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Low-Energy Scattering of a Charged Particle by a Neutral Polarizable System*
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In the scattering of a particle (or system) of charge Ze by a neutral system with an electrical polarizability
n, an electric dipole moment is induced which generates an effective potential that behaves asymptotically
as —2g2e2~/r . Due to this effective long-range interaction, effective-range theory in its normal form is not
applicable. Thus, for the scattering of a particle with an incident orbital angular momentum of zero, for
example, the expansion of k cotv(0) includes terms in k and in k Ink, in addition to the usual constant and

terms. The effective range ro as normally defined is infinite, but one can define a quantity r~o which
explicitly takes into account the long-range character of the effective potential. For L)0 it is k' coty(l.)
which approaches a constant as k approaches zero rather than ksz+' coty(I) as for a short-range potential.
The above results can have serious consequences in the scattering of electrons and of positrons by neutral
spherically symmetric atoms. Some detailed consideration is given to the scattering by hydrogen atoms.
The formulation of effective-range theory which is given is valid when Pauli exchange between the two
colliding systems is possible. The method used for taking into account the eifect of the Pauli principle (this
method would be the same for long-range and short-range forces) is rather more convenient than in the
usual presentation of effective range theory.

1. INTRODUCTION

FFECTIVE-range theory (ERT), which gives the
~ leading terms in the expansion of ksz+' cottf(1.) as

a power series in ks, where 4)(1.) is the phase shift for
angular momentum I, was originally developed' for the
analysis of nucleon-nucleon scattering. For 44-e or ep-
scattering, the potential is the short-range nuclear po-
tential; for p-p scattering, the potential is the short-
range nuclear potential plus the long-range Coulomb
potential, but the effects of the Coulomb field can be
accounted for explicitly, and once again the phase shift
that enters into eRective-range theory is that due to a
short-range potential, though the phase shift is meas-
ured relative to pure Coulomb scattering.

For the scattering of neutral particles by a compound
system which contains particles identical with the inci-
dent particle (neutrons on nuclei affords an example), '
the only new feature is that the Pauli principle enters
in a rather more complicated and significant way than
it does for 44-ts or for p-p scattering. This more com-
plicated case has been treated in the literature, but the
treatment has either been not quite correct or else' it
has been rather less simple than is possible, in that a
redundant element is introduced. This situation is
analyzed in Sec. 2.

A second and much more interesting feature enters
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in the development of an ERT, or rather of a modified
ERT, for the scattering of a charged particle (or system)
by a neutral polarizable' system. LThe Pauli principle
may not (positrons on atoms, for example) or may
(electrons on atoms, for example) be relevant here. ]
This feature is that at low energies, the domain of
interest for ERT, the target system develops a dipole
moment in the presence of the charged particle, so that
the interaction between the charged particle and the
target system has an asymptotic 1/r4 dependence. In
the presence of this long-range polarization potential
the usual KRT breaks down and one must develop a
modified ERT. It has been shown previously' ' that
ERT breaks down for scattering by an asymptotic
static central potential which vanishes as 1/r4 No such.
static central potentials are of much significance and the
case was studied primarily because an effective inter-
action whose dominant long-range term goes as 1/r4
arises in the scattering of a charged particle by a neutral
spherically symmetric atom. It is shown in Sec. 3 that
the modification of ERT previously introduced for the
central potential case is in fact valid for the scattering
of electrons or positrons by atoms, in the following
sense. In scattering by an atom, the 1/r4 term is only
the leading term in the effective long-range interaction.
There are other long-range interactions as well. To make
contact with the results for the static potential case as
treated in reference 6, it will sometimes be necessary to
arbitrarily neglect the other long-range interactions.

It should not be thought that the difhculty in making

4 The word "polarizability" is used in the literature in many
ways. In neutron-deuteron scattering, for example, one might
speak of the polarizability of the deuteron, polarizability and dis-
tortion being interchangable in this usage. In the present paper,
we reserve the word "polarizability" for electrical polarizability.

5L. Spruch, T. F. O' Malley, and L, Rosenberg, Phys. Rev.
Letters 5, 347 (1960).

6 T. F. O' Malley, L. Spruch, and L. Rosenberg, J. Math. Phys.
2, 491 (1961).The notation Eq. (I— ) will refer to equations
in this paper.
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contact arises because of the many-body character of
the scattering. Rather the point is simply that the
central potential considered' was assumed to vanish as
1/r4, with no other long-range components. To the
extent that a modified KRT can be obtained for the
central potential problem in which the long-range inter-
action is a specified sum of powers of 1/r, the form of
the modified ERT will be known for scattering by a
compound system for which the effective long-range
interaction is that same specified sum. Of course, the
determination of the actual numerical values of the
various coefficients will be much more complicated for
scattering by a compound system.

The restriction to just a 1/r4 term arose naturally in
our previous paper' from the mathematical approach.
The recognition that the mathematical solutions of the
Schrodinger equation in which the potential is equal to
a multipole of 1/r4 for all r is a known function, the
Mathieu function, reduces the problem of the develop-
ment of a modified ERT to the problem of finding the
various necessary expansions of the Mathieu function
in a treatise on that function. Were these expansions
not known, one would have to develop them. For a
potential with a number of long-range interactions, the
modified ERT can be readily obtained if one can de-
termine the similar but algebraically more complicated
expansion. There is every reason to believe that this
determination is possible, as evidenced by some pre-
liminary work in the development of the appropriate
asymptotic expansions by J.B.Keller and B.Levy. We
will not, however, use this more general approach in the
present paper.

In the scattering of a charged particle (or system) by
a charged polarizable system, the leading terms in the
long-range interaction will be the Coulomb 1/r term
and the polarization 1/r' term. Once again ERT in its
normal form, even as modified to include Coulomb
effects, will break down. In line with our previous dis-
cussion, it should be possible to determine the appro-
priate modified ERT, but we have not as yet attempted
to do so.

A very important example of long-range interactions
arises in the scattering of a neutral polarizable system
by a neutral polarizable system. For r large but not too
large, the dominant term is the 1/r' Van der Walls'
interaction, as a consequence of which ERT will have
to be modified for larger values of L. In spite of its con-
siderable interest, we will not consider this case.

We will always assume that the target system does
not have a permanent dipole moment. Relativistic and
magnetic effects will also be ignored, and the nucleus
will be taken to have an infinite mass relative to that of
an electron.

2. SHORT-RANGE POTENTIALS

A. Incident Paxticle Distinguishable

We begin by considering the simplest possible example
of the scattering of a particle by a compound system,

that for which the incident particle is distinguishable
from the particles in the target (which may or may not
be distinguishable from one another) and for which V',
the sum of the interactions between the incident par-
ticle and the target particles, is of short range. Here and
elsewhere it will be assumed that the incident energy
and the properties of the target and of the incident par-
ticle are such that (single-channel) elastic scattering is
the only possible process. (As usual, to the extent of the
validity of the approximation in which the electro-
magnetic interaction is turned off, we can include the
case for which there are bound states of the composite
system of the target plus the incident particle. )

The ground-state wave function Ii, the ground-state
energy E„and the Hamiltonian Ho of the target system
satisfy

(Ho-E,P'= 0. (2.1)

(Hp+ T,+V' E,)@p 0. — ——(2.3)

To simplify the discussion we restrict ourselves, in
Sec. 2, to the case where the relative orbital angular
momentum in the asymptotic region is zero, ~ and where
the total angular momentum J and its s projection J,
satisfy J=J,=I+S, with I and S representing the
spins of the target system and the incident particle,
respectively. The asymptotic forms of + and of 0'0 are
then given by

4' —& F „Xsi Lnk +q(re)]/Pq sinri(0)]=4'",
for q

—& eo, (2.4)

%s —+ FX„(1/q—1/A) =—4's", for q
—+ oo, (2.5)

where X„, is the spin function of the incident particle
and where it is here to be understood that Ii has I,=I.
The scattering length A is de6ned by Eq. (2.5). It will
shortly be seen that it of course satisfies the usual

' As we have previously observed (reference 6), ERT with short-
range potentials is simplest for the case of zero orbital angular
momentum, though the distinction disappears when 1/r' potentials
are introduced. Both of the above restrictions, to L=O and to
short-range potentials, will be dropped in Sec. 3.

Ii depends upon the space and spin coordinates of the
target particles. It has a specified value of the total
angular momentum I and of the total angular mo-
mentum projection I, of the target, and it vanishes as
any target interparticle distance goes to infinity. The
scattering wave function 0' satisfies

(H,+T,+V' E)% =0, — (2.2)

where the center-of-mass motion has been separated
out, where q is the distance between the incident par-
ticle and the center of mass of the target, where

T,= —(5'/2p) 7',',
and where

E=E,+ flak'/(2p).

For zero incident energy, we have
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relationship
lim k cotrl (0)= —1/A.
If,—+0

(2 6)

+ and +0 are both to vanish as any target interparticle
coordinate goes to infinity. The significant feature for
present purposes is that 4 and%'0" are solutions of the
homogeneous differential equations

(IIp+Tp F)q "—=0, (2.7)

where the integration is now over the coordinates of all
of the particles. By the standard argument, we arrive
finally at the FRY approximation

where
k cotrf(0) = —1/A+-', rpk'+0(k'), (2.10)

(2.11)

The extension to this case therefore requires only the
most trivial modifications.

When the incident particle and the target can form a
composite bound state, the derivation of the expansion
of k cotrl(0) about the energy of the bound state is once
again almost identical in form with that for scattering
by a central potential.

B. Identical Particles

We now consider the extension to the case for which
the incident particle is identical with some of the par-
ticles in the target; the interaction between the incident
particle and the target particles will again be taken to
be of short range. A prototype problem is the scattering
of a neutron by a nucleus of 3 nucleons, Z protons, and
E neutrons. The formalism will be developed for this
problem. s The protons will be numbered 1 through Z
and the neutrons Z+ 1 through A+1. We define q, as
the distance of neutron i from the center of mass of the
other Z+Iq particles, r „as the distance between par-
ticles m and e, X„,(i) as the spin function of the ith
neutron, T as the sum of the kinetic energy operators
with the center-of-mass motion separated out, and V
as the sum of the potential energy interactions. The
scattering functions 0' and 0'0, which satisfy the
equations

(T+V F)+=0, —(2.12)

(T+V—E,)%' 0,p (2.13)
8 The notation will be patterned after that used by I.. Spruch

and L. Rosenberg, Phys. Rev. 117, 1095 (1960).

(IIp+ T, F.p)qrp"—0. —— (2.8)

Manipulating Eqs. (2.2), (2.3), (2.7), and (2.8) in a
fashion almost identical with that used in the scattering
by a center of force then leads to the identity of the
standard form,

k cotrl(0) = —1/A+i (4' 4p 4%'p)dr, (2.9)

4p ~ F,($+1) lF(—i)X;;(1/q;—1/A) =P,pp,

for q;~ ~, r„„&~, nz, equi. (2.15)

Here F(—i) is the ground-state wave function of the
nucleus consisting of all A+1 particles except neutron i.
It is taken to be normalized to unity and antisymmetric
in the proton and neutron coordinates separately; it is
thus defined up to a factor —1. The P; are constants
which take the values ~1 and may be so chosen, for a
given definition of the sign of the F( i), (—see, e.g. ,
ref. 8) such that Eqs. (2.14) and (2.15) are asymptotic
forms appropriate for functions which are antisym-
metric in the Z proton and in the cV+1 neutron
coordinates.

At this stage, it might seem natural to introduce

as the quantity which is to play the role of the asymp-
totic form of 4. It should be noted, however, that con-
trary to the situation in subsection A, this quantity
does not satisfy any homogeneous differential equation.
The origin of this difhculty lies in the fact that the
different P," satisfy homogeneous differential equations
with diBerent potentials dropped from the original full
Hamiltonian. Each P,"does separately satisfy a homo-
geneous equation, namely,

LT+ V( —i) —Ejf,"=0, (2.16)

where V(—i) includes all interactions other than those
which involve the ith neutron. We also have

LT+ V( ~) F-.34'p"=—o— (2.17)

We now manipulate Eqs. (2.12) and (2.13) in the usual
fashion and we then do the same with each of the X+1
pairs of equations, corresponding to the various pos-
sible values of i,, Eqs. (2.16) and (2.17). Subtracting
the sum over i of the latter results from the former, we
arrive' at the sought-for identity

k coty(0) = —1/A+k' LP, P;"P;o" ~o]dr (2.18).
We have finally the effective-range theory approxima-
tion:

where
k cotrf(0) = —1/A+ 'rpk +O(k ), — (2.19)

(2.20)

'The surface terms are handled in the standard way. See, for
example, the rather similar situation treated in the derivation of
Eq. (2.4) of reference 8.

now take on the asymptotic forms

e ~ F,P +1)-'-F(—~) X;;(i)
&&sint kq, +q(0)$/(q, sin&(0) j—= iP,

for q; —+ ~, r „&~, m, mAi, (2.14)
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Note that even though &I a,nd %s eacii have iV+1
asymptotic components, 4%&s also has only iV+ 1 asymp-
totic components, since components associated with
different values of i are asympotically nonoverlapping.
It is for this reason that an asymptotic form for ~p
could be used in Eq. (2.18) which involved a single
rather than a double sum. A similar remark holds for
Eq. (2.20).

A case for which the incident particle is identical with
the target particles and to which ERT has been applied'
is the scattering of electrons by atomic hydrogen. Due
to the existence of the long-range polarization poten-
tial, the applicability of ERT in its normal form to this
example must be reexamined (see Sec. 3), but we are
concerned in this section only with the effects of the
Pauli principle. Their procedure was to construct an
inhornogeneous differential equation satisfied by P, it;,
and their final form is

is well known both classically and quantum mechani-
cally, and its derivation has been given previously in a
number of different contexts, " both in the adiabatic
approximation and independently of this approxima-
tion. In order to establish a notation and to be able to
stress those aspects relevant to the present problem, we
will brieQy summarize the derivation.

Let r represent the position of the positron relative
to the center of the atom. For the moment, in the spirit
of the adiabatic approximation, we take r to be fixed
and study the effects on the ground-state wave function
and on the energy of the atom of the presence of the
positron.

The perturbation felt by the atom is then given by

H'(1 Z; r)= —Q e'/~ r—r, ~+Ze'/r (3 1)

where Expl. represents some terms that are given ex-

plicity. They thus have a double sum rather than a
single sum, plus additional terms. Examination of their
results shows, however, that the cross terms in the
double sum cancel the additional terms, " so that their
result when simplified reduces to the form given by
Eq. (2.20). In their analysis the various terms are
rather simple and the additional difficulty introduced
by the use of Eq. (2.21) rather than its simpler equiva-
lent, Eq. (2.20), is negligible. On the other hand
Mathieu functions are introduced when long-range
effects are taken into account, and it is there important
to recognize the cancellation and to use the appropriate
long-range potential generalization of Eq. (2.20).

3. LONG-RANGE (1/r') POLARIZATION INTERACTION

A. Incident Particle Distinguishable

AVe now consider the scattering of a charged particle
by a neutral polarizable system whose particles may or
may not be distinguishable from one another but are
distinguishable from the incident particle. For reasons
that will become apparent, we restrict our attention to
neutral systems which are spherically symmetric. A

prototype problem would be the scattering of positrons
by a neutral spherically symmetric atom with atomic
number Z. (The possibility of positron-electron anni-
hilation will be ignored. In line with an earlier comment,
the energy is of course to be sufficiently low so that
neither pickup nor any other process but elastic scat-
tering is possible. ) For concreteness, we will consider
this prototype problem.

The effective 1/r4 interaction experienced by a
charged particle in the presence of a polarizable system

' p;0" and p;0" for iQj are of course not orthogonal since they
are solutions of equations involving different Harniltonians.

Since we are only interested in large values of r, and
since the probability of finding an electron at large r,
vanishes exponentially with r;, we can neglect the pos-
sibility that r, is larger than r, which gives

H'= —Q (e'/r'+') Q r 'Et(cos8, ), (3.2)

"The treatment here is patterned after that of Sternheimer in.
his analysis of atomic polarizabilities. See R. M. Sternheimer,
Phys. Rev. 96, 951 (1954), and references to his earlier works
contained therein.

"To the extent that orbital and spin angular momenta are also
good quantum numbers, atoms with an orbital angular momentum
of zero are of course also allowed, independent of the value of the
spin.

where 0, is the angle between r; and r. If the ground
state of the atom has an electric quadrupole moment,
the first-order perturbation energy will include a term,
due to the l=2 component of Eq. (3.2), which goes
asymptotically as 1/r' and which will dominate over the
1/r4 polarization potential which is the primary concern
of the present paper. Unless otherwise noted, we will
therefore restrict ourselves to atoms which do not have
quadrupole moments, that is, to atoms which have a
total angular momentum of zero or one-half. "Ke might
note that an application of the formulas of this paper to
electron scattering by the rare-gas atoms is now in
progress.

For such atoms, and in the approximation given by
Eq. (3.2), the first-order perturbation term for the
energy is identically equal to zero. (The true H' gives
a nonzero first-order term, but it is of short range.
r is held constant in these perturbation calculations. )
Proceeding to the second-order energy term, we will

for the moment rather arbitrarily retain only the leading
/=1 term. (The higher values of I generate terms the
most significant of which is due to the l = 2 part of H'
and vanishes asymptotically as 1/r'. We will discuss
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these terms later. ) We then have

2
H'= —(e'/r')P z (3 3)

where si=ri cosg, . This perturbation is of precisely the
same form as that due to a uniform electric field of
strength e/r' Th. e second-order energy term is then

given by —-',n(%')', where u is the electric polariza-
bility of the atom. (In passing we note that a formal
expression for n can be given, but that if available an
experimental value for o, could perfectly well be used
for present purposes. ) The third-order energy term
vanishes identically, as can be seen from parity con-
siderations, while the fourth-order energy term is pro-
portional to 1/r' We.will here ignore this term, though
on the basis of some later discussion it will become
clear that it will have no effect on those terms in the
expansion of tang that we will retain.

In the adiaba, tic approximation, the above 1/r' energy
term plays the role of the potential between the incident
positron and the atom. Thus, we have that at large r
the motion of the positron can be described by a wave
function g(r) that satisfies

$V', '+k'+P'/r'+O(1/r') jg(r) =0 (3.4)

tering of electrons by hydrogen atoms and for scattering
energies below excitation, as these authors point out,
the derivation can be directly extended to other atoms.
Their results remain valid of course under the replace-
ment of an incident electron by an incident positron.
As noted above, however, the atom must not have a
permanent quadrupole moment, lest there be a domi-
nating 1/r' term.

%e find then on the basis of their work that the
asymptotic form of + for r—+ ~ is

e' z s
F+—Q' Q F +O(1/r') g(r) (3.5)

n i=1 J~ ~—g+p

where the prime on the sum indicates the exclusion of
the ground state F and where g(r) satisfies Eq. (3.4)
for large r and the appropriate boundary conditions.

Now there is nothing unique about the choice of
4". It must satisfy the requirement that 0' approaches
4" sufficiently rapidly so that the "modified effective
range" r~p, defined in terms of 4' and 0, exists.
Thus, while for I =0 0' ultimately approaches
F sinPkr+q(0)$/kr, the difference between 4 and this
function vanishes so slowly at large r that r„p would be
infinite if 4 were chosen equal to this function. For
I.=O, we will choose

and the appropriate boundary conditions, where

p'= (2m/pi') (-'ne') =n/ap
+"=FM (r)/r, (3.6)

where ap is the Bohr radius.
The fact that the leading correction term is of order

1/r' is a consequence of the adiabatic approximation.
If, more properly, one does not make this approxima-
tion, it can be shown" that there is a nonadiabatic cor-
rection which goes asymptotically as r 'd/dr. This
term, however, can be shown to give contributions in
the expansion of tang(L) which have the same energy
dependence as the contributions due to the 1/r' term.
Henceforth it will always be understood when we refer
to 1/r' terms that we are including the nonadiabatic
contribution as well.

Having briefly summarized the derivation of~the
effective 1/r4 interaction, we now turn to the basic
problem of the present paper, the derivation of a
(modified) ERT for the scattering of a charged particle

by a polarizable system. The particular case to be
treated in this subsection is the scattering of a positron

by a neutral spherically symmetric atom. %e will

proceed in a fashion analogous to that used in Sec. 2,
and we will therefore need the asymptotic form 0 of

the scattering wave function and the homogeneous dif-

ferential equation which it satisfies.
The leading terms in the asymptotic expansion of the

scattering wave function can be derived exactly as was

done by Castellejo, Percival, and Seaton" for the scat-

"M. H. Mittleman and K. M. Watson, Phys. Rev. 113, 198
(1959).

' L. Castellejo, I. C. Percival, and M. J, Seaton, Proc, Roy.
Soc. (London) A254, 259 (1960).

(Hp+ T.+H E)4=0, —(3.10)

where H' is given by Eq. (3.1). If we now manipulate
the equations for 0' and for 4'" at energies E and E„
as was done in Sec. 2, we derive the identity

k' (4p"4"—4p%)dr = lim (M,M' —MM, ')
r~p

=f3./P &o/P (3.»)— .

where M(r)/r is the L=O solution, for ag r, of

d' L(J +1)-+—+i, )I(.) =0.
dr' r2

$1f g(r) as defined by Eq. (3.4) is decomposed into
partial waves, the radial part of the I.th partial wave
approaches M(r)/r. ] In line with our previous paper
on central potentials, M(r) is to satisfy the boundary
conditions (with I.= 0)

r p
M(r) — sir. —-'A +ii L'os —,'I.I—

r r

for r —+ 0. (3.8)

The choice of 4'" as given by Eq. (3.6) will lead to a
finite r„p and has the advantage of being the solution
of the simple homogeneous differential equation

(Hp+ T,——',Z'e'n/r4 —E)%'"=0 (3.9)

where IIp is the target Hamiltonian. 0' of course satisfies
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We now have the eR'ective-range expansion,

Bo/P =Bo/P+ 2~,ok',

where

[(+.")'- (+o)']d'

(3.12)

(3.13)

where the correction is O(ko) for L=1 and O(k4) for
1.& 1.

The L=1 case will be considered in more detail in
the Appendix. It will there be shown that one can write

tang(1) =orP'k'/15+P'k'/L9Bo(1)]+0(k4), (3.16)

It can now be verined from Eqs. (3.6) and Eq. (3.5)
that r„0 is finite. Note incidentally that ERT is here not
used directly on k coty, but rather on B.The connection
between B and cotg(0) then follows from the known
properties of the solutions of Eq. (3.7) and is given by
Eq. (I-4.3). For convenience, we repeat the L=O result

k cotg (0)= —1/A+ (orP'/3A')k+ (4P'/3A)k'ln(1. 23Pk)

+ (iver o+ omP —~P'/3A' —s'P'/9A')k'+ (3.14)

where we have combined several of the terms.
For L&0, the form of the expansion of tang(L) for

the present problem is not identical with that previously
derived for a central potential which goes as 1/r'. The
origin of the difference is not that we are here dealing
with a compound system rather than with a central
potential. The difference is simply due to the fact that
the compound system generates an effective long-range
interaction which has terms in 1/r' (and still higher
terms) as well as the term in 1/r' which was all that was
assumed for the central potential. If the central po-
tential had these terms, the form of the expansions
would be the same, though of course it would be very
much more dificult to actually obtain some of the co-
eKcients for the compound system case. We note that
even for L=O the terms in 1/ro play a role, but they
would only change the form of the expansion for terms
of higher powers of k than those which were retained.

More precisely, a definition of 0 similar to that given
in Eq. (3.6)—a form which only includes effects of the
1/r' term —again leads, with no difhculty, to the
identity, Eq. (3.11), but if we try to proceed to
Eq. (3.12), we find that r~o is infinite. The infinity is due
of course to the neglect of the 1/ro term. To better
understand this, we point out that the formalism pre-
viously developed capitalizes on the fact that the solu-
tions with a 1/r4 are known (Mathieu) functions, so
that given the ratio 8 of two of these, we can write
down the expansion of tang(L) up through and includ-
ing terms in k'~+'. This, however, cannot be correct for
L&0 since it can be shown for example that the ne-
glected 1/ro interaction contributes a term in k'. On the
other hand, though we will not prove it here, we have
no doubt that the results obtained neglecting the 1/ro
interaction are correct up through k' even for L&O. In
particular, then, for the scattering of positrons (or
electrons) by atoms, tang(L) will have the same leading
term as for the scattering by a central potential, namely,

tang (I) =orP'k'L(2L+3) (2L+1)(2I-—1)] '+
for L &~ 1, (3.15)

where Bo(1) appears in the zero-energy form of
Eq. (3.8). )See also Eq. (I-5.1).]

Since it plays no role, the spin of the positron has been
entirely neglected. To introduce it—this makes the
transition to the electron scattering case easier, for there
by virtue of the Pauli principle the spin does play a
role—we would have to take a linear combination of
ground-state wave functions with different s projections
of the angular momentum of the atom, multiplied by
appropriate spin-angle functions.

B'/P=B/P+k' LZ, ~;C,o- ~.~]d, (3»)

with 4 and%"0 appropriately symmetrized, and we again
have the effective range theory approximation,
Eq. (3.12), with Eq. (3.13) replaced by

where

2~.o= I:2'(4*o")'—(+o)']dr, (3.18)

P,o"——E,(Z+1)—~F(—i)X;,
X~' sin(P/r;) —A ' cos(P/r;)]. (3.19)

Equation (3.14) for k cotg(0) is still valid, but with
r„0 as just defined.

The number of phase shifts required for a description
of electron-atom scattering will depend upon the total
angular momentum J of the atom and the incident
orbital angular momentum L of the incident electron.
For L=O, for example, there will be one phase shift if
J=O and two phase shifts if JWO. The situation is
slightly more complicated if L~O. The determination
of the number of phase shifts for positron-atom scatter-
ing is rather similar, but somewhat simplified, .by the
fact that the mechanical spin of the positron plays no
role whatever. For L=O, for example, there will be only
one phase shift independent of the value of J.

B. Incident Particle Indistinguishable

In the scattering of electrons by atoms one must
concern oneself with the difficulties that arise from the
need to include the Pauli principle and with the diffi-
culties that have their origin in the effective long-range
interaction. These di%culties have each been treated,
the first in Sec. 2(B) and the second in Sec. 3(A) and
no new problems arise when the two difficulties appear
simultaneously. Our basic identity, Eq. (3.11), is now
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1/IA =7 spv~'+0(~'»~—) (3.20)

where p~ is defined in the standard way (that is, ne-

glecting polarization), a relationship which was shown'

to be valid for scattering by a central potential which

vanishes as 1/r4, remains true for electron-atom scat-
tering. (It is to be recalled that rs as normally defined

does not even exist when there is present a long-range
1/r4 potential, but that due to the decay of the various

functions introduced in the standard definition of p7,

pv does exist. )

4. SCATTERING BY HYDROGEN ATOMS

The low-energy phase shifts for the scattering of

electrons by hydrogen atoms are expressed by
Eqs. (3.14) and (3.16). Denoting singlet and triplet by
the subscripts 5 and T, respectively, the low-energy

I.=o scattering is then determined by a knowledge of

P and of the four scattering parameters As, Ar, r„ps ol

p»~, and r„o~. For I-&0 the scattering phase shifts are

determined, at least to lowest order, by P alone.

P can be calculated precisely and has the value

P=(s)'*as. The most reliable values of the scattering
lengths are probably those obtained from a rigorous
minimum princip1e. "Assuming only that there is one

and only one singlet bound state of H—and no triplet
bound states of H, it was found" that

A r & 1.91~o, A g & 6.23uo.

r~ L. Spruch and L. Rosenberg, Phys. Rev. 116, 1034 (1959);
L. Rosenberg, L. Spruch, and T. F. O' Malley, ibid. 118, 184
(i960).

'8L. Spruch, L. Rosenberg, and T. F. O' Malley, Phys. Rev.
119, 164 (1960). The bounds quoted above have recently been
superseded by calculations of C. Schwarts /Phys. Rev. 124,
1468 (1961)g who 6nds As(5.965 oo and A r(1.7686 o, . These
newer values put a slightly altered emphasis on some of the
following discussions. Added sm Proof. We might add that despite
their great accuracy, Schwartz's results would probablp not have
been as ideally suited for the present analysis as one might at 6rst
imagine since the zero energy and nonzero energy cases were
treated on a different basis, the long range effects on the wave
function having been explicitly introduced only at zero energy.

C. Expansion about Energy of Bound State

If the incident particle plus the atom can form a
bound state with an energy below E, by an amount
ji'y'/2m, the asymptotic form of the bound-state wave
function will be that given by Eq. (3.6), but with M&,

(generally written simply as M), replaced by the ex-

ponentially decaying function cV~. LM v satisfies

Eq. (3.7) with j'e' replaced by —y'.] If y is small and

known, it will often be useful for small incident energy
to expand about the energy of the bound state rather
than, as in Secs. 3 (A and 8), about zero incident energy.
For the expansion about the energy of the bound state
we can once again recover the equations found for the
center of force, with the effective range appropriately
defined.

For later reference, we note in particular that the
relationship

Since the other bound is not known, it is not possible
to make any rigorous statements about the accuracy
of these results, but they are probably at least roughly
correct since they agree reasonably well with results
obtained by the use of effective-range theory" and with
results obtained from numerical analyses' " of the
adiabatic approximation. They also lead to consistent
results in a dispersion-theoretic analysis. "

P and the parameters As and Ar are suflicient to de-
termine the cross section rather well up to perhaps —', ev.
Unfortunately comparison with experimental results
is not possible, for these experiments cannot at this time
be performed. It would be interesting to make the com-
parison for He, where the experiments are relatively
simpler and where the theoretical calculations could be
performed.

To proceed to energies up to about 1.5 ev, one must
know the singlet and triplet effective ranges. A reasona-
bly accurate value of p»& can be obtained from some
recent estimates of p, g, even though these estimates did
not explicitly take long-range e8ects into account. This
will be shown shortly. It will further be shown that it is
possibly to extract an estimate of r„o~, in the adiabatic
approximation, from a published calculation" of elec-
tron-hydrogen scattering.

Above about 1,5 ev the results of the present paper
are not valid because the Mathieu function expansions
which we used are valid for P'= (—,')as' and for 1.=0 only
up to v=1." As noted previously, this is not an in-
herent limitation, but the extension to higher energies
along the present lines has not been attempted because
long-range e6ects are probably not very important
much above 1.5 ev.

The fact that the negative hydrogen ion H has a
singlet but apparently not a triplet bound state makes
the analysis of the singlet scattering of electrons by
hydrogen somewhat simpler than that of triplet scat-
tering. We will therefore treat singlet scattering first.

1/& s=v —-', p, sv', (4.1)

"T.Ohmura and H. Ohmura, Phys. Rev. 118, 154 (1960).
's M. J. Seaton and J. B. Wallace, Proc. Phys. Soc. (London)

72, 701 (1958).
"A. Temkin and J. C. Lamkin, Phys. Rev. 121, 788 (1961).
"See also Temkin's nonadiabatic results; A. Temkin, Phys.

Rev. Letters 6, 354 (1961); and A. Temkin, Phys. Rev. (to be
published). Added r'e proof. These results take the long range 1/r4
effect into account at zero and at nonzero energies, and might
therefore seem to be ideally suited for an analysis of the present
type. Unfortunately, they are not quite as accurate as the results
of Schwariz (see reference 16), especially for singlet scattering."E. Gerjuoy and N. A. Krall, Phys. Rev. 119, 705 (1960);
N. A. Krall and E. Gerjuoy, ibid. 120, 143 (l960).

"This occurs in general when P'k'=1/2. See reference 6.
s' S. Borowits and H. Greenberg, Phys. Rev. 108, 716 (1957).

A.. Singlet Electron Scattering

Effective-range theory was first applied to the scat-
tering of electrons by hydrogen atoms by Borowtiz and
Greenberg. "They used the KRT approximation,
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the known value of y, and a variational estimate of AB
to make an estimate of p~g. With the availability of
very accurate H bound-state wave functions, '4 it was
recognized' "that Eq. (4.1) could then be utilized in a
different and more powerful manner; with y and p~q
obtained from the H wave function, Eq. (4.1) could
be used to estimate Aq. The values" p=0.23559ao '
and p&s= 2 65 give A s=6 2ao

Equation (4.1) was derived under the assumption of
short-range potentials whereas the present problem in-
volves long-range potentials. It was noted, however, at
the end of Sec. 3 that Eq. (4.1) is valid, to terms in y',
even in the presence of the long-range 1/r' potential.
Since we also know' [see Eqs. (I-6.9) and (I-6.10)j that

rp„,s+ svrP = s pals+0(7), (4.2)

we have that p»q= —1.7ao to zeroth order in y. We
also have that Aq=6. 2ao to terms in y', but this esti-
mate is however less reliable than might at first appear
to be the case, for whereas for short-range potentials
the corrections would be of order y4, the corrections for
the present long-range case include p' 1ny and y' terms.

Fortunately, it is a relatively simple matter to include
the p' in& and &' terms and thereby obtain an improved
estimate of Aq and of p»g. Thus, while the coefficient
of the y' term in the expansion of 1/As involves a new
parameter, the coefficients of the y' lny and y' terms in
the expansion of 1/A e involve only P. To find these co-
efficients, we need higher terms in the expansion than
given in Eq. (I-6.6). By expanding Eq. (I-3.9) for k'
replaced by —y', we obtain

the resulting approximation to 1/A is

1/A =v —-'p v'+-'0'v' »(3 35Pv)+o(v') (4 6)

When applied to the singlet scattering of an electron by
a hydrogen atom, the third term is small compared to
the second but is not at all negligible, and changes the
estimate from A&=6.2ao as previously quoted to the
present estimate of

A 8=5.5ap.

s~ C. L. Pekeris, Phys. Ilev. 112, 1649 (1958).

(4.7)

Equation (I-6.7) then becomes

~,= —PV+ s~(PV)'+ (s) (J3V)' »(4PV)
+ (2o/9) [1—(6/5)+(3/2)l(PV)'+o(7'), (4 4)

while the expansion for p» becomes

sprv+amP= spv 2P'y—
X [1n(-',Py)+2 —2@(3/2)]+ . . . (4.5)

If we substitute these two expansions into the J =0 and
k =0 form of Eq. (I-6.2),

%e also noir obtain

—',p„,s+-'smP = 1.00as,

as opposed to the crude estimate of 1.3ao.
It is extremely difficult to judge the reliability of the

estimate of A 8 given by Eq. (4.7). Since y is small and
the successive terms in the series, Eq. (4.6), are decreas-
ing in magnitude, one might perhaps expect the error
to be somewhat smaller than the last term. Arbitrarily
taking the error to have a magnitude one-half that of
the last term gives Ae= (5.5&0.4)a&. By virtue of the
nature of the argument, a value of Aq not much below
6.2ap is certainly not ruled out, but the possibility of a
value appreciably below 6.2as is suggested. (See also
the remarks in reference 16.)

An estimate of the J =1 "scattering length, " A(1),
will be given in the following subsection.

B. Triplet Electron Scattering

Of the four low-energy scattering parameters for
J =0, we now have estimates of all but p~o~. The two
scattering lengths were determined through the use of
a minimum principle and p„08 was obtained from a
study of the H bound-state wave function. There is
no known minimum principle that can be applied to the
determination of p„oz and there is no triplet bound state
of H to help us estimate p„o~. It is possible to make a
variational estimate of p„oy but we will not do so.
Rather we will be content to make a rough estimate of
p„oy through the use of the numerical results obtained
in the adiabatic approximation. %e will also use the
numerical data to make some perhaps crude estimates
of the parameters which characterize low-energy p-wave
scattering.

Of the calculations that have been made in the
adiabatic approximation, ""we will here restrict our
attention to that of Temkin and Lamkin. In the evalua™
tion of the perturbation of the ground-state wave
function they neglect the possibility that r; is larger
than r, and they neglect contributions from other than
the dipole term, thereby arriving at Eq. (3.3). In this
approximation, the electron-atom interaction contains
just one long-range interaction, and this interaction is
known exactly. The one-body analysis given previously, '
as modified by the many-body details discussed in the
present paper, is perfectly suited for the analysis of the
integro-differential equation which the above authors
actually solve numerically. (As we have noted earlier,
the situation is slightly more complicated for the real
physical problem since that contains additional&long-
range interactions. ) As a check on the accuracy of the
numerical calculations and on the validity of the present
theory, we will see if Eq. (3.14), with two parameters,
can reproduce the numerical values of their L=0
triplet phase shifts. We will at the same time obtain an
estimate, in the adiabatic approximation and in the
dipole approximation, of r„o~.
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TABLE I. Values of tang(0)/k for the triplet scattering of elec-
trons by hydrogen atoms. Row 1 represents the uncorrected
results of Temkin and Lamkin, row 2 represents their results
corrected to include eff'ects of the long-range interaction beyond
r=20up, and row 3 represents the values obtained from Eq. (4.9)
with the choice Br=1.69 apand r„pr'= —1.7up (The latter cor-
responds to r2, pp=0. 8up. )

tang (0)

Uncorrected
Corrected
From Eq. (4.9)

0.01 0.05 0.10 0.20 0.30

—1.90 —1.93 —2.00 —2.18 —2.39—1.74' —1.87 —1.99 —2.17 —2.39—1.74 —1.87 —1.99 —2.16 —2.26

a See reference 20.

It will be preferable to work with the expansion of
tang/k rather than of k cotg. The two expansions are of
course formally equivalent. However, it was the former
expansion that was actually derived, and the inversion
to obtain the latter expansion in the form of Eq. (3.14)
involves the neglect of higher-order terms which are
not in fact negligible because they happen to have
rather large coeKcients. We have

tang (0)/k = —A —srprP'k —4AP'k' ln(1.23Pk)
A2k2+ wP2ks[A2+ (7P2/117)]+. . . (4 9)

where

sr, pr'= ,'r„pr+ ', 2rp ', 2-rps/A2. -—-

A (1)r —1.3aps A (1)s 1.6aps (4.10)

C. Positron Scattering

The description of low-energy positron scattering
requires only two scattering parameters, A and r&p,

~5 These values are those privately communicated by Temkin,
whom we wouM like to thank.

In row 1 of Table I, we give the numerical values of
tang(0)/k for the triplet case as computed by Temkin
and Lamkin. These represent the contributions out to
20ap. The additional contributions from 20ap to ~ are
not entirely negligible, and row 2 of Table I gives the
corrected values. Row 3 gives the values of tang(0)/k
obtained from Eq. (4.9) with the choice A i ——1.69ap and
t'&pz = —1.7ap, the latter corresponds to r~pp= 0.Sap.
It is seen that the data are reproduced reasonably well.
The results are not too sensitive to the choice of ropy so
that the value quoted may be somewhat crude.

For I.= 1 scattering, low-energy scattering is domi-
nated by the long-range potential. The values" ob-
tained by these authors for the singlet and triplet cases
at k =0.1, corrected to account for the contribution from
r)20ap, are tang(1)/(kap)'=0. 78 for the singlet and
1,07 for the triplet. From a comparison with

tang (1)/k' = 2rps/15 —A (1)k+

we fi.nd as a crude estimate the results

as opposed to the four needed in electron scattering, for
there is no distinction here between singlet and triplet
scattering. p is of course the same as for electron scat-
tering and is known. The low-energy scattering is
rather more dificult to estimate than for electron scat-
tering since the distortion of the hydrogen wave function
is much greater. (The origin of the distortion is ap-
parently the large probability of virtual positronium
formation. )" Nothing is known about r„p. Under the
very reasonable assumption that the positron cannot
be bound to the hydrogen atom, it has been shown"
that A ~& —1.44ap."

S. DISCUSSION

Ke would like to make two comments on the range
of validity of the results of the present paper. The 6rst
comment is with regard to the result obtained by
Casimir and Polder" who showed that if retardation
effects are properly taken into account, the long-range
interaction between two neutral atoms is no longer the
Van der Waals' 1/rs law, but for sufficiently large r
approaches a 1/r' law. This rather surprising result
might suggest that at sufficiently large r the 1/r4 inter-
action, in the adiabatic approximation, of an electron
with an atom might become perhaps a 1/rs interaction
when retardation sects are taken into account.
3. Rosen and S. Borowitz (unpublished) brieRy con-
sidered this rnatter and concluded that such would
almost certainly not be the case. They point out that
in the atom-atom case there are two fluctuating dipole
moments (classically there are two rotating dipole
moments) and that the interaction between them,
therefore, depends upon the time it takes light to travel
from one atom to another. In the electron-atom case,
on the other hand, the atom has a nonAuctuating
dipole moment, induced by the electron, in addition to
its intrinsic fluctuating dipole moment, and the induced
dipole-electron interaction is the origin of the 1/r
interaction; this interaction can therefore clearly be
expected to remain a 1/r' interaction even with re-
tardation efrects included. The only possible effects of
retardation at the extremely small values of v/c that we

are considering might be an entirely negligible change
in the coefficient of 1/r'. Some of the higher-order terms
might be more signi6cantly affected, but we are not
here considering them. On the basis of the above
remarks, we can therefore safely ignore retardation
effects. Ke would like to thank Dr. Rosen and
Dr. Sorowitz for having raised the question and for
having told us of their conclusions.

22 f.. Spriich and L. Rosenberg, Phys. Rev. 117, 143 (1960)."There are a few calculations at variance with this result in the
sense that the results obtained correspond to an effective repulsion
between the positron and the H atom, rather than the effective
attraction implied by the above negative scattering length, Very
recently C. Schwartz, using a very elaborate trial functicn, found
A& —2.10ap. t C. Schwartz, Phys. Rev. 124, 1468 (1961).g» H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948);
H. B. G. Casimir, J, chim. phys. 46, 407 (1949).
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Our second comment has its origin in the fact that
even within the domain of nonrelativistic theory, the
question of the validity of the adiabatic approximation
might seem to be a relevant one. In fact it is not. It is
very important to stress that the present results do not
depend upon the general validity of the adiabatic ap-
proximation. Rather, all that is demanded is that at
sufficiently large r the prediction of the adiabatic ap-
proximation, that the effective potential go as 1/r4,
be valid, and this has been shown to be the case."

To further clarify this question, it might be helpful
to contrast our situation with that which exists in an
actual calculation based on the adiabatic approxima-
tion. The results of such a calculation might be very
accurate but it can certainly not be exact since the
adiabatic approximation is surely not valid everywhere.
The results of the present paper, on the contrary, de-
pending as they do only upon the tJsynsptotic validity of
the adiabatic approximation, are exact. On the other
hand, the aim of the present paper is very much less
ambitious. We obtain not the numerical values of
tang(L), but only the form of the expansion of tang (L);
furthermore, while an estimate has been stated, no
attempt has been made to truly delineate the range of
energy over which the expansion is valid.

We have thus far restricted ourselves to atoms which
are spherically symmetric. We would now like to con-
sider very briefly the scattering of electrons (or posi-
trons) by atoms which are not spherically symmetric.
(Oxygen is a particularly interesting example. ) These
atoms will in general have an electric quadrupole
moment Q and the lou. g-range interaction (which arises
in first order) will therefore go as CQe/r', where the
constant C is of the order of unity, and depends upon
the angular momentum projection of the atomic ground
state. (Ultimately, one must of course average over the
various possible projections if one uses unpolarized
targets. ) This 1/r' term must necessarily dominate over
the term (e'n/2r4), but the question as to the value of r
at which this occurs is of some interest. Since a typical
value of Q will be of the order of eas', while a typical
value of n will be of the order of ap', we find that the
quadrupole 1/r' term will dominate over the induced
dipole 1/r' term even at values of r as small perhaps as
up. It may be worth remarking that the cross section
due to a potential which vanishes a,s 1/r' diverges
logarithmically at zero incident energy, " though it may
become very small even for small energies.

The 1/rs quadrupole interaction may also be of
interest in the scattering of protons by very light nuclei.
There the 1/r4 term will be very small because of the
small values of nuclear polarizabilities. The difficulties
in measuring the effects of the 1/rs term arise because
they would be insignificant at all but very low energies,

"The in6nity is not very surprising since the Born approxima-
tion also gives infinity and this approximation should be expected
to be valid since the infinity comes from very large r where V (r)
is very weak.

and there the effects would probably be almost un-
detectable because they would be swamped. by the
Coulomb scattering. We hope nevertheless to examine
this case for proton-deuteron scattering.

APPENDIX

We will consider the I= 1 case in more detail. It has
been noted that the effective-range derivation with
Mathiew functions is not appropriate for the higher
partial waves, and a more direct method is called for."
Nevertheless, by making certain physically motivated
approximations, we can extend the effective-range
method to include I = 1. It will turn out that the errors
generated by these approximations are of higher order
in k than those terms we keep, and so do not aA'ect the
final results at all.

The approximations we propose are twofold. The
first is the dipole approximation, implied by Eq. (3.3)g.
The second is the adiabatic assumption for the wave
function 0', or the neglect of nonadiabatic terms. This
is equivalent to writing 4 in a product form
+= Ii '(ri r„r)f(r) and then letting the kinetic
energy operator T, commute with F' in the Schrodinger
equation. Both approximations need be made only for
very large r, and can be shown to produce an error in
rt(L) of order k'. (These approximations were not made
for L=O.) We may now choose

e't (r) z (z;),o M (r)I'+ —Q' Q I'. ,
—-(A1)

r~ n '&=1 I& g& p r

where t(r) —+ 1 as r —+ ~, and vanishes sufficiently fast
as r —+ 0, and is smooth but otherwise arbitrary. In the
approxima. tion noted above, it follows from Eqs. (2.1)
and (3.7) that 4'" satisfies the inhomogeneous equation,

(Ils r+T, se'n/r—4)4"=—

One then proceeds in the usual way and arrives at the
standard identity, Eq. (3.11), the inhomogeneous term
having played no role. The significant point is that, in
the approximation we have made, the difference at zero
energy between Np and 0'p falls o8 fast enough so that
the r~s defined by Eq. (3.13) is finite.

30 It is a weakness of the present formalism, relying as it does on
a knowledge of the exact solution of Eq. (3.7), that a certain
sleight of hand is required to derive the simple result, Eq. (3.15),
even though it enables one to derive relatively easily the much
more complicated result, Eq. (3.14). A consistent and general
approach based on asymptotic expansions is now being investi-
gated by Dr. J. B.Keller and Dr. B.Levy. This approach will at
the same time allow one to include, for example, the 1/rs terms.
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Given this expression, Eq. (3.12) for B(1), we can
now write the expansion of tanrl (1) through terms in k',
but since we have in effect neglected terms in k4, we will

have to be satis6ed with Eq. (3.16).

The above discussion is clearly not a proof. 1A'e have
included it nevertheless because we are rather certain
that the result is correct, having looked at the problem
along the lines indicated by Keller and Levy.
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Electron Triplet Production by High-Energy Photons in Hydrogen*

DUANK C. GATEs, t ICOBERT W. KZNNZY) AND WILLIAM P. SWANsON$

Lazrence IdaCiation Laboratory, University of California, Berkeley, California

(Received June 13, 1961)

The 323-Mev hardened bremsstrahlung beam from the Berkeley synchrotron was used to produce
electron-positron pairs and triplets in a 4-in. -diam liquid hydrogen bubble chamber. It was found that the
experimental triplet cross sections for detectable recoils (momentum greater than 0.27 Mev/c) and for
recoils with momentum greater than mc rise logarithmically with photon energy to 100 Mev, then level off at
approximately 2.8 mb and 1.5 mb, respectively. The total triplet cross section agrees with that of Borsellino
above 20-Mev photon energy. No contribution due to exchange terms was found. The positron energy
distribution agrees with that of Wheeler and Lamb. The recoil momentum distribution agrees substantially
with that of Suh and Bethe. Approximately one event due to multiple pair production was expected. None
was found.

I. INTRODUCTION

'~'LECTRON pair production by a photon in the
& Coulomb field of an electron, commonly called

triplet production, is one of the major electromagnetic
processes contributing to the absorpt, ion of energetic
photons in light elements.
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FlG. 1. Results of previous measurements of the total triplet
cross section. C &(k), in the energy range of this experiment. The
experimental points are those of Anderson et al. , Hart et al. ,

"and
Moffatt et al. '0 Also shown are the theoretical cross sections of
Watson, 'curve D), Borsellino' (curve B),and Votruba (curve C),
corrected to include screening; and the Wheeler-Lamb triplet and
Bethe-Heitler LH. A. Bethe and I.Ashkin, in Jlxpererneneal Nnclear
I'hysics, edited by E. Segre (John Wiley 8z Sons, Inc. , New York,
1953), Vol. I, p. 252.] pair cross sections for hydrogen (curves A
and E).

* This work was done under the auspices of the U. S. Atomic
Energy Commission.

t Now at Aerojet-General Corporation, San Ramon, California.
f. Now at Department of Physics, University of Illinois, Urbana,

I11inois.

Bethe and Heitler' originally developed the theory of
pair production in the nuclear Coulomb Geld, taking
into account screening of this field by atomic electrons
through use of the Fermi-Thomas model of the atom.
Their method considered only the static nuclear Cou-
lomb field and thereby neglected the eRect of retardation
on the nuclear Coulomb potential (due to nuclear
recoil), which is n.egligible in the cases of hydrogen and
heavier nuclei.

Perrin' was the first to point out the possibility of
triplet production. He showed that io the laboratory
system the threshold energy is k=4mc, ' twice that for
pair production, and estimated the cross section to be
the same as that for a nucleus with Z= 1. After Perrin,
many authors' ' have contributed to this work, making
a variety of approximations. Table I summarizes some
of the details and Fig. 1 shows their results for the total
triplet cross section as a function of photon energy.

wheeler and Lamb' developed triplet theory for high-

energy photons along the lines of the Bethe-Heitler pair
theory, properly taking Coulomb field screening into
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