of the form (3— 3)(6+7— 4+5). The
particular cut under consideration gives precisely the
contribution from this intermediate state.

11. SCHWINGER-EDWARDS IDENTITY

An analog of a relation used by Schwinger and
Edwards' is the following formal identity:

2*(/’62) = 51%2——’1)\ Z ///d4k1d4k2d4k35 (k"kl
I,,1,,I,

— ko= Ey)[8(1,11)6 (I 2,1 5)-+8(1,12)8 (15,1 1)

F8(I,13)8 (11,1 2) JAr (ki) Ar (ko) A (ki?)

Xro(kl,ll; kz,[z; k,g,]:;, k,I). (46)

Although this identity is not relevant to the present
renormalization program, it may be of interest to
preserve it under momentum differentiation, i.e., to

1-3x

TR

]
2X-§'

F1c. 22. A rule of differentiating the fifth-order superproper vertex
to satisfy the Schwinger-Edwards identity.

2§, F. Edwards, Phys. Rev. 90, 284 (1953).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (i (k) (2)

(m) (n) (o)

F1c. 23. Examples of superproper vertex graphs.

construct the rules of differentiating graphs such that
the result of differentiating a self-energy graph coincides
with that of differentiating the vertex graph obtained
by deleting one of the two external four-vertices of the
SE. For example, consider the graph shown in Fig. 19.

TAI TSUN
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A superposition of Fig. 19(a) and Fig. 19(b) is shown
in Fig. 21. The three external lines, each carrying a
weight §, may be connected to give a self-energy graph.
Then a comparison with the rules of differentiating a
self-energy graph shows that the formal fulfillment of
the Schwinger-Edwards identity under differentiation
requires
x+z=1.

When this is used in Fig. 19(a), Fig. 22 results.

Even from this simple example, it is seen that this
further restriction does not uniquely determine the
rules of differentiating superproper vertex graphs. It
has been verified that this restriction can be fulfilled up
to seventh order, and the superproper graphs considered
are shown in Fig. 23. The numbers of indeterminate
constants, like the x in fifth order, are as follows:
fourth order, 0; fifth, 1; sixth, 2; seventh, 11. Thus it
seems that this present requirement can be satisfied,
but the author is unaware of any general proof.
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