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Chirality Conservation and Soft Pion Production*
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A formally p5-invariant system consisting of a Dirac 6eld and a massless pseudoscalar 6eld allows
chirality conservation in the sense that its expectation value is a constant of motion. This leads to the
consequence that in any reaction a change in the fermion chirality ( helicityXvelocity) is compensated
for by the emission of a massless boson at zero energy, which can be expressed by a simple formula relating
the radiative amplitude to the elastic amplitude. Assuming the pion-nucleon system to be ps-invariant
when the pion mass can be neglected, the formula is applied to the processes E+7r —+ X+2i- and E+27r.
A reasonable agreement with experiment is obtained in a case dominated by the 3—3 resonance.

pion-nucleon constant, and the pion decay constant,
which is known to be satisfied.

Recently one of us4 has proposed a composite model
of elementary particles based on an analogy with
superconductivity. This model is built on the essential
assumption that the Lagrangian describing the nucleons
is invariant under the ps transformation but that the
physical vacuum state need not be so. As an interesting
consequence, we observe that there exist nucleon-
antinucleon bound states which behave as massless
pseudoscalar mesons. The Goldberger- Treiman relation
follows immediately from this if we identify them with
the pions.

In the present paper we shall study another con-
sequence of the axial vector conservation which can
be used as an experimental test of the assumption.
The main point is that for any reaction involving
nucleons and mesons, the axial vector current con-
servation implies a close relation between the elastic
amplitude and the "radiative" amplitude where an
extra massless pion is emitted at zero energy.

Since the real pion has a finite mass, such a relation
cannot actually be satisfied, but one may expect it to
be approximately true at sufhciently high energies
where the pion mass is negligible.

We shall first consider a simple model due to
Nishijima and show how the above-mentioned relation
is expected for a process involving the scattering of a
nucleon by an external ps-invariant potential (Sec. II).
We shall verify the relation explicitly in the lowest
order perturbation (Sec. III), and then suggest a
possible way of proving it in general (Sec. IV). Finally
we shall discuss some experiments, in particular those
involving pion-nucleon scattering, which would test the
above-mentioned relation and hence the assumption of
the (approximate) q s invariance of strong interactions.

I. INTRODUCTION

HE observed equality of the vector coupling
constant Gv in nuclear and muon p decays has

led to the conserved current theory of Feynman and
Gell-Mann, ' according to which the vector part of the
nuclear P-decay interaction is proportional to the total
isotopic spin current. The nonrenormalization of Gy
due to strong interactions is then guaranteed by the
isospin conservation in strong interactions.

One expects further a close proportionality of the
nucleon electromagnetic and P-decay matrix elements,
including the Pauli magnetic term, and the pion
p decay sr+ —+ m' would also proceed at the "universal"
rate. Although these predictions are yet to be con-
6rmed experimentally, there seems to be enough
theoretical motivation for such speculations. For we
would then be able to regard the weak interactions,
like the electromagnetic interaction, as an agent
which reveals the basic symmetries that might exist
beneath the confusing effects of strong interactions.

As the nucleon P decay int. eraction also contains
an axial vector part with a comparable strength
(Ga I.2G&), several authors' have naturally tried to
extend the principle by postulating axial vector current
conservation or invariance under the so-called
transformation. In this case, however, it has not been
found possible to guarantee the nonrenormalization of
Gz by the axial vector conservation, and besides the
conservation law seems to be only approximate under
strong interactions. Nevertheless, it has led to one
interesting result, namely the Goldberger- Treiman'
relation between the Gamow-Teller constant Gg, the
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II. THE NISHIJIMA MODEL

In the actual P decay problem, the relevant symmetry
to be associated with the axial vector part is the
invariance under the yqXisospin gauge transformation
which acts on the nucleon (proton-neutron) field f as
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124, 246 (1961).

1429



Y. NAM BU AND D. LURIE

follows:

5p(x) ~ exp(in ~go)tp(x), (2.l)
quantity the chirality x, defined by

which also incorpora, tes the (bare) mass term for the
nucleon. By expanding the exponential, we recognize
that the first two terms are the mass and the ordinary
meson. -nucleon coupling terms. (It is also clea, r that.
with the transformation 5P

—5 exp[ —(ig/2m)yog]5P, the
theory is equivalent to the simple derivative coupling
model. We prefer the Nishijima representation because
it brings in the nucleon yo tra, nsformation explicitly. )
In addition, we shall introduce an external vector
(or axial vector) potential V„(A,),

I, ,= i5Py„5PV„(or i5Pp„ygkA „). (2.2')

The entire Lagrangian is invariant under the
transformation,

~ giaT55p
) (2.3a)

(2.3b)

for constant o,. Of course it is essential for the invariance
that the pion is massless. One easily verifies the axial
vector current conservation which follows from the
aforementioned invariance:

(2.4)

An important feature of the theory is that the existence
of the "pion" field is necessary to preserve the ys
invariance in the presence of finite nucleon mass. In
this respect it is similar to the model proposed by
Nambu and Jona-Lasinio. ' There the pion field and
finite bare nucleon mass are not assumed, but, in the
end, we find that, if the nucleon has a finite observed
mass, it must also be accompanied by a massless pion
held which is to be interpreted as nucleon-antinucleon
bound states, or a collective excitation of such pairs.
In this case, the conserved current j„is simply

(2.5)

which, however, implicitly contains the pion
contribution.

Let us now turn to the meaning of the conservation
law associated with Eq. (2.4). We call this conserved

K. Nishijima, Xuovo cimento Il, 698 (1959}.

where 0; is an arbitrary vector in isospace.
In this and following sections we shall study a

simplified model proposed by Nishijima' because there
would be no loss of the essential features.

The system consists of a single nucleon field 5P and a.

massless neutral pseudoscalar fieM 515 ("pion") coupled
through

(2.2)

X= —i j,d'x = 5Py&p55Pd'x+ (2inz/g) a,yd'x

=xN+x. . (2.6)

Equation (2.4) shows that x is a constant of motion,
i.e., a conserved quantity. However, we can easily see
that a one-nucleon state or a one-meson state is not an
eigenstate of p. As was analyzed in the model of
Nambu and Jona-Lasinio, this seemingly paradoxical
situation is related to the fact that the y5 transformation
generated by exp[ixnj is not a proper operation in the
Hilbert space of real particles, but it carries a Hilbert
space into another which is orthogonal to it.

Since y is thus not diagonal, we shall, in the following,
work with the expectation value (x), which should be
conserved in a,ny reaction, i.e.,

For a one-nucleon sta, te of momentum p, in particular,
we have

(2.7)

where n„ is the Dirac spinor normalized to un=a/8,
h the helicity (n y/~p~ ), v„ the velocity p/(p'+m')',
and Z is a renorrnalization constant. For convenience,
we can replace x by Z 'y and call it chirality. Then Z
will drop out in Eq. (2.7). For a one-pion state, we
have, naturally, (x)=0.

Let us next consider the scattering of a nucleon by
the external potentials. For a static potential, the
velocity will not change, so that one might conclude
that the helicity remains unchanged: h, =hf. This,
however, is clearly not the case as one can easily
check by perturbation calculation. The contradiction
is resolved by noting that any scattering can always
be accompanied by emission of pions which are rnass-
less. The final asymptotic state is then a linear
combination.

~ f)=Co
~
-V)+Ci

~
iVjar)+Co

~
1V+2or)+ . , (2.&)

and the expectation value (x)r must be taken with
respect to this complete amplitude. From Eq. (2.6)
we further recognize that (x)f will have contributions
both diagonal and nondiagonal in the decomposition
(2.8), the latter being between states ~iV+em) and
~

1V+ (mal)or) differing by One ZerO-energy meSOn
(spurion). We are led to the conclusion that taking
the expectation value is essential in interpreting the
conservation of chirality. In this sense, we can call it
a weak conservation in contrast to the usual "strong"
conservation such as charge conservation.

It is clear, furthermore, that one can distinguish
various degrees of "weakness" depending on the number
of Anal state degrees of freedom over which the expecta-
tion value (x)r must be taken in order to satisfy



CHIRALITY CONSERVATION AND SOFT PION PRODUCTION

(x)f——(x),. The weakest case would involve a sum-
mation over all spins, scattering angles, and many-pion
production processes. A less weak case might involve
only a spin summation and up to one-spurion emission
processes. In the following section we shall verify the
chirality conservation by perturbation calculation and
show that the stronger type of weak conservation
(which we might call detailed weak conservation) can
sometimes be valid.

n P=O, nz=1. (3.3)

The initial chirality of the nucleon is then given by

III. PERTURBATION CALCULATION

Ke shaH consider the scattering of a nucleon by an
external potential in the Born approximation and
check the chirality conservation in the lowest order in
the meson coupling constant g. For simplicity, the
potential will be assumed to be of the vector type

Lv iIPy„g V——„,

where V„ is static and has an inversion symmetry:
V(x) = V(—x). (Of course one can work with an axial
vector potential equally well. ) We first note that the
initial nucleon state can be specified by means of the
covariant projection operator

P(p, n) =X(p)S(n) =S(n)il (p),

X(p) = (m —z~ p)/2E„, [X'= (m/E, )Il.], (3.1)

S(n) = (1+i' nyz)/2.

Here e is the covariant polarization vector which
reduces to (n', 0) in the nucleon rest system. In the
laboratory frame one has n= (n, no) where

n=n'+p(p n')/m(E+m), no ——p n'/m. (3.2)

Naturally

FIG. 1. I..owest order
diagrams to be con-
sidered for chirality con-
servation in potential
scattering. The point X
is where the potential
acts.

this to the present case, we get'

(&)/ ——{Tr[M.IA (P')x~'A. (P')M, IP (P,n) ]
+Tr[M.IX(P')X.'~(P') M...P (P,n)]
+Tr [M,,4A (p') X„'tA (p') M.,P (p,n) ]}

X (Tr[M.IA (p') M.IP (p, n) ]}-I,
where

XN p4p5)
(3.6)

x.,'= (ym/y)y, (0 44'x4(y) 0)=—(~m/g)y

M„g does not contribute to the denominator because
of its vanishing weight. The elastic contribution can
be easily evaluated. Ke find

Tr[M.IA (p') Xz/'A (p') M.i P (p,n)]
= (—im/2E')[V V(m'+p p') —2p Vp' V]n4

+(zm/Ez)[V n(m'+P. P') —P VP' n]U4,

Tr[M, IA (p')M, IP(p, n)]
= (1/2E')[V V(m'+p p') 2p Vp. ' V—], V„—= V„(q),

so that

(x~)f——(m/E) no

V n(m'+p p') pVp' n-
—(2m/E) Vo— (3.7)

V V(m-'+p p') —2p Up' V

Here we have made use of the previous assumptions
about V, which means that Ef——E,=E, and the
Fourier transform V„(q) is a real vector

X,=u,p4p, u, =Trfy4y, P (p, n)]
=npm/E p

= 11 ' V. (3.4)
V.(e) = V.(—e) =~.V.*(a),

qp= 1 p= 1 2 3 g~= 1 p, =4.

It is clear from Eq. (2.6) that in our present, approxi-
mation (which is the zeroth order in g) only the lowest
order elastic and one-pion inelastic processes need be
considered. The corresponding diagrams are shown in

Fig. 1. These amplitudes are given by

M.i(P p) ='7' V(U) /i=p P

M„4(p',p; k) =iy V(q+k)s(p —k)zgyz

+igpzs (p' k)iy V (q—k—).
(3.5)

The chirality of the scattered wave at a given angle
may be evaluated with the aid of the formula

(0)f [u~a (p')Oa (p') M——u,]/[u~X (p')M u,]
=Tr [MA (p') OMP (p,n) ]/Tr[Mh(p') MP (p,n) ].,

where 0 is a Dirac matrix and 3f=y4jtft74. Adapting

For a general V„, the result is more complicated.
As for the inelastic contribution, we first note that

although the matrix element of X ~ 1'84&d'x vanishes
like ko/(2ko)l as ko~0, the inelastic amplitude con-
tains a factor 1/(2ko)'* which will cancel the former.
Thus there is no trouble in this respect. A more
serious difficulty is that the results of the calculation
depend on the way the limit k=0 is defined. In fact we
get different answers depending on whether (a) we
approach the limit k=0 staying on the zero-mass shell
(ko= ~k~), or (b) first we allow a finite mass zzo, ailcl

go to the limit k~ 0 kp=p, p~ 0 successively.
Ke shaH show below that the second procedure

gives the correct result. Note also that this is the more

Note that x acts as unity operator for the nucleon, which
means O=y4. Hence the form of x„' below.
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appropriate one for application to the real pion problem
where po is indeed finite.

Accordingly we calculate the x part thus:

T.LM.,~(p') .'~(p')M...&(p, )j
e iy p—' zzz —iy (p'+k)

lim m Tr y V 7
k~o, @0~0 2E (p'+k)'+zzz'

zzz iy—p 1+i' nys
V— —— —ko& (k'+z o-")~(ko)dko

We expect that the chirality conservation in our
sense will hold true to all orders in the pion coupling g,
where many-pion processes will also come in. But the
calculation is made difficult because of the self-energy
effects. In the following, we will therefore try to
derive a general relation which follows from the y~
invariance and certain other assumptions and is
expressed in. terms of directly observable (renormalized)
quantities.

We assume that there exists a conserved quantity
called chirality X= iJ—'X,d'x (B„X„=O).This means
that

+in +Out S—1+inS

where S is the 5 matrix. We rewrite it as

zzz iy p'— .zzz zy. (p ——k) zzz zv p-
+ TryV ~r

--—

(p —k)'+zzz' 2E.'

1+zp ' zzpo

&&
— — ko& (k'+zzo') &(ko)dko, Sx in xinS 0 (4 1)

which becomes

2zzz V zz(mz+P P') —P VP' zz

&X.) = Vo, —,— (3 g)
E V V(zzz'+p p') —2p Vp' V

Combining Eqs. (3.7) and (3.8) we get

&x)g= &xiii)f+ &x.)~= (zzz/E)zzo ——(x),. (3.9)

It is interesting to see how the two contributions to

&X)r add up in the nonrelativistic approximation; The
chirality of the nucleon is in this case

&x~)= —&~)' 1z/~. (3.10)

The scattering takes place through V4 which does not
Aip the spin but changes the direction of motion so that,
after the scattering, we have

The difference is
&xzi )f———

&o ),"y'/zzz.

6&xiii) = —&zr),"q/m.

(3.11)

(3.12)

On the other hand, the above-mentioned limiting
procedure for &X, ) corresponds to the 5-wave pion
production process which goes through the negative
energy states, and this is easily seen to cancel 6&Xiii).

IV. GENERAL PROOF

The previous particular example shows that the
weak conservation of chirality holds in detail, i.e., if
summed only over the 6nal nucleon spins, and over
elastic and one-pion bremsstrahlung processes at a
fixed scattering angle. This is a stronger result than the
general statement &X);= (X)f, and is due to the Born
approximation and the special assumption made about
V„. (In fact, for a completely general static potential
V„, we do not obtain conservation unless we sum over
all the scattered and unsca, ttered waves. )

(~/»—')PV ~(~'+p p') pVp' —~7Vo

The other interference term in Eq. (3.6) gives an equal
contribution so that

in x in+ gx in+ x

I.et us apply this to the case of the potential scattering.
Taking the matrix element between elastic states,
we get

z(p M.,x~'.—X„M„~p)
= —&p'~ Sx.'.—x. »S

~ p)
=P,. L

—(P'iS[Pk)(kix. io)
+ &OI x-l»&P'k I&IP)], (4.2)

because X '" results only in the creation or absorption
of a pion. Furthermore,

&p'I ~l p 0)= &p', Ol ~
I p) = Lz/(2ko):j&p'~ k'y(k)

~ p) ~
~=o

=Lz/(2ko)'3M, .a(p', p; k) ~i=o,

&k I
x-

I
0)= —

&o
I
x.

I k) = »(ko/2):&(1 ). (4.3)

Equation (4.2) thus may be written

X%M.1 (p', p) M.i(p', p) Xx=—zXM ., (p', p; 0) (4.4).
If X is so normalized that &~=y4y5 for a free nucleon,
then the continuity equation

3„x~„—g p= 0,

which follows from X conservation, means that ]/li is
more or less the conventional pion coupling constant

1/t =f= g/2zzz. (4.5)

It is not proven, however, that this agrees with the
coupling constant defined in the dispersion theory.
I or the time being, we assume it to be the case.

Equation (4.4) represents a general relation between
M, i and the one-pion emission amplitude M,„d. The

We will further assume, in accordance with the
previous discussion, that y consists of the nucleon
part X& and the pion part X,= XJ' tdi'x. Asymptotically,
&~ will be an operator that does not change the number
of pions, whereas X, being linear in the pion field, will
lead to the absorption or emission of a zero-energy
pion. Accordingly Eq. (4.1) becomes



CHIRALITY CONSERVATION AND SOFT PION PRODUCTION

origin of such a simple relation is easily traced back
to our starting assumption about the asymptotic
behavior of y. From the above derivation, it is also
clear that a similar relation will exist for any reaction
amplitude M and the accompanying inelastic amplitude
resulting in the emission of an extra zero-energy meson.

We shall next bring the relation (4.4) into a more
explicit form. In the covariant form, M is usually
defined without the projection operator A, so that the
left-hand side of Eq. (4.4) should be written

v v ~(p')M. (p', p) M. (—p', p)~(p)v v'
Observing that

v4vh1 (p) —1 (p)vhvh= —vh,

Eq. (4.4) becomes

iM„e(p', p; 0)= (g/2m)DV4»m/E Vh)M, )—(p', p)
+M. (p', p)(v v m/E —v )3 (46)

If we use the positive energy two-component spinors,
the above equation simplifies to

iM„e(p',p; 0)

three components of the isospin. The simplest example
having such conservation is the conventional meson
theory with derivative coupling. The results of Sec. IV
can be directly taken over if we replace x& by
X~"=X'~r*, and X by X '= )(1'g'd'x.

In some of the models, the expression for y is actually
more complicated. In general it contains nonlinear
terms in the pion field, and terms involving a neutral
scalar meson field can also occur. We may assume,
however, that these additional terms do not contribute
to the asymptotic values (x'") and (x'"') for the
following reason. First, the contribution from non-linear
terms p(x)", rh) 2, which involves creation and
annihilation of n mesons in the neighborhood of point
x, will tend to zero when, before or after the scattering,
the particles are well separated from each other, just
as the interaction energy is supposed to vanish in this
asymptotic region. As for the neutral scalar field, a
meson of this kind (a. meson) may exist. in nature, but
it would be, in any case, quite massive and unstable.
We can therefore exclude 0- from the fields that
contribute to y' and y'"'.

With this observation, Eqs. (4.6) and (4.7) are
replaced in the present case by

g C'P 0'' p
M.i(p', p) —M.i(p', p)

2~ E
' '

E
(4 7) iM, ,p' ——(g/2m) $ (V4Vhm/E —V,)r"M.i

+M,)r"(vhvgm/E v', )j, (5.g—)

In this form the meaning of the relation is easy to
understand. Suppose the initial nucleon is in an
eigenstate of helicity: (o"p/E)uv= &vuv. The helicity
change in the elastically scattered state p' is

(
goP 0'' p

u„M.)t M.)u„(u„M,)tM, )u„)—u„u„
jV

cr p
g„3f,it

jV

c'p
3II,i—3f,i N„u„M,)~3EI,iu„

E
= —iy (u„M.)tM ...u„)/(u„M. )tM, )u„).

The last expression just corresponds to the inter-
ference term (x ) in the final state with a particular
momentum p'. This shows that the weak chirality
conservation holds ie deficit, i.e., after summing only
over the final nucleon spins, and over elastic and
associated inelastic amplitudes provided that the initial
nucleon is in a helicity eigenstate. Otherwise a more
general weak conservation will prevail in general.

'M, = —(g/2 )[( «'/E)"M. —M. "(- «/E)3
(5 2)

It is convenient to quantize the spins of the initial and
final nucleons along their own direction of motion.
Equation (5.2) then reduces simply to

iM„g'h '= —(gv / 2m)( hv' Mi"'"—M )h'hr'h) (5 3)

where h and h' are the initial and final helicities, and
M"'" are the corresponding amplitudes introduced by
Jacob and Wick. '

We shall apply the above relation to the pion
nucleon scattering, which seems to be the simplest
case of physical interest. Naturally M, & has to
be identified with the elastic scattering amplitude
M(p'q', pq) for the process.Vv+v-, ~ X„+v-, , whereas
M„q'(p'q', pq; k) corresponds to the production process
1(tv+v, ~ 1Vv +v, +v h'. The fundamental assumption
here is that the pion-nucleon system is ps invariant to
the extent that the pion mass can be neglected.

To exhibit the isotopic dependence of M, i, we write

V. y )& ISOSPIN INVARIANCE AND THE
EXPERIMENTAL TEST

The results obtained in previous sections can be
generalized to the ps' isospin gauge transformation
LEq. (2.1)). Models that possess this invariance have
been considered by Gursey, Gell-Mann, e] g).' and
Nambu and Jona-Lasinio. ' In this case there are three
conserved quantities x', i= 1, 2, 3, corresponding to the

iMeip~=M(+)t)p +M( )i~[~p, r ], (5.4)

so that M„p"=' for the process v.++p~7r++p+v-o
takes the form

iM~~~h'h(vo) — (gvv/2m) (h' h)Mh'h (vip ~ vip)
= —(gv„/2m) (h' —h)

)('(tM(+)h'h~M( —)h'hf (5 5)
7 M. Jacob and G. C. Wick, 'Ann. Phys. 7, 404 (1959).
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The relation becomes somewhat more complicated
when x+ are produced. For m +P~ n +e+m+, we

have, for example

%2gn„;~...'~(~+) = — t;h, '3I~'"(~ P~-~ P)-
2m

h—m~'~(~-~ ~ ~-~)5
V2gv„

P I (~(+1A ~h+ ~(—) h, ' h)

2m
h(~(+)a a ~(—)a'a)j (5 6)

I et us now compare the elastic and inelastic cross
sections. The simplest way to apply our formula will

be to take the case where the meson k is produced with
small energy (l k

l
=0). We easily find

=vLp/(1 —vr, ')& in the laboratory system. In order to
keep such an ambiguity reasonably small, e.g. , l

kr,
l
&p,

we must demand that 1/(1 —vL') ~ is not too large. In
other words, the energy at which we carry out the
experiment should not be large compared to the
nucleon rest energy.

An alternative way to test our relation is to consider
the energy distribution of the inelastically scattered
meson near its maximum energy since the produced
pion would come out with low energy. In this case, the
ratio of cross sections is calculated to be

E I—C:2~(~-—~') j'*
(2~)' m

x l~„w "u.l'/l~'~ », I', (5.»)
l~. ~-«.l'/l~'~. ~N. I' (5 7)

(2~)'
where cv is the maximum meson energy at the particu-
lar angle, and E is the total c.m. energy of the system.
Again for the process ~++p ~ x++p+~', this yieldsFor the process m++p~m++p+~' LEq. (5.5)j t»s

reduces to

1 g' & '*P~(~-—~. )]-'*
v~'(h' —h)'. (5.12)

vr 4' m 4m'Averaging over the nucleon spin, we get

((h' —h)'), =2|1—A'(n, )$, (5.9) Equations (5.8) and (5.11) or the specific forms (5.8)
and (5.12) give a relation between elastic and inelastic
cross sections in terms of directly measurable quantities
alone. When the polarization of the nucleon is not
measured, they still can give an inequality since

where A'—= (h'h), is one of the polarization parameters
introduced by Wolfenstein. ' Equations (5.7) and (5.8)
are the relations that should hold at each scattering
angle. If we integrate Eq. (5.8) over the angles, we get

d 0 rad duel

(
d grad do el ~ g d~&IdQ&i dQ&I

v„'(h' —h)'. (5.8)
Ckoj,dQ~ dQ, z 4a 4m2

d'0,.g 2 g' lkl
(r,g

——v„—'(—1—3'),
do)p x 4m 4m'

(5.10)

where A' means an angular average.
In the actual case of 6nite meson mass, the low-energy

limit k=0 does not have a Lorentz invariant meaning,
so that the analysis will depend on the choice of the
coordinate system. For example, a meson at rest
in the c.m. system will have a momentum

l
kr,

l

(h' —h)'(4.

Unfortunately, these formulas are supposed to apply
only at the extreme ends of the meson energy spectrum,
for which experimental data are scarce and dificult
to obtain.

On the other hand, if the elastic matrix elements are
precisely known, we can directly calculate the inelastic
amplitudes from Eq. (5.3) for Eqs. (5.5) and (5.6)j.
When, for example, the elastic scattering is dominated

TABLE I. Angular dependence and magnitude of the radiative cross section 7f'+E ~ 7f'+E+x', where the last pion
is produced nearly at rest, for the case of T=-,', J= ~+ elastic channel, Z=cos9 .

Process

m++p-+m++p+~0

d 0're

40q~dco&

(1+3Z)'(1—Z)

1+3Z+3Z' —(27/5)Z' (20i9

ko-, i

' T.. Wolfenstein, Phys, Rev. 96, I654 (1954),
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TABLE II. Angular dependence and magnitude of the radiative cross section for the case of T=-', , J=$+ and -', + channels.

Process

~ +p —+7(- +p+7r0

x +p ~7i- +n+7(-+

d Orad

dQqIdor $

{1+3Z)'(1—Z)
(1—2Z —$Z2)2 {1—Z)

1+3Z'
1—2Z'+SZ4

dory 4m-' 4'
J=-,'
J 5

2

by a resonance, the associated production amplitude
is easily obtained.

In Table I we give the results for the —,
' ——', resonance.

This is not an ideal case because the resonance energy
is only twice the pion mass, which makes the neglecting
of the pion mass somewhat dubious. But perhaps one
could argue that we should compare the elastic scatter-
ing at energy T with the inelastic scattering at incident
energy 2'+p. For the 3—3 resonance, the latter comes
out to be =300 Mev.

In Fig. 2 we show the measured angular distribution
of the inelastically scattered vr from the reaction'
~ +p —+ ~ +m+m. + at 290 Mev laboratory energy
which is to be compared with the theoretical curve.
The agreement is quite reasonable. We note here that,
although the experimental points are integral distribu-
tions over pion energy, the m —e resonance in the final
system would tend to produce low energy m-+ as is
wanted in the comparison with theory. "

As for the magnitude of the cross section, we can
make only a crude comparison. Ke estimate the
theoretical production cross section o(~ p —+ rr rior+)

by extrapolating Eq. (5.7) over the entire energy
range. This gives the ratio (with g'/4s. =15)

0 K ~ 7F'

at 290 Mev. Since the theoretical peak elastic cross
section due to the 3—3 resonance is 20 mb, the above
ratio means

o. (s. P ~ 7r m+) =0.2 mb.

The corresponding experimental value is 0.61+0.13 mb
ate 290 Mev and 0.71&0.10 mb at 317 Mev. ' These
are quite compatible with the prediction considering
the crudeness of the estimation. (We also note from
Table I that the ratio r for the other production

Ya. A. Batusov, S. A. Bunyatov, V. M. Sidorov, and V. A.
Yarba, Proceedings of the 1960 International Conference on High-
Energy Physics at Rochester (Interscience Publishers, New York,
1960), p. 77; Ya. A. Batusov et al. , Doklady Nauk U.S.S.R., 133,
52 (1960) [Soviet Phys. -Doklsdy 5, 731 (1961)j.

"Note added in proof. However, the agreement may be for-
tuitous since there are various angular momentum channels that
are neglected in t.his simphfied approach. Our formul* shows a
characterIsI:ic dip in the forward direction. But the corresponding
behavior of the experimental data may or may not be real.

"W. A. Perkins, III, J. C. Caris, R. W. Kenney, and V. Perez-
Mendez, Phys, Rev. 118, 1364 {1960).

processes would be only 1/10 of the present case. In
such an event there may be more contaminations from
other partial waves. )

Similar considerations can be made for the higher
resonances. Ke list in Table II the corresponding
predictions for resonances with T=» J=-',+ and —',+.
Finally it is interesting to compare the preceding
results with those of the statistical model. Ke may
identify the Fermi interaction volume 0 with the ratio"

VI. FURTHER REMARKS

The main theme of this paper is to show that, under
the assumption of y5 invariance in strong interactions,
the change of nucleon helicity in any reaction will

result in the brernsstrahlung of soft pions. This relation
is characterized specifically by Eq. (5.1) or (5.2),
which expresses a kind of low energy limit theorem.
A comparison with the pion-nucleon scattering data
around the 3—3 resonance shows an agreement with
the formula.

Other interesting applications or tests of our relations
may be found in nucleon-nucleon and nucleon-
antinucleon scattering and general high energy multiple
production processes. Our formulas would give us a
way to analyze these events by observing low-energy

6'-
I I I I $ l » t s

FIG. 2. Angular dis-
tribution of 7t. from the
reaction 77- +p —& n+77-+
+m at 290 Mev. ' The
curve is calculated from
the last line in Table I.

7T
J.w

l .8 .6 .4 .2 0 -.2 -4 -.6 -.8 - I

COS &

» E. Permi, Progr. Theoret. Phys. (Kyoto) 5, 570'(1950).

as far as the soft meson emission is concerned. The
corresponding interaction radius E is then

8=0.6~„p, ',

which is energy dependent, and approaches 0.6p ' at
high energies.
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mesons emitted. For example, in the case of nucleon-
antinucleon annihilation at rest, the initial chirality is
zero, and, since the final state contains no nucleons,
we would have (X )i

——0, i.e., the amplitude for the
emission of very low energy pions would be unusually
small.

The notion of y5 invariance or chirality conservation
can be extended to composite systems and strange
particles. ' There is also a possibility that the E meson
plays a role similar to the pion in the conservation of

strangeness-changing chirality current. It is likely,
however, that even if such a symmetry existed in
essence, the large mass of the E meson would tend to
make it more approximate in nature than for the case
involving pions, except perhaps at sufficiently high
energies.
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Perturbation Theory of Pion-Pion Interaction. I. Renorrnalization

Tw TsUN WU*

(Received October 9, 1961)

The problem of pion-pion scattering is studied on the basis of the model of a four-particle direct interaction
without derivative coupling. Renormalization is carried out for this model with a detailed analysis of
overlap insertions. To every 6nite order in the renormalized coupling constant, it is shown that the unitarity
relation holds and that the Feynman integral representation is still valid, and hence renormalization has
no effect on analytic properties.

l. INTRODUCTION

INCR the pion is a pseudoscalar boson, the simplest.
~

~

~

~

~ ~

~ ~

~

~

~

~coupling among pions is a local P' coupling.
Furthermore, this leads to a dimensionless coupling
constant. If this coupling is taken to be correct, then
the problem of pion-pion interaction is the simplest
among all problems involving strongly-interacting
particles. It is the purpose here to study the pion-pion
interaction under this coupling using perturbation
theory.

In order that the perturbation theory be meaningful,
it is necessary to have a consistent procedure to remove
the infinities due to integrations over large momenta
and to interpret this removal as mass renormalization
and coupling-constant renormalization. ' In the much
more familiar case of electrodynamics, the procedure
of Ward' seems simpler than that of Salam'; hence, in
the present case, differentiation with respect to external
momenta is to be used for the purpose of treating
overlap divergences, which are of main concern here.
However, the problem of which path to use in carrying
out the differentiation is quite complicated in the
present case. In quantum electrodynamics, the treat-
ment of the photon self-energy has been carried out by
Mills and Yang, 4 and their treatment is the starting

*Alfred P. Sloan Foundation Fellow. Work also supported in
part by a grant from the National Science Foundation.' F. J. Dyson, Phys. Rev. 75, 1736 (1949).' J. C. Ward, Proc. Phys. Soc. (London) A64, 54 (1951).' A. Salam, Phys. Rev. 82, 217 (1951).' R. I.. Mills and C. N. Yang (private communication from
Professor Yang).

point for the present consideration. Thus, this case of
electrodynamics is considered first in Sec. 4 after a
preliminary st:udy of the case of the p' coupling.
Renormalization is completed in Sec. 7, and some
properties of this procedure are discussed in Secs. 8—11.
In particular, the validity of the Feynman integral
representation implies that renormalization does not
change the domains of analyticity to every order of
the coupling constant.

This paper is concerned mainly with the formal
question of renormalization within the framework of
perturbation theory. Thus, on the basis of the particular
Lagrangian under consideration, all the equations here
are exact in the sense of being true to every finite order
of the coupling constant. In a later paper, the problem
is considered concerning the derivation of a closed
system of equations for the approximate description of
the pion-pion system at low energies.

2. STATEMENT OF THE PROBLEM

Let P+, p&, and p, respectively, be the field operators
for the creation of the pions ~+, vr, and ~ . Let Ps ——ge,
and the triplet of operators (gt,Qs, gs) transform as a
vector in the space of isotopic spin; then with the
usual phase conventions

Since m is its own antiparticle, g; are Hermitian.
Throughout this paper, the Lagrangian density is


