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Runaway Modes in Model Field Theories*
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Within the framework of linear quantum held theories, a general study is presented of the existence and
removal of runaway modes —solutions of the equations of motion which exhibit a real exponential time
dependence. It is hoped that this work will yield insight into the corresponding problem in physically realistic
theories. It is shown that runaway modes occur only when the Hamiltonian is not positive definite, and that
they occur in linear quantum theories whenever they appear in the corresponding classical theories. Three
methods are proposed for eliminating these unphysical modes One is the analog of the method used by Dirac
in classical electron theory; the other two are believed to be new.

I. INTRODUCTION

I~ERTAIN classical field theories, in particular
classical electron theory, have long been known

to possess runaway modes" —solutions of the equations
of motion in which observable quantities (typically the
electron position) display exponentially increasing time
dependence. Recently, ' ' similar solutions have been
found in a number of simple, exactly soluble quantum
field theories. In this paper we analyze the properties
of runaways in a very simple class of model field
theories, linear quantum field theories, for which the
Hamiltonian is a quadratic function of the dynamical
variables, and the equations of motion linear differ-
ential equations. All of the quantum models in which
runaways have been discovered have been of this class.
We are not interested in these models for their own sake,
but because we hope that information gained from
them may cast light upon the properties of runaways
in more complicated, and more realistic, theories.
Likewise, we attempt to devise general methods to
alter these theories in such a way as to eliminate the
runaways but leave the more desirable aspects of the
theories intact, because we hope that these methods
may be generalized to more complicated theories.
Unlike theories addicted with some other pathological
conditions, such as ghost states, ' theories with run-
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aways are internally consistent and obey the general
principles of quantum mechanics: probability and
energy are conserved, the inner product is positive
definite, etc. We seek to remove runaways only because
the behavior they describe is not in agreement with the
observed behavior of physical systems.

In Sec. II we discuss the general properties of runaway
solutions in linear theories and prove two theorems
concerning their existence. In Sec. III, in order to
clarify these general considerations, we show how they
apply to two specific model theories. Section IV
contains three methods for the removal of runaways;
each of these is realized in one or both of the specific
models considered in Sec. II. One of these methods is
the quantum analog of the method proposed by Dirac'
for classical electron theory. YVe believe the other two
methods are new. Because of the simplicity of our
models, the three methods yield almost the same results.
Work in progress, however, indicates that they lead to
quite different modified theories when applied to more
complicated models. To display the difference between
the methods more clearly, we brieQy discuss in Sec. V
the three types of response to an external force which
arise when a particular theory with runaways is
modified in each of our three ways. Section VI is a
discussion of the results.

II. GENERAL PROPERTIES OF RUNWAYS

The theories we will discuss have the following
dynamical variables: A set of lV Hermitian field
operators P;(x,t), their canonical momenta m. , (x,t);
a, set of M single-particle position operators r, (t), their
canonical momenta p, (t). These operators obey the
equal-time commutation rules,

PP, (x,t),m;(x', t) j=ib, ,P(x—x'), (1)

Lr'(l), P (t)3=I'.
Ke are concerned only with linear field theories

whose Hamiltonians are quadratic in the 6eld variables.

P. A. M. Dirac, Proc. Roy. Soc. (I.ondon) A167, 148 (1938).
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These Hamiltonians together with the associated
linear field equations can also be interpreted as describ-
ing a set of classical theories where the field variables
are c numbers. We call these the corresponding c-
number theories.

The general solution of a corresponding c-number
theory can be represented as a (infinite) sum of linearly
independent solutions, each with an arbitrary coefficient.
The same is true in the quantum theory except that
the arbitrary coe%cients are replaced by operators
determined (to within a unitary transformation) by the
commutation rules. If the Hamiltonian does not depend
explicitly upon the time, we can choose each member
of this sum to have an exponential time dependence. The
solutions then have the form

i(H, O 7= i~ 0, — (6)

&f&, (x,t) =P f;(x)0 e '"'+H.c.,
v.;(x,t) =g. g.;(x)o.e '"'+H.c.,

r, (t) =Q. c.,o.e—'"-'+H.c.,

p, (t) =p d.,o e
—' -'+H. c.,

where the explicit sum over o, includes all frequencies
co, such that Re co &0. The terms H.c. then contain all
solutions for which Re ~ &0.

In the most familiar cases the frequencies co are all
real and the modes oscillatory. However, there exist
theories in which some of the ~ have imaginary parts;
these are the so-called runaway modes. If we denote by
a superscript s (s for sensible) those parts of the field
operators which contain no runaway modes, we may
write

P, (x,t) =P,'(x, t)+LP f, (x)0 e '"«'+H. c.7, (4)

where the sum includes only those frequencies for
which Im co &0. We may similarly decompose the other
dynamical variables.

The structure of the Hamiltonian also follows from
general considerations. It is a time-independent,
quadratic function of the dynamical variables and
hence must have the form

H=Q ho 0+hoo
where 0 belongs with —co . From the time independ-
ence of Eqs. (2) and (3), we can conclude that 0
commutes with every Op except Op=0, and from

from the non-runaway modes and write

where the primed sum runs only over the frequencies
with a nonvanishing imaginary part. In the remainder
of this paper the explicit appearance of the 0 will refer
only to the runaway modes.

We now prove two simple theorems on the occurrence
of runaway modes.

(a) Runaways occur in a linear field theory if and onty

if the energy spectrum is a continuum extending from
minus infinity to plus infinity. If the Hamiltonian is

positive definite, there can be no runaways.
Proof We u. se the decomposition of the Hamiltonian

of Eq. (10). If there are no runaways, this is a sum of
positive definite terms. If there are runaways, the
spectrum of the runaway part can be shown4 to extend
from minus infinity to plus infinity. Since the runaway
part is dynamically independent of the rest of the
Hamiltonian, the spectrum of the total Hamiltonian
must have the same property.

(b) Whenever the c number equ-ations of motion admit
a runaway solution, it must be present in the quantum

theory, provided only that the c number -sotution is of
finite energy'. Dt is clear that something like this
proviso is needed, for otherwise we would be forced to
include, in free meson theory, solutions of the Klein-
Gordon equation of the form exp(ik x—i&A) with h and
cu imaginary. ]

Proof Assume th. e theorem is false. Then there exists
a solution of the quantum theory that is free from
runaways. But we can obtain another solution of the
quantum theory by adding to this one a c-number
runaway solution of the equations of motion; since the
equations of motion are linear, this is a solution, and
the addition of a c number does not change the commu-
tation rules. This new solution obeys the same equations
of motion and canonical commutation rules as the old
one, so they must be connected by a time-independent
unitary transformation. (Actually, it is well known~

that this is not strictly the case in field theory; it is
also necessary that the transformation considered only
cause a finite change in the energy. The conditions we
have imposed are sufficient to insure this for quadratic
Hamiltonians. ) But this is inconsistent with the repre-
sentation of the solution given by Eq. (3).

we have
cu. = (h.+h.)$0.,0

III. TWO THEORIES WITH RUNWAYS

A. Pair Theory
If we now adjust the phases and the normalizations of
the 0 to satisfy

Lo.,o 7=(u./ ~
o)„~,

then, to within the addition of a real, c-number constant,

Again, as in Eq. (4), we can separate the contribution

The pair theory is a model of meson-nucleon inter-
actions which was invented by Wentzel" to study
nuclear forces. It describes the interaction of a scalar
meson field g(x, t) with a fixed source chars. cterized by a
spherically symmetric form factor p(x), normalized such

I.. van Hove, Physica 18, 145 (1952).' G. Wentzel, Helv. Phys. Acta 15, 111 (1942).
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condition. ' However, the theory with the correct gauge
condition can also be solved and differs from this model
in none of the features of interest here. To avoid
complication, we consider this simplified model.

The function p(x) is a form factor which will
eventually approach a delta function, just as in the pair
theory. We only outline the development of this theory
here; it parallels closely that of the pair theory and has
been discussed extensively in the literature. ' 4

The canonical equations of motion are

where Xq is such that J'h'd'x= 1—EC'uo '. The imagi-
nary frequency alp is the root of the equation

G(iuo) = m—ono' E— e—'uo'
d'h p'(k) = 0, (33)
uoo+k'

and the parameter C is related to the residue of G '
at this singularity

(34)

1
dr/dt= y ——e pAd'x ~,

Sip

dA/dt =m,

dp/dt = —Er,

ep
d /d( PA+ =P—e —pAe'x),

which lead to the field equations

mof+Er= —e pAd'x,

(26)

(2't)

In analogy with the situation in the pair theory, Eq.
(33) has a root only if mo is negative.

In both models, the runaway solutions, characterized
by0&andO &,

LO),0 )]=—i, (33)

IV. REMOVAL OF RUNAWAYS

only occur when a parameter in the Hamiltonian, either
the bare coupling constant or the bare mass, assumes
such a value that the spectrum of the Hamiltonian
becomes a bottomless continuum. For fixed values of the
renormalized mass and coupling constant, this un-
avoidably happens as the cutoff is removed.

~'A= —epr. (28)

When mt) is positive these equations have only the
sensible solutions r' and A'. The scattering amplitude
can be constructed in the same way as in the pair
theory, and one is led to define a mass renormalization

m„= mo+4zre' p'(h)dtz.

C
r(t) =r'(t) — (Oqe ""+0 qe""),

(2uo)
' (30)

h(x)
A(x, t)=A'(x t)+- (0|e " '—0 qe"oo') (31)

(2uo)'

which must be added to the sensible solutions r' and
A'. The function h(x) has the form

As in the pair theory, the renormalization integral
becomes infinite in the limit of a local interaction, and
the unrenormalized quantity —here the bare mass,
there the reciprocal of the bare coupling constant —tends
to negative infinity. When mp is negative the Hamil-
tonian in Eq. (23) is no longer positive definite; its
spectrum extends over the entire real axis. The equa-
tions of motion again admit runaway solutions,

In this section we consider some methods of modify-
ing our model theories in such a way as to produce new
theories in which runaways do not occur. There are
many such modifications that we could make; for
example, we could simply eliminate the interaction
altogether, but this sort of procedure is clearly un-
satisfactory —what we want is a method of removing
the runaways that in some sense does minimal damage
to the original theory. We want the modified theory to
look like the original theory except for small times and
high energies.

The idea of minimal modification is not sharply
defined in general, but can be given a precise meaning
in linear theories. In a linear theory, we can demand
that our modification does not alter the time dependence
or the commutation rules of the sensible part of the
dynamical variables, that it affect the runaway part
only. (We can do this because the sensible and runaway
parts are dynamically independent; this is not true
in a nonlinear theory. )

A quantum theory is normally specified by the
Hamiltonian and the canonical commutators. These
imply the Heisenberg equations of motion. Alterna-
tively, we may specify the theory by giving these
equations of motion and the commutation rules at a
fixed time. This determines the Hamiltonian to within
a c-number constant. Our first method of modification
is based on the latter formulation.

A. Modification of the First Kind
&
—upi x—x'(

h(x) = N o,
d'x' p(x'),

fx—x'f
(32) This is the direct analog of the method used by

Dirac' to remove the runaways from classical electro-
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dynamics. We maintain without change the original
Heisenberg equations of motion, but modify the
commutation rules by removing from them the contri-
bution from the runaway modes. From Eqs. (3), (4),
and (8), we see that a typical member of the new set
of truncated commutators is

[y, (x,t),~, (x', t)]
=ib, ,P(x—x') —P.' [f., (x)g ., (x')

—f='(x)g- (x')]~-t'I -I, (36)

where the primed sum extends only over the runaway
modes. Similar expressions apply for the other commu-
tators. In particular, we note that [Q, (x,t),Q, (x', t)j,
etc., no longer in general vanish.

For the pair theory, ' Eq. (36) becomes

[y(x,t), ir (x', t) g = iP (x—x') —ip (x)p (x'), (37)

and, for the oscillator theory, ' '
[A, (x,t),w, (x', t))= i5;,[P(x—x') —h(x)h(x') j. (38)

The truncated comrnutators, together with the old
equations of motion, have for a solution the sensible
part of the dynamical variables only, so the theory
modified in this manner is indeed free from runaways.

Many of the properties of the canonical commutators
are not shared by the truncated commutators. For
example, it is not true that they determine the dynami-
cal variables to within a unitary transformation; for,
if they did, we could apply unaltered the arguments of
theorem (b) of Sec. II to show that the solution must
contain a runaway. This means that the modified theory
is not yet completely defined —to any solution we may
add an arbitrary c-number runaway and obtain a new
solution, not unitarily equivalent;

To remove this ambiguity, we must add to the theory
an asymptotic condition that suppresses the runaways.
The modified theory of the first kind is then completely
defined by (1) the original Heisenberg equations of
motion, (2) the truncated commutators, and (3) an
asymptotic condition —that the matrix elements of the
dynamical variables do not increase exponentially in
the far past or future.

In many cases, as a consequence of the equations of
motion, the sensible parts of the dynamical variables
are asymptotic in the far past to a set of free dynamical
variables, the "in" operators. The "in" operators obey
the free equations of motion and the canonical commu-
tators; since they are functions of the sensible parts
only, removal of the runaways does not alter this.
Both our examples have this property. In this case, we
may substitute for (2) and (3) above:

(2') An asymptotic condition on the past —that the
dynamical variables are asymptotic in the past to a
set of "in" operators that obey the canonical
commutators.

(3') An asymptotic condition on the future —that
the matrix elements of the dynamical variables do not
increase exponentially in the far future.

j=~—p p~d'x,

w= (V p')y gop
—pyd'x—~o2p pyd—'x. (39)

From these relations, together with Eqs. (21) and (22),
we deduce

ppd'x= pi'rd'x= 0. (40)

Hence,

(41)

are constant c numbers. With these definitions, the
general solution to the field Eqs. (39) is

(42)

where P' is given in Eq. (15).As mentioned, the former
runaways are here constant c-number functions with
arbitrary coefhcients.

C. Modi6cation of the Third Kind

In this scheme we add an additional term to the
Hamiltonian while retaining the canonical commutators.
If this additional term involves only the runaway
operators, it cannot interfere with the propagation of
the sensible parts of the dynamical variables. If it is
chosen such that the part of the Hamiltonian involving
the 0's becomes positive definite, it must suppress the

B. Modi6cation of the Second Kind

In this scheme we retain the original Hamiltonian
(that is, the form of the Hamiltonian as a function of
the dynamical variables) instead of the original equa-
tions of motion. The modified theory of the second kind
is defined by (1) the original Hamiltonian function and
(2) the truncated commutators. The field equations
then assume a different form than in the original theory,
but they still admit the sensible parts of the dynamical
variables as solutions. The Hamiltonian is now positive
definite to within a c number, so this method does
indeed remove the runaways. Since this theory uses
the truncated commutators, it shares the ambiguity of
the modified theory of the first kind, and a subsidiary
condition is required to remove it. However, in this
case, the lack of uniqueness is only to the addition of a
time-independent c-number function.

We will work out the actual equations in the case of
the pair theory. Applying the truncated commutators
(37) to the Hamiltonian (11),we find, after considerable
operator algebra,
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runaways. It is clear there are many ways to add such
terms; in order to preserve the linearity of our models
we add quadratic terms only. In particular, we consider
a change in the Hamiltonian of the form II —+ II+III,
where

8II=XP ' i(u. t(0 0 t+0 .0 .t). (43)

If )&—'„ the part of the Hamiltonian associated with
each ~~

~

is a positive definite quadratic form; the
new theory is without runaways.

In the oscillator model,

Qo 2

III=XC' p —— kAd'x
c

Er 1 2-

+ +— bird'x . (44)
uo

Note that the additional terms only involve the fields
close to the particle, with a characteristic distance of
the classical electron radius. At first glance, it might
appear surprising that we are able to remove such a
grossly macroscopic phenomenon as the runaway by an
alteration of the Hamiltonian at small distances.
Actually, the macroscopic character of the runaway
is illusory. At any 6xed time, the runaway has the
spatial dependence of a Yukawa function, is always
concentrated strongly about the electron position.
(This is also true in such non-linear theories as classical
electron theory. ) Thus, from a Hamiltonian viewpoint,
the runaway is always a microscopic phenomenon.

Since this theory uses the canonical commutators, it
does not share the ambiguities of theories with trun-
cated commutators. However, there is a new dif6culty.
The former runaways have become true oscillators,
"tremblings of the field in the neighborhood of the
particle, " "internal electron degrees of freedom. " In
order to specify a motion, we need not only specify the
"in" operators, but also the state of the 0, the internal
state of the particle. Because the internal state does not
influence the scattering, (the 0 do not appear in the
5 matrix), this is not a serious problem. However, we

can always consider the limit of the theory as ) goes to
in6nity. In this case the tremblings of the 6eld becoming
increasingly rapid, and the 6rst excited state of the
internal oscillator becomes increasingly removed from
its ground state. In the limit, the electron must be in its
internal ground state for any process taking place at
6nite energy.

V. THE EXTERNAL FORCE

A great deal of insight into the structure of a physical
system may be gained by studying its response to an
external force. In this section, we describe the response
of the oscillator model to a delta-function impulse
applied at 1=0, in the original theory and in the three
modi6ed theories. We can split the solution into a
q-number solution of the homogeneous equations of
motion and a c-number solution of the inhomogeneous

equations with c-number force. This split is not unique;
we choose to do it in such a way that the c-number so-
lution vanishes in the remote past. (Retarded response. )

In the original theory and in the modified theories of
the second and third kind, the force may be introduced
by adding an additional term ei r5(t) to the Hamil-
tonian. The modified theory of the 6rst kind is not
formulated in terms of a Hamiltonian; therefore we
introduce a force by adding a term eiB(t) to the third
of Eqs. (26).

We characterize the response by giving the c-number
part of the x component of the electron velocity as a
function of time. For simplicity, we set the spring
constant equal to zero and the cuto6 equal to a delta
function. The characteristic frequency of the system,
eo, is then simply m/t,".

The calculations are uninstructive and of much the
same kind as those done earlier. We omit them and
merely give the results.

A. Original Theory

@=0, t&0
= (1—e o')/m, t&0.

The external force induces a runaway.

B. Modified Theory of the First Kind

n =e""/m, t(0
=1/m, t&0. (46)

This is the acausal response 6rst noticed by Dirac in
classical electron theory. This quantum theory has an
unusual property: there is no Hamiltonian. That is to
say, there is no unitary operator connecting the dynami-
cal variables at different times; they belong to in-
equivalent representations of the truncated commu-
tators. However, although there is no U matrix, there
is still an 5 matrix. Thus we may say that although
there is no conservation of probability over short
times, in the long run, probability is conserved.

D. Modified Theory of the Third Kind

v=0, 1&0

(1—e ") sinLuot (4X'—1)i]

m ~(e.'—1)-:
t&0,

C. Modified Theory of the Second Kind

The propagation of the system for times less than
zero must be determined by the Hamiltonian for that
time, which is the free Hamiltonian. Thus the response
here cannot show the acausality displayed by the
theory of the first kind.

v=0, 3&0
= (1—e-"o')/m, t& 0.
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As 'A goes to infinity, this becomes the response of the
theory of the second kind, in this sense the limit of the
theory of the third kind. It is easy to see that this is
also true for more general perturbations than a c-

number force. The entities which enter into the pertur-
bation formula for the 5 matrix, for example, are
quantities like T(A(x, t),A(x', t')). If the perturbation
is slowly varying over times of order (nod) ', we may
replace such expressions by their averages over such
times. When we do this, the contribution from the
rapidly varying former runaway parts vanishes, and
all that remains is the contribution from the sensible
parts of the dynamical variables. That is to say, for
high X, the Green's functions may be replaced by the
Green's functions for the modified theory of the second
kind; therefore the response must approach the response
of the modified theory of the second kind.

VI. DISCUSSION

We have found three different methods that succeed
in removing the runaways from linear 6eld theories
while retaining their desirable features. The three kinds
of modified theories produced by these methods are all

acausal; however, they are acausal in slightly different
senses. One de6nition of the word causal, and the one
used most often in classical physics, is that the system
responds to an external force only after the force is
turned on. Only the modified theory of the first kind
is acausal in this sense. Another definition is that the
commutators for separate spatial points vanish at equal
times (microcausality). The modified theories of the
first and second kind are acausal in this sense. Another
de6nition is that the analytic continuation of the
scattering amplitude has no poles in the upper half
plane. All three kinds of modified theory are acausal
in this sense.

It is interesting to speculate on the possibility of
extending these methods to more complicated models.
The first method is certainly the most elegant and
unambiguous. However, that it yields a consistent

theory is something of a miracle; we have no reason
for believing that this will always occur—it just
happens to work for linear theories. If it works for
more complicated models it must be because of some
general principle which we do not now know, and which
might be of considerable importance.

Our third method of modification, on the other
hand, can certainly always be extended. We can always
do something to the Hamiltonian that will remove the
runaways. Here the interesting question is a quanti-
tative one: how little damage can we do to the other
features of the theory while removing the runaways'
For linear theories we can escape with essentially no
damage. Again, we would be surprised if this were
the case for more complicated models.

With regard to the second method, the primary
question is a more primitive one. We do not have any
idea on how to extend this method. Certainly trying all
possible noncanonical commutators does not seem to be
a fruitful approach. Perhaps the remarks in the last
paragraph of Sec. V offer some clues, but the method
they suggest seems diS.cult and indirect.

In conclusion, we emphasize that the problem that
motivates this inquiry is still unsolved. We do not
know if runaways (or, indeed, any of the pathological
conditions which are observed in model theories) occur
in realistic field theories such as quantum electro-
dynamics. Their occurrence in simple models may be an
indication of their general occurrence. If runaways are
present in realistic field theories, they are a symptom
of the inadequacy of the physical ideas on which these
theories are founded. A study of how to remove the
runaways without altering the low-energy behavior of
the theory may lead to an understanding of the missing
physics.
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