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for the original set, by examining the signs of the
principal minors of M.

The simplification of the present section is the
elimination of the requirement of orthonormality with
respect to p of the trial functions 4 „& and of the require-
ment that the C „,diagonalize (H E), a—nd the repla, ce-
ment by the simpler requirement on the signs of the
minors of the determinant. The two requirements
which were imposed in the problem of zero-energy
scattering' were completely analogous but with the
exception that p did not appear. It is however trivial,
proceeding along lines almost identical to those above.
to simplify the auxiliary conditions on the trial bound
state functions.

The fact that the results are entirely independent of

p suggests that p need never have been introduced,

and it is indeed simple enough to derive bounds rather
more directly than we have done by a derivation with

p set equal to a constant. The details are given in a set
of lectures" which also include the simplifications with
regard to the zero energy case that were noted above.

The simplification at zero energy, which in turn was
the starting point of the investigation of Sec. 4, is due
to T. F. O' Malley (unpublished), to whom we would
wish to express our thanks. The simplification at zero
energy was obtained independently by ohmura, " in a
slightly different form.

"L. Spruch, in Lectzves in Theoretical Physics, Boulder, 1061
[Interscience Publishers, Inc. , New York (to be published) 1,
Vol. 4. The portion of these lectures devoted to variational mini-
mum principles is basically a review of the present series of papers."T. Qhmura, Phys. Rev. 124, 130 (1961).
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The calculation of elastic photoproduction of x' mesons from deuterium, y+d ~ 7r'+d, is carried out in
the impulse approximation at photon energies around 500 Mev. The single nucleon photoproduction ampli-
tudes are taken from dispersion formulas and are corrected for kinematic effects due to internal momentum
of the nucleons in the deuteron. We include the D-state part of the deuteron wave function and use diferent
models with Yukawa type or repulsive core wave functions, We give formulas connecting the cross section
with the deuteron form factors. For small momentum transfers the formulas are of course model independent
and reduce to the usual ones. The presence of a 7'P& D state in a repulsive-core model leads to a cross section
which falls typically more slowly at high momentum transfers, e.g. , at a momentum transfer 2.74 f ', the
cross section is larger by about 40o/q than the cross section calculated in the absence of the D state. The
experimental points favor this model.

I. INTRODVCTION

'HIS work is a calculation of the elastic photo-
production of zro mesons from deuterium, y+d —+

zr'+d, at photon energies around 500 Mev. ' Chew and
Lewis' and Lax and Feshbach' erst calculated the cross
section for such a process in the impulse approximation.
De Wire et a/. 4 applied these results to analyze the
p+d —+zrs+d cross section at energies 250—300 Mev,
normalizing the theoretical formulas with the free-
nucleon photoproduction cross sections. A~lultiple scat-
tering corrections to the impulse approximation have
been considered by Chappelear' but the analyses so far
have taken the static limit of infinite nucleon mass.

* Supported in part by the U. S. Air Force through the OfFice of
Scientific Research.

f Present. address: Department of Physics, Stanford University,
Stanford, California.

' Experiment of J. Friedman and H. Kendall (to be published).' G. F. Chew and H. W. Lewis, Phys. Rev. 84, 779 (195l}.' M. Lax and H. Feshbach, Phys. Rev. 88, 509 (1952).
4 J. W. De Wire, A. Silverman, and B.Wolfe, Phys. Rev. 92, 520

(1953).' John Chappelear, Phys. Rev. 99, 254 (1955).

The present work can be described as follows: (1) As
a refinement in the calculation we put much effort into
maintaining relativistic covariance, at least on all
kinematic quantities. For this we borrowed the free-
nucleon dispersion formulas' and used them in the
deuteron case. Of course the nucleons in the deuterium
do not satisfy the free-particle energy-momentum rela-
tion p'+ztz'=-E'; this is a familiar limitation to impulse
approximation. (2) The transition matrix T will be a
function of the two kinematic invariants 5= (k+I')',
the "invariant total energy" of the photon+deuteron,
a,nd t= (k —q)' the momentum transfer:

2'= T(s,t).

k, I', and q are the photon, deuteron, and pion four-
momenta, respectively.

Now we want to relate T to the photoproduction from
single nucleons. Since the nucleons in the deuteron will
be distributed over the internal momentum p, we write

6 G. F. Chew, F. E. Low, M. L. Goldberger, and V. Nambu,
Phys. Rev. 106, 1345 (1957).
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in the impulse approximation

Td = O'P'P& (p) [Ti(s (p,S),t)+ T2 (s (p,S),t)$

X+d(p+-,'Q), (1.2)

where s refers to the one nucleon+photon "invariant.
energy, " and T& and T2 are the m' photoproduction
amplitudes from a free proton and neutron, respectively.
Only that part of T& and T2 contributes which connects
the spin triplet, isospin singlet initial deuteron ground
state to the final deuteron ground state again. [E.g., the
part of the T matrix proportional to g (see Chap. 3)
will not contribute in the p+d —+~'+d cross section.
Also the peripheral y —3x interaction, an isotopic scalar,
will not contribute either. ] So it was more convenient
to use the dispersion formulas instead of phenomological
spin-Qip and spin-nonQip amplitudes obtained from
photoproduction of neutral pions from free nucleons.

Pd(p) is the ground-state deuteron wave function (all
dependence besides p suppressed), and Q is the recoil
momentum of the deuteron; since the deuteron is heavy
we neglect its recoil kinetic energy and approximate
—t=Q'. However the correct kinematics is preserved
in the single-nucleon amplitudes.

If we integrate Eq. (1.2) over p we expect finally to
get

Tg Td(S',t)——
=[(Ti), (s(t,S),t)+(T~), (s(t,S),t)]Pq(Q), (1.3)

where (Ti), and (T~),„define averages over p for the
one-nucleon transitions, and Fd(Q) is the deuteron form
factor, defined in detail in Sec. IV. In this experiment
we are well above the meson nucleon resonance and the
transition amplitudes T, in their energy dependence, are
slowly varying functions of p. Since the deuteron wave
function is a much more rapidly varying function of p,
we can to a good approximation substitute for T in
Eq. (2.3) its average at p=0 and p+-,'Q=O where the
deuteron wave function has a sharp peak.

In principle, as a check on the impulse approximation
applied here, one can keep the momentum transfer to
the deuteron and hence the form factors constant and
vary the photon energy to reproduce the energy depend-
ence of the cross section predicted by the dispersion
formulas. '

Our primary interest in this paper is to see what can
be learned about the deuteron structure from these ex-
periments and to compare with other sources of infor-
mation, e.g. , elastic scattering of electrons from deu-
terium. Therefore we shall try to calculate T explicitly.

The procedure we adopt here is to apply' the predicted
momentum dependence of the single-nucleon dispersion
formulas to the deuteron case, in the impulse approxi-
mation Fig. 1, with the nucleons in the deuteron
distributed over the internal momentum p as indicated
in Eq. (1.2). We then use formula (1.3) which separates

F.rG. i. The impulse approximation diagram for the elastic photo-
production of ~ from deuterium, y+d —+ m +d.

the deuteron structure form factors from the rest of the
T matrix to analyze the experimentally observed

~
Q~

dependence in terms of the deuteron structure.
We consider various percentages of D-state admixture

in the ground-state wave function in different deuteron
models, in order to test the sensitivity of the predicted
cross sections to these parameters. We limit ourselves to
nonrelativistic models obtained from static potentials
which treat the nucleons with 2-component wave func-
tions with Pauli spins. Since the meson Geld couples
strongly with the nucleon spin, the presence of the spin-
orbit tensor operator in the D state might show up D-
state effects strongly. Ke find this to be the case so that
this experiment provides a sensitive probe to the D
state.

This calculation is of course limited by uncertainties
of pion interaction amplitudes and the impulse ap-
proximation. For neutral pion photoproduction, how-

ever, the dispersion formula prediction agrees quite well
with experiment in the energy region considered here,
which is in our favor.

The results of the calculation are summarized as
follows: (1) The agreement of the cross sections with
the experimental points measured by Friedman and
spendall' is improved considerably by the care in treating
the kinematics for X~=500 Mev. As mentioned earlier,
in the coherent m' photoproduction, only that part of
the T matrix contributes which connects the spin
triplet and isotopic singlet deuteron states. Thus, in the
energy region of this experiment, one calculates a cross
section 15—

20%%uo smaller than that obtained by applying
an impulse approximation with free proton-neutron
cross sections.

The operation of averaging T over the internal mo-
mentum p has a small effect here since we are well above
the resonance. The improvement over just taking p=0
is not very important, the cross section being decreased
about 20%%uo for the highest momentum transfer. As a
function of the momentum transfer this correction has
the shape desired to fit the experimental points but is
too small an effect to explain the observed slope without
inclusion of D-state contributions. (2) When we include
some D state in the deuteron wg, ve function the form
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TABLE I. Numerical values of the various quantities are calculated for the kinematics of Friedman and Kendall s experiment. The
average is taken between p=0 and p= —Q/2, where p is the relative momentum of the nucleons in the deuteron and Q the deuteron
momentum transfer. (The phase shifts needed in evaluating the spin-flip and spin-nonfhp amplitudes

I
K&+& I, L&+& are functions of the

total energy of the pion+one nucleon in their own c.m. system. Therefore phase shifts are averaged for the two energies corresponding to
p= 0 and p = —Q/2). cosv —= (I K&+& Q/Q I/ I

K'+'
I ),». Because of inherent ambiguities in this calculation only the leading decimal figures

have significance. '

lab
Mev

c.m.
Mev

Photon energy
Deuteron

recoil
(3 IK"' I'

+IL"'I')- (IK'"I')-
(10 ' cm') (10 ' cm') 2 cos ')&' —3 P 2

Repulsive core model 7% D state
Effective

form factor
do./dn,

do/dt&, (-'I K&+& I'
Fms (IO Bo cm') +IL&+& I'),

Apparent
increase
in form
factor
due to
D state

456
516
542
468
508
514
508
491
482
473
470

3748
414
431
383
409
413
409
398
391
385
383

1.748
1.74
1.74
1.943
1.948
1.942
1.942
2.16
2.355
2.555
2.74

22.7
12.8
6.7

23.7
14.0
12.5
14.1
19.6
21.3
23.6
23.6

12.2
8.7
4.3

11.02
6.99
6.38
7.07
7.52
7.50
6.63
5.50

0.613
0.557
0.549
0.61.7
0.605
0.601
0.641
0.621
0.605
0.725
0.381

0.092
0.108
0.108
0.065
0.065
0.065
0.065
0.045
0.031
0.020
0,014

0.005
0.005
0.005
0.0055
0.0055
0.0055
0.0055
0.0059
0.006
0.0059
0.0058

2.09
1.39
0.79
1.61
0.965
0.85
0.97
0.97
0.76
0.6
0.57

0.101
0.101
0.101
0.068
0.068
0.068
0.068
0.05
0.036
0.026
0.003

1'Fo
1%
1 Fo

&'/o

5'
10'
18
300/&

42 jo

' The phase shifts were taken from the Proceedings of the Ninth Annual Conference on High-Fnergy Physics, Kiev, 1959 (to be published). See report
on pion-nucleon scattering, B. Pontecorvo, rapporteur, p. 30.

factors are modified. For Yukawa-type models the small
percentage of 3—4% D state required to fit other low-

energy parameters does not lead to any significant
modifications and the situation can be equivalently
described with a pure s-wave ground state appro-
priately normalized, as usual. A repulsive core, however,
with a 7% D state brings the new terms forward. In
addition to a high percentage of D state, the effect is
here particularly enhanced, since for the repulsive core
model the s-wave form factor Fo falls much more
rapidly than Ii2, ~ and the new terms which are pro-
portional to F&' acquire importance. Thus, for example,
for momentum transfers of 2.74(f '), our highest recoil
point, the new terms contribute 40% and increase with
higher Q. (See Table I.) For small momentum transfers
the new terms vanish and the different models give
identical results.

The cross section predicted in the repulsive core model
with a 7% D state seems to reproduce quite well the
characteristic slope (Fig. 2) of the experimental form
factors. It was this curving of the form factors, in fact,
which stimulated the present calculation.

We do not make an effort to correct for multiple
scattering. From Chappelear's work, 5 which takes into
account on the energy shell contributions to multiple
scattering only, it seems that the percentage corrections
are angle independent, and thus Q independent, and
will not affect the slope of the form factor. Rough
extrapolation from Chappelear's work improves the ex-
perimental 6t of the magnitude of the cross section with
the repulsive core model.

From this work we conclude that the present experi-
ment favors strongly a repulsive-core wave function

J. A. McIntyre and S. Dhar, Phys. Rev. 106, .1074 (1957).

with a correspondingly appreciable D-state admixture
in a static deuteron model.

ur Tn, , (2.1)
(4s& e;o&i&t&&) '

Here p; and pr are the initial and final nucleon 4-

momenta, e;, e~ are the nucleon energies, m is the
nucleon mass, k the photon, and q the meson 4-momenta,
and or~, or, are their energies. u~ and n; are nucleon
spinors and nyTu; the transition matrix, which is a
function of s= (k+p;)', the invariant "total energy"
squared, and I = (P r—P;)', the recoil momentum squared.
With the above S matrix, we obtain in the c.m. (center-
of-mass) system the cross section

g
d&(y+¹7r+N) dQq

(4ir)' e,ego&s (1+&/e;) (1+o&,/er)

1 '(Tt'q
-dQ„

(4&r)' w'
(2.2)

where m is the total energy in the c.m. system. Let us
now come to photoproduction from deuterium. We
chose the deuteron+photon c.m. system. To transform
from the one-nucleon+photon c.m. system, in which the

II. CROSS SECTION

We use units S=c=p,=1 where p is the pion mass. To
follow the notation of reference 6 we give the S matrix
for free-nucleon photoproduction of a x meson in the
form
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FIG. 2. The deuteron form
factors together with the ex-
perimental data are plotted
as functions of the deuteron
momentum transfer Q. We
plot the effective form fac-
tor (F4),fi(Q), only for the
repulsive core model. For
the Yukawa 1 and Yukawa
2 models, in this range of
Q, (Po), f f (Q), practically co-
incides with the correspond
inR F4(Q).
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dispersion formulas are written, to the deuteron+ photon
c.m. system, a Galilean transformation is sufficient since
the velocities are small. In the deuteron+photon c.m.
system corresponding to (2.2) we must have

III. THE MATRIX ELEMENT

The single-nucleon pion photoproduction amplitude, '
decomposed in angular momentum projections (con-
stant momentum transfer t) in the c.m. system, is given
in terms of S:

(fl rli), ,„=(m/z, z)urTu, , (3.1)

m' 5&";I g q—
l
Tdl' —dn„

(4zr)z (4;er). W'
(2.3)

where 8' is the total energy in the c.m. system. P is to
be inserted between Pauli spinors for the initial and final
nucleons in that c.m. system. Explicitly, '

where Pz=k/E; is the velocity of the initial deuteron,
E;, L&'~ are the initial and 6nal deuteron energies, co„q
are the energy and momentum of the pion, t/I/' the total
c.m. energy, and coI, is the photon energy; all quantities
refer to the deuteron+photon c.m. system. The normal-
ization factor zzz'/e;er is introduced to preserve formal
covariance of

l Tl in (2.1) since (2.2) and (2.3) will be
connected through impulse approximation, i.e., Tq= TI
+Tz is the sum of the photoproduction amplitudes from
nucleons 1 and 2. e; is the single-nucleon initial energy
as in (2.2), and er is the corresponding final energy of the
same one nucleon.

(e,er), with all other quantities is averaged over the
internal momentum p at p=0 and p= —2z Q as stated in
the introduction. Because of slow variation it is ade-
quate here to take (4), =e(p=0). We have not yet
specified the transition matrix

l
Tzl', which implicitly

contains form factors, isotopic spin sums, and kinematic
quantities from the nucleon's internal motion. We
proceed to calculate

l
Td l' in the following section.

where Fi, Fz, Fz, F4 are functions of s and t (energy and
angle in the c.m. system). Expressed in terms of E,
the differential cross section do~7+A +~~, (2.2), for
y+1V —+ 1V+zr is written

1
drr(v+& +A'& =

(4zr)'
(3.3)

The matrix element (zr, qlPqly, 1t) for the coherent
photoproduction of a pion from deuterium will have the
form

where Pd is the deuteron wave function with its spin

5'=ie eFi+e qe k)(e-
lk

Fg E4
+ze kq e—+ie qq e—, (3.2)

qk g'
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indices etc. suppressed, and Q=k —q is the deuteron
recoil.

The single-nucleon pion photoproduction amplitudes
F(2,2) (1, 2 are labels for nucleons 1, 2 here) would in
general depend on r, V', o, ~. In impulse approximation
Fi & will be replaced by the free nucleon operators (3.1)
and average F between inner momentum y=0 and
p= —Q/2 as mentioned in the introduction.

is further decomposed into isospin projection
operators

= 5:(+) p( (+)y 5:(—) y (—)+e3:(0) &) (o)

where

a.(+)= ', pv. ,r-37+=8.3,
S(-)=-,'I r.,r,7, u. (') = r.. (3.6)

e is the isotopic index for the x to be produced. In this
case, photoproducing x', +=3, 83' )=0, 83'+'=1. 8"'
will not contribute since the deuteron is isosinglet.
Therefore

(2r', q~5:z~p&k)= d'r exp(iQ r/2)ed(r)

XLP "'+5 "')-7-= + ( ) (3 7)

For ready reference we give' 5(+) explicitly in Ap-
pendix A.

Because of the awkwardness of carrying along the
complete 5(+) expression, we shall substitute for P'+' the
familiar spin-Rip and spin-nonQip notation used in the
phenomenological description. We write

1—&d= K'+' (~i+~2)+ (I-i(+)+1-2(+))
4m

0'y EJ2—=(K.+K-)— +(L.+I--), (3 8)

with indicating that on the right-hand side we should
not include the 8' part since the ground state of deu-
terium is isotopic singlet.

In terms of Pd the differential cross section for the
elastic photoproduction of m' from deuterium will be

Ei'Ef g
d«,+. .+„——

~

~.(+)
~)

dn„(-3.9)
(42r)' e;e). „. W' k

where w is the total energy of the one nucleon+pion in
their own c.m. system. e, , cr are initial and final energies
of the same one nucleon. The quantity in square brackets
is practically equal to 1. Therefore

1 g'

~ (+~-+~)—-
(42)-)' k

(3.10)

Numerical values of the quantities (averaged) are
tabulated in Table I.

where (1—2)2)&gu(r)/r7x2 is the s wave part, (2)/+8)
XLw(r)/r7S)2(r))t2 the D wave part, S-)2(r) =3ai re2 r
—o~ e2 the familiar tensor operator, y~ the triplet spin
state, and g' is the D-state percentage explicitly as a
parameter. Using this wave function and averaging over
unpolarized incident deuterons, and summing over all
final spin states, we have the trace

IV. FORM FACTORS AND SPIN SUMS: NOTATION

We represent the static deuteron wave function in the
form

1 — u(r) rl u)(r)
g(r) ='(1—2)2)l + — S)2(r) x„(4.1)

(4 )i r +8 r

average—p ~rd~'=-;Tr
initial

d'r u (r) 2) i( (r)—exp(&'Q r/2) (2 —e')& + —S,,(r'))[K&+& (,+,)+(E,&e&+A &e&))

4~ r +8 r

u(r) 2) vr(r) 3+(r, a, d'r'
X (1—2)')

* +
r +8 r 4 4

u(r') 21 w (r')
exp( &Q r')/2((2 —e')-' — + S„(r'))

r' +8 r'

u (r') 2) w (r') 3+(ri (r2
X(2«e&* ( + )+(We&"'+L &e&"))((2—e')' + (4 2)

r' +8 r' 4

where (3+(ri a2)/4 is the spin triplet projection opera-
tor. To calculat. e the above trace we find it convenient to
introduce the following notation. We define

f(r) g(r)
„(Q)—=— exp(iQ r/2)- d'r

r r

where jo(x) = (sinx)/x is the zero-order spherical Bessel
function. For f=g(r), Ilier(q) defines the form factor
Fo(q), of the s-wave function (42r) '*f(r)/r Also, through.
the identity

f(r) g(r),
exp (iQ r/2)S„(r) — d'r

jo(Qr/2)fg«, (4 3) = —47rS) 2 (Q/Q) j 2 (Qr/2) fgdr (4.4)
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we shall use the de6nition F2(q) is defined by

where

Gr, (Q) = j2(Qr/2) f(r)g(r)dr,

3 d sinx) sinx
j~(x)= --—

xdx x ) x

(4.5)
f

F2(Q)= 2w'I u' — w' lj2(Qr/2)dr. (4.7)
o

In our notation, u'= (1—vP)'I, w'=i&w,

F2(Q) = 2~(1—~') 'G-(Q)
—(./~2)G..(Q)=(2.—./~2)G... (48)

1 n'(r) 1 w'

+ —& &t'&)x,
(kr)l +8 r

(4.6)

is the spherical Bessel function of second order. Gr, (q)
is related to what is called Ii2 in the deuteron wave
functions. ~ Kith a deuteron wave function written there
in the form

where the approximation in (4.8) is good since e is going
to be a small number and also j&(qr) keeps n and w

away from the central region where they are different.
Since the formulas are rather lengthy (on account of

the tensor operator) we will give here only the final

result.

«~/dfl)&v+d-+~&=C3IK'+'I'+IL'+'I'7C(1 —~')F '+n'F '7+CSIK'+'I'+IL'+'I'7C4~'(1 —~')G '+4~'G- '7
—C2 I

K&+& 0/Q I' ——,
'

I
K&+&

I
'7Cv2r&(1 rP) ~F.—„G„„—'g'(1 r-P)F —G

+g'(1 —g') G '+4v2g'(1 —g'):F„G —-,'v2g'(1 —
vP) 'G„„G„

'r&4F —G -+-'»4G '7 —43W2q'(1 —rP) i
I

K&+& I'G~„G„„, (4.9)

where for completeness we give all terms irrespective of
their importance. We shall express formula (4.9) in

familiar quantities and in doing so give it in a much
simpler form. The first of the four terms in formula (4.9)
is nothing else but the usual C-',

I

K&+& I'+
I

L&+&
I
'7FO'(Q)

The three latter are our new terms. Their importance
is a function of the D-state percentage q', and of

Q. They come from the mixing of s and D states,
through the transition matrix Cexcept the negligible
~r&'G „(F —4G„„') which obviously involves only D
state), and vanish for a pure s-state deuteron wave

function. Since all correction terms contain G they

vanish for zero recoil and (do./dQ, )(Q —+0) =-,'IE&+& I'
+ I

L'+' I' as it should, since at zero recoil we see only a
point, deuteron. As Q increases, first, the linear term in

G would tend to make the correction negative, and the
positive term proportional to G' would dominate very
soon as Q increases. Since for small Q the new terms

tend to be very smaH, actually we do not expect to see

the negative term at all. To further simplify (4.9) we

shall replace G„„by G„„in the small terms (also F„„
with F„)and leave out higher order terms. The cross

section then takes the form

d~/«, = Cl I

K'+' I'+ IL'+' I'7CFo'+4m'(1 Sn') G-—-'7 —L2IK'+'~/Q I' —l IK'+'I'7

X (C&2»(1—ip)-*' ——,'v2(1 —vp)+4/( —vp)' ——,'v"&pjF .G. +»'C(1 —rp) —-,'v2g(1 —&p)l+3&pjG„')
—lan'IK"' I'G-'—=L3 IK"' I'+ IL'" I'7CFo'+4~'G-'7 —C2 I

K"'&/Q I' —3 IK"' I'7

XC&2»(1 —-',v2)F„„G +rPG '7 —-4v2g'I K&+& I'G ' (4.10)

The formula (4.10) gives the differential cross section for photoproduction of neutral pions from deuterium with

the percentage g' of D state in the ground-state deuteron wave function, explicitly as a parameter. To compare

diferent models we introduce numerical values.
For Yukawa model 1, I'i (reference 7), with vP= 0.03 D-state admixture, formula (4.10) gives

(d~/dna) &v+~-'+~& =L3 I
K'+'I'+ IL'+' I'7CFO'+0 12G '7L2I K'+' &/Q I' —-'IK'+' I'7

XC0.08FOG,.+0.03G '7—0 01
I

K'+' I'G„'
For Yukawa model 2, V2, the formula becomes

(d /'do, ,)„+„„+.& C3 I
K'+'I + II &+&

I 7CF, +0.1——6G„„7—C2IK'+'&/Q
X C0.098FOG „+0.046G„„'7—0.015

I

K'+'
I
'G„„'.

Replacing the form factor G„ in (4.11) and (4.12) by the more familiar F2 through formula (4.8), we put the above
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formulas in the alternative forms.

(d~/«. )(.+~-"+~&=L3IK'+'I'+ lL'+'I'jLF '+o 87F '3—L2IK'+'&/QI"-—3IK'+'I'j
&(I 0.216F,FO+0.22F~'j —0.7I K(+& I'F2', (4.11a)

(d~/«. )( +~-'+d& =
I 3 IK'+' I'+ IL'+' I'jLFo'+1 5F2'j—I:2 I

K'+'~/Q I'—3 IK'+' I'j
x L0.3F2F(&+-0.43F2'j —0.14

I
K(+&

I
'F2' (4.12a)

where according to (4.8) we have put G„„3.08F2 for the I'i model and C„„~2.7F2 for the I'2. For both previous
models F~ and Y2, the new terms are numerically small. Thus for the highest momentum transfers considered here
(2.7 f ) they contribute less than 10%, and for all practical purposes the cross section is well approximated in the
usual formula

(4.13)

derived for purely s-wave ground-state deuteron wave functions.
We come now to the interesting case of the repulsive core potential with the accompanying higher percentage

of D state. In the model considered here with a 7% D state the cross section becomes

«~/did. )(v+d-+~&=La IK'+' I'+
I

L'+' I'jl Fo'+1 2F~'3 —
I 2I K'+'&/Q I' —-'IK'+' I'3

X I
0.64F„~Fa+0.24F2'$ —0.14

I
K'+&

I

'I'22. (4.13a)

The larger percentage of D state here increases the new
terms substantially: Compare (4.13) with (4.11) and
(4.12). At the same time Fo(Q), the s-wave form factor
in the repulsive core model as seen in Fig. 1, falls more
rapidly at high momentum transfers and the relative
importance of the new terms is further enhanced at
high Q.

The new terms contribute as much as 40% of the
cross section for our highest momentum transfers and
the form factors with or without the D state show quite
different behavior as we will see in the following section.

V. EFFECTIVE 8-WAVE FORM FACTOR
COMPARISON WITH EXPERIMENT

To compare with experiment one finds it convenient
to define an "effective s-wave" form factor (Fo).n(Q),

(Fo) «= (d~/«. )/(l I

K'+'
I

'+
I

L(+&
I
')

and compare with

(d~/«. )-./(3 I

K"'
I

'+
I

~("I')

where (do/dQ), „, is the experimental y+d —+z'+d
cross section. Calculated quantities have been tabulated
in Table I. In this table 2

I

K(+& Q/Q I' ——,
'

I

K(+& I' is ex-
pressed in the form (2 cos'y ——,) I

K'+& I'. Explicit calcu-
lations of cosy, IK(+'I', IL(+& I', and other kinematic
quantities have been omitted as too lengthy and awk-
ward to present here.

Figure 1 shows some of the form factors plotted as
functions of the deuteron momentum transfer. The
scale is logarithmic. Curves j. and 2 refer to the two
Yukawa models. 7 Curve 3 shows F(&(Q) for the repulsive
core model. Because of the repulsive core it falls faster
at high Q. Curve 4 shows the effective form factor we
calculate in this repulsive core model, including the 7%
D state. The change of the curvature of the effective
form factor as a function of Q in the various models is

sharply distinct. The curvature even changes sign.

Thus, while for the s-wave part of the repulsive-core
model as well as in Fi and F'2 (which for practical
purposes behave as pure s waves) the curvature is
always downwards, for the repulsive core model 4 the
curvature of the effective form factor changes sign.
Curve 5 contains the experimental points.

We observe a characteristic similarity between curves
4 and 5. A few more points for higher Q's would be very
interesting here. We are already in the region where the
form factors change rapidly.

The experimental points lie below our curves. This is
attributed to the fact that our calculation is in impulse
approximation; the actual cross sections are smaller due
to multiple scattering. In this paper however, more
attention is given to the slope of the form factors rather
than to absolute values.

We think that this experiment is in favor of the re-
pulsive core picture with an appreciable percentage of
D-state admixture. Perhaps with more refinement of the
theory as to potential, multiple scattering corrections,
and relativistic effects, one might be able to decide
between models. We need not stress the importance of
this not only for the deuteron itself but also to other
investigations, e.g. , study of the neutron structure,
since the deuteron overs a natural target for neutrons.

We remark also that this experiment is formally re-
lated to Compton scattering from deuterium. A com-
parison is worthwhile though at present our knowledge
of Compton scattering from single nucleons and deu-
terium is not good enough to permit drawing con-
clusions.
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'|A'e give here the full expression for 5&+', taken from reference 6:
5&+&/ef =ia a[23i (b;s 6—;e)FB+(uN&+&]+ia aq k[—l&h&+ ' ——',ie""sin&&zz(F q

—-', F»z)]
+i&r kq a[l&h&+ ' ——,'ie"'" sin&&zz(Fo+-', F~)7+q. (kXa)

&(Ph&++&+ (4/9)ie "» sin)I&zzFzz]+i&r qq a(1/2mcu), (A.1)

where

h&++' = —', (h»+2h&z+2hz&+4hzz))

h&+ ' = -', (h» —h&z+2h, &
—2hzz))

hr) (e'")——sinbz))/q',

3 1 'P 1
E~'o 1—————1+ ln —=

aP 4&)' 2&) 1+a

F~—— 1 1n

co= Total c.m. energy —zzz= (2zzzk&, b+mz) l —z&z,

a=g/co„ the c.m. velocity of the pion,

X= (gp g„)/4z&zf') —e'/4&r = 1/137, f'/4zr = 008.

A detailed discussion of the physical interpretation of
the various terms, in terms of electric and magnetic
multipoles and the pion-nucleon phase shifts, is given in
reference 4. In the s-wave spin Qip term the term pro-
portional to the difference of the small s-wave phase
shifts (&&I.

—I&;,) results from charge exchange. Charge
exchange also gives rise to the terms involving Fg, Ii~.
The following two spin-Qip terms are mainly M1 and
I.2. The third term, spin-nonQip, is mainly M1. The
term i&r qq a(1/2nuu) accounts for nuclear recoil.

CALCULATION OF THE SPIN-FLIP ~K&+&~' AND
SPIN-NONFLIP iL&+& i' AMPLITUDES

In the evaluation of the cross section we shall need

~

K'+'
~

' and
~

L +'
~

'. In order to simplify the calculation,
in squaring the amplitude S&+& (A.1) we shall keep only
the terms which lead in magnitude plus terms from
interference of large and small amplitudes when ap-
preciable. Thus we obtain

e2 f2 4A.

~

L«»&+& ~'= ——
~ q kX a ~' — [sin'&&zz+sin&&zz cos5zz sin(2&&z&)],

4x 4x 3g

g2 2

~

K+
~

———(q k) —[4 sin&&zz(sin&&zz —sin&&&z —sln6&&)7
4x 4x 3g

+(8/3)(k q) FB()I-;e—&,*e) sin'8z +[3()I;e—)I-,*e)Fe]'
3g

(A.2)

+k'(q a)' 4 sin8$3(sinlzz —sin8&, —sinb»)+ (4/9) (Fo+F»z)' sin'&&„.3

3g

+ (8/3) (Fq+ ',F3r) sin')Izz (sin&&»+-sin&»z)
3g

The phase shifts are to be calculated from the energy in the ~' one-nucleon c.m. system and q is the momentum of
the zro in the one-nucleon +m' c.m. system. Numerical values of the quantities (averaged) are tabulated in Table I.


