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On the other hand, the first and second difhculties
are of a more serious nature for they do occur in the
weak-coupling limit. Because our results are essentially
insensitive to the actual computation scheme Lcompare
Eqs. (31) and (42), and also Eq. (6.21) of reference 6),
we do not feel that our solution of the basic equation
(5) could be in serious error, at least in the weak-
coupling limit. Moreover, the predicted transition
temperatures are not remarkably sensitive to the errors,
or approximations, which do remain in our treatment,
with the possible exception of the cases in which zone
boundary perturbations are too extensive at the Fermi
surface (such as Bi, Sb, ), so that the free-electron
Fermi sphere is a very poor approximation. This
suggests strongly that the results derived here are

exactly the logical conclusions of the original assump-
tions of the BCS theory. Consequently, what serious
difhculties, such as the isotope effect, are to be found,
seem to us to require either a new look at the basic
assumptions of the theory, possibly using a different
interaction taking into account more complex diagrams
than the lowest order diagrams implicitly contained in
the BCS's treatment, or re-examination of the experi-
mental evidence.
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We study here the effects of a homogeneous impurity mass layer on the surface waves of a semi-infinite
monatomic square lattice with nearest and next nearest neighbor central springs. In the long-wavelength
limit, the impurity layer does not alter the surface waves from those of a pure semi-infinite lattice. However,
depending upon the ratio of the impurity mass to the host mass, and for wavelengths shorter than a critical
wavelength, the long-wavelength surface wave may disappear and new surface waves with frequencies either
higher or lower than the spectrum of the pure infinite lattice may appear. The relationship of this model to
the analogous one- and three-dimensional problems is discussed. We expect this theory to be applicable to
problems such as the effect of an oxide layer on the surface vibrations of a crystal.

I. INTRODUCTION

''&~URING the past several years a number of
powerful experimental techniques for the study

of the details of the vibration spectra of solids have
become available. Specifically, analysis of the inelastic
scattering of slow neutrons from crystals' has enabled
plots of a&(k) (frequency as a function of wave number
in a Brillouin zone) to be made in various directions in
k space for many solids. Visscher' has discussed the
application of the Mossbauer effect for similar
determinations.

Along perhaps more conventional lines, Jacobsen'
and Bommel and DransfeM4 have produced strong
microwave phonon beams in solids and plans exist for
extending this technique to higher frequencies. One

* Research supported in part by the Air Force OKce of Scientific
Research.

' For a review of this field see L. S. Kothari and K. S. Singwi,
Solid State Physics, edited by-F. Seits and D. Turnbull (Academic
Press Inc. , New York, 1959},Vol. 8.' W. M. Visscher, Ann. Phys. 9, 194 (1960).

' E. H. Jacobsen, Phys. Rev. Letters 2, 249 (1959).
4 H. K. Bommel and K. Dransfeld, Phys. Rev. Letters 1, 234

(1958).

may therefore hope that an extension to infrared
frequencies is not too far oG. Changes in the velocities
of propagation of elastic energy due to dispersion of
both volume and surface waves could then be studied.

The existence of these high-frequency techniques
makes it desirable to have a more detailed picture of
the short-wavelength (dispersive) portion of the lattice
vibration spectra of real crystals than was needed to
interpret insensitive average properties such as the
specific heat.

Various aspects of this problem have been studied
by many authors: Montroll and Potts' and their
collaborators and Lifshitz6 and his collaborators have
studied the nature of localized vibrational modes due
to point impurities; Lax and Cochran et a/. have
clarified the nature of the dispersion of the volume

s E. W. Montroll and R. B.Potts, Phys. Rev. 100, 525 (1955);
102, 72 (1956).

I. M. Lifshits, J. Exptl. Theoret. Phys. (USSR) 17, 1017,
1076 (1947) and other papers.' M. Lax, Phys. Rev. Letters 1, 133 (1958).' W. Cochran, Proc. Roy. Soc. (London) A253, 260 (1959);
A. D. B.Woods, W. Cochran, and B.N. Brockhouse, Phys. Rev.
119, 980 (196O).
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modes in certain types of crystals; %allis, ' I.ifschitz
and Rosenzweig, ' and Gazis, Herman and allis"
have studied surface waves in two- and three-
dimensional bounded but otherwise perfect lattices.

In this article we shall use a few simple models to
study qualitatively the modifications that are intro-
duced in the surface wave spectrum of a semi-infinite
two-dimensional monatomic square lattice by the
existence of an impurity atom layer on the surface.
We will show that the surface wave dispersion curve
co(k), where k is wave number parallel to the edge of
the lattice, is the same as that of a lattice without the
impurity layer for long wavelengths, i.e., to terms
linear in k. At short wavelengths diverse possibilities
exist depending upon the ratio of the mass of a surface
impurity atom to that of a host atom: The surface
wave which exists at long wavelengths will have its
frequency shifted compared to that of a pure lattice
and may even disappear for short enough wavelengths;
new surface waves will appear with frequencies which,
depending upon the mass ratio, Inay be either higher
or lower than those of waves associated with the
volume of the lattice for the same wavelength. The
stiver a lattice is, the less likely it is to exhibit
impurity-induced short-wavelength surface waves.

The results will be schematically extended to more
realistic cases by analogy with work on point
imperf ections.

II. TWO-DIMENSIONAL MODEL

%e consider here the simplest nontrivial model of a
semi-infinite monatomic square lattice with an impurity
layer on its surface. The mass of each host atom is M
and the impurity mass is M'. We assume neares t-
neighbor central springs (spring constant a) and next-
nearest-neighbor central springs (spring constant 7).
The equations of motion for the x and y displacement
components N~, v~ of the atom at the lattice point
1, m within the lattice are

Mulm=Q( Iu, t++ml —Ium 2ul, m)

+ (7/2) (u~l, m+I+ut+I, m-t+ul —I,m+I

+ul —I,m—I 4ul, m)

+(7/2) ('VI+1,m+I 'I—I,m'I 'I+1,m—I

+Sl—I,m—1)y

Mst =n(~™it+&E,~I 2&t,m)

+ (7/2) (St+I ~I+St+I,-I+St I,m+I

+Vt—I,m—I 4Sl,m)

+(7/2)(ul+I, m+I ul —I,m+I ul+I, I

+ul —I,m—I) ~

'R. F. Wal1is, Phys. Rev. 116, 302 (1959)."I.M. Lifschitz and L. N. Rosenzweig, J. Exptl. Theoret.
Phys. (USSR) 18, 1012 (1948).

» D. C. Gazis, R. Herman, and R. F. Wallis, Phys. Rev. 119,
533 (i'96O).

M&to &(st,—I &EO)+, (7/2)(ol+I, —I+&I—I,—I 2't, o)

+(7/ )( ul+I, —I+ul —I,—I).

(2)

The method of solution has been indicated by
Stonely" and in reference 11.We use a form of solution
that satisfies the unperturbed equations and has the
proper asymptotic behavior at —~:

ulm ——U eXp(ikl+qm i(ut)—,

st = V exp(ikl+qtn —i~)).

These forms substituted in the unperturbed equations
yield a pair of homogeneous linear equations for the
amplitudes U and V. The condition for solution
(vanishing of the determinant of the coeKcients) gives
a relationship between ~' and q: for a fixed co' there are
two values of cosh':

coshq= f—9~ (g' —(p) l$/],
where

(=4r (cosk+r),

q = (1+21"cosk) Ln' —2(1+r)+coskf+cosk,
p= fn' —2(1+r)+cosk]' —4I' sin'k —cos'k

and "=(~/M)n-, r=7/~. One could now write out.
expressions for the amplitudes U, V.

We satisfy the surface equations with a linear
combination of the two solutions above:

2

ut„QA, U, ——exp(ikt+q, m —icut),

Stm ——Q A, V, epX( Ikt+nqz ICOE)—

The resulting pair of linear homogeneous equations
for the A, has a condition for solution which finally
gives implicitly the dispersion curve ~(k) of the surface
waves:

0= (eo' —eo2)(4r' sin'k sinhqt sinhqs(0'n' —r)
+ (Pn' —1—r) t-2(1—cosk)
+2I'(1—cask coshqt) —n'jL2(1 —cosk)
+2I'(1—cosk coshqs) —n'j}+2 sinhqI

&(I-2(1—cosk)+2r (1—cosk coshqs) —n'j
X((an —r)(on —r —1)+(nno —r)
&((1+I' cosk) e~2+ ((Pn' —r —1)r coskeo'

"R.Stonely, Proc. Roy. Soc. (London) A232, 447 (1955).

Ke assume the lattice to fill the lower half-plane
(y~&0). The equations of motion of a surface atom are
thus

M uto=(x(ut+I, o+ut I o
—2ul o)

+(7/2) (ul+II+,—ul I,——I 2ul, o)

+ (7/2) (—+,- + —,- ),
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+e«+22F(r+ cosk)) —2 sinhq2[2(1 —cosk)

+2F (1—cosk coshq, —n')
x (6 n —r) (an —1—r)+ (m —r)
X (1+I' cosk)e«+ ((Pn2 —I'—1)I' coske22

+e«+22r (r+ cosk) ), (6)

where (P = 1—M'/M. One must check that the
dispersion values ~(k) give q, s with positive real parts
in order that our solutions be interpretable as surface
waves.

Equation (6) cannot be solved explicitly for cu(k).
However we may understand the qualitative features
of the solutions from an analysis of two limiting cases:
(a) k small (the continuum limit); (b) k=2r (the edge
of the zone).

(a) k Small

We may derive the results for k small (long
wavelength) either by making the continuum approxi-
mation in the equations of motion (1) and (2) and
solving the problem anew, or by assuming k and q; are
small in Eqs. (4) and (6). As concerns Eq. (4) we
merely note that for small k it is homogeneous in

q k and co' and that k and q are of the same order of
magnitude, i.e., the penetration depth of a surface
wave is about the same size as the wavelength parallel
to the surface of the medium. Keeping the pertinent
lowest-order terms, Eq. (6) becomes

(~+v) [(~+v)K' —vga' —p~')
X [(~+v)E'—vg2' —p~')+4v'K'Qig2
+[1/(Q2+Q2))[2v'K'+2Q Q v(~+v))
X([( +v)K' —vg' —p ')Q
—[(~+v)K'—vg2' —p~') Q~)

= 2a(p p )~ (Q2+Q2)
X{v[(~+v)K'—p~'+ vgxg2)+~vgig2}

+2a'(p —p')'~'[(~+v)K' —p~'+vg~g2) (7)

We have introduced the following notation convenient
for a continuum:

K= k/a, Q, = q;/a, p =M/a', p'= M'/a',

and u is the lattice constant. In the absence of an
impurity layer the right-hand side of Eq. (7) becomes
zero and the equation is the two-dimensional analog
of the continuum treatment of reference 11. When
the q; are eliminated, this unperturbed equation is
homogeneous in E' and cv', and if we divide by an
appropriate power of E', only ~2/K2 will occur. Thus,
as expected, the long-wavelength surface waves show
no dispersion in the absence of an impurity layer.
Each solution of the unperturbed problem may give
rise to a surface wave. It can be shown that long-
wavelength surface waves occur only for r= V/n(2.

The form of the right-hand side of Eq. (7) is

aKf ( 2/K2) +a2K2g (~2/K2)

and we note that it does not depend only upon (aP/K2)
but also on E in the combination aE. Ke do not
expect f(a&2/E2) and g(co2/K2) to be extraordinarily
large even though they contain the factors p —p' and
(p —p')', respectively. Near a root of the left-hand side,
oP/K2= CP, we may write Eq. (7) schematically as

(C '—oP/K2) =aKF ((u2/K2)+ a'K'G (~2/K2)

where again F(oP/K2) and G((v2/K2) are not excessively
large. Assuming aK&(1 we may correct the unperturbed
result to 6rst order in aK by using &v2/K2=CP on the
right-hand side. The result,

(u'/K'= Cg' aKF (—CP)

shows that except for impurity masses of purely
mathematical interest the surface wave dispersion
curve is unchanged in the long-wavelength limit.
Allowing the impurity mass to grow indefinitely would
effectively replace the free-boundary condition by a
fixed-boundary condition and certainly cause modifi-
cations of all normal modes of the system.

(b) Ir=22

In this case Eq. (6) reduces to

((Pn2 —r —re2')[(Pn2 —1—F+ (1—1')e22) =0, (8)

where

coshq2= (n2 —4—2I )/2I

coshq2= [2(1+F)—n')/2 (1—I'),

sinhq, = ~ (1/2r) [(n' —4) (n' —4—4r))-:,

sinhq2 ——a[1/2(1 —I'))[(n' —4) (n' —4F))'*.

Here the top signs are for n'&4+4F and the bottom
signs are for 0'(4l' and may be derived from the
condition that coshq; and sinhq; have the same sign.
The regions n'(4F and n'&4+4F are the only ones
giving rise to surface waves, as can be seen by examining
the expressions for sinhq& and sinhq2. In order to
satisfy Eq. (8), one of its brackets must vanish. Using
the expressions for sinhq, and coshq;, we thus hand a
surface wave if either of the following is satisfied:

(2P—'1)n2= —4~[(n2 —4) (n2 —4 4F))-: (ga)

(26 —1)n2= ~[(n2—4) (n2 —4r))-:, (gb)

where the top signs are for n'&4+4F and the bottom
signs are for Q'&4r. It is instructive to examine these
equations graphically. We will do this for the case
n'(4F, Eq. (gb) and will then state the results for all
the cases.

n'(4F, Fq. (gb)

We plot the left-hand side (lhs) and right-hand side
(rhs) separately as functions of n' (see Fig. 1). The
lhs is a straight line through the origin whose slope
increases with increasing impurity mass and has the
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TABLE I. I ow 02. Values of the mass impurity parameter (P
for which low-frequency surface waves exist. Several squared
frequencies 0' are shown for the minimum and maximum wave
numbers k=2s/3, k=s allowing surface waves for a lattice
with F=—'.

~0
~&

~e

~s
~0

~I
~0r

~+

~+

r
~0
~r

~+

Hl.h.s.

k=2 /3
(PI (P2

—1.216—2.392—5.829

1.5 0.549
1.0 —0.093
0.5 —1.380

2.0
1.5
1.0
0.5

0.500—0.124—0.366—1.792

—1.2i2-1.951—3.437—7.888

I IG. 1. A plot of the left- and right-hand sides of
Eq. (9b) for the case 0'(4l'.

value one for &=M'. The rhs depends only upon F
and approaches the origin as F ~ 0. The case we are
studying is the extension of the single long-wavelength
surface wave to the Brillouin zone boundary. It is

interesting to note that this branch disappears for
short wavelengths if M'&M/2, i e , the. r.e is no inter-
section if 6') —'„or M'&M/2 for any value of I'.

Wee will now state the results obtained by analyzing
all four cases for all relevant values of (P, and 0(F(1.

SUMMARY

S-1. (P& ——,'(1—I'+$1—I'7'). There are two low-

frequency surface modes. As F increases, or the lattice
has more resistance to shear motions, the minimum 6'

increases, and ~ 0 as F —+ 1.
S-2. ——(1—I'+t 1—I'7'*) &tP&I'/L2(1+I')7. There

is one low-frequency surface mode —the extension of
the long-wavelength mode.

S-3. I'/L2(1+I')7&(P&ts. There is one low-frequency
and one high-frequency surface mode.

S-4. st&iP& sr+I'~/f2(1+I')7. There is only one high-

frequency surface mode.
S-5. —,'+I'~/t 2(1+I')7&(P&1. There are two high-

frequency surface modes. We note that as F increases
it requires an ever lighter mass to cause the second
high-frequency mode to appear.

We have also studied in more detail the particularly
simple case F=—,'. As mentioned above there are no
long-wavelength surface waves for F=~~. It is easy to
show that no high-frequency surface waves can occur
for this case if k&(2s./3). This is the critical wave
number k, discussed in reference 11 such that for k(k,
the displacements of adjacent layers parallel to the
surface are in phase, whereas for k) k, the displacements
Of adjacent layers B,re 180' out of phase. There is a

value of k, for each value of F. In Tables I and II we
give the information necessary to sketch the dispersion
curves for low- and high-frequency surface waves,
respectively, in the region k~& 2s/3. We show here the
values of (P giving surface waves for particular values
of 0' below and above the volume dispersion curves
for both k =—,x and k =x. For a particular impurity
mass parameter (P, we may interpolate in these tables
and find the values of 0' giving surface waves for k= 3+
and k=x. Smooth curves may then be drawn between
corresponding pairs of 0' at these two limiting k values.
Examination of the tables reveals the interesting fact
that two high-frequency surface waves exist for values
of (P as low as 0.526. For 0.526((P(0.736 one of these
waves joins the volume band between k=2m/3 and
k=+. We also see that a low-frequency surface wave
exists for (P(0.549 which joins the volume band
between k= ~3m and k=m. if 0.5((P(0.549.

III. DISCUSSION

The results of Sec. II may be understood in terms of
a competition between the attempt of the surface
impurities to form localized modes characteristic of
the semi-infinite, one-dimensional lattices that they
end, and the attempt of the pure semi-infinite solid to
exhibit a Rayleigh-type wave with its short-wavelength
dispersion. This latter tendency is frustrated for short
wavelengths if the surface mass is sufficiently small
(see S-4 and S-5). It is significant of the competition
that high-frequency surface modes will only form for
k&k. because of the 180' phase shift in the relative
amplitudes of atoms in adjacent layers parallel to the
surface for those k. When a surface wave is excited the
displacements of the atoms in a row perpendicular to
the surface (Ni, vi for I fixed and m~&0) resemble
closely the corresponding pattern for a short wavelength
mode of a semi-infinite, one-dimensional monatomic
lattice with a mass impurity at its end, and such a chain
will exhibit an impurity mode for some impurity masses.

The appearance of two low (S-1) or two high (S-5)
frequency surface modes is evidence of the fact that
both the "longitudinal" and "transverse" branches of
the volume spectrum can produce localized modes.
This effect is more clearly brought out by an analysis
of surface waves for the Rosenstock-Newell (RN)
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TABLE II. High O'. Values of the mass impurity parameter 6'
for which high-frequency surface waves exist. Several squared
frequencies 0' are shown for the minimum and maximum wave
numbers k=2m/3, k=s. allowing surface waves for a lattice
with I"= -', .

k = 2'/3
0' (PI (P2

4.5 0.526 0.141
5.0 0.613 0.259
5.5 0.666 0.338
6.5 0.734 0.448
8.5 0.807 0.582

6.0
6.5
7.0
8.0

10.0
20.0

k=7r
(P.„

0.736 0.167
0,758 0.278
0.777 0.338
0.806 0.427
0.846 0.545
0.924 0.774

"H. B. Rosenstock and G. F. Newell, J. Chem. Phys. 21, l607
(1953).

"H. Kaplan, Bull. Am. Phys. Soc. 2, 147 (1957).
"M. Bradburn, C. A. Coulson, and G. S. Rushbrooke, Proc.

Roy. Soc. Edinburgh, A62, 336 (1948)."J.L. Synge, J. Math. Phys. 35, 323 (1957).

model. "These results were brieRy reported some time
ago by the present author" and a sketch of some of
them appears in the Appendix. The well known
simplification of the RN model is the decoupling of the
x and y equations of motion. A further characteristic
of the model is the absence of long-wavelength surface
waves. In the Appendix it is seen that both x and y
motions may give rise to surface waves (caused by mass
and spring impurities) for appropriate strengths of the
different impurities. Particularly interesting here is the
competition between the impurity spring and impurity
mass parameters which may minimize surface dispersion
effects. In this connection it should be noted that
surface spring constants may be expected to be greater
than volume spring constants according to quantum
mechanical calculations for small graphite platelets";
the order of magnitude to be expected for the ratio is 1.5.

The effects of surface impurities on the surface waves
of a three-dimensional crystal should be dominated by
the fact that, as in the two-dimensional case, the
boundary is of one lower spatial dimension than the
volume of the material, i.e., we again have a set of
coupled parallel semi-infinite one-dimensional lattices.
In the long-wavelength region we should still find no
impurity effects. (Our argument to this effect for two
dimensions would seem to be easily generalizable to
three dimensions. ) For short wavelengths the one-
dimensional impurity tendency should still produce sur-
face modes. An interesting question to be answered
concerns the modification by the impurities of the sur-
face wave number region not admitting surface waves
for a pure lattice, as discussed in references 11, 12, and
by Synge

Some points worthy of attention for realistic models
of surfaces are:

(1) The effect of thicker surface layers. Here one
may expect that where one surface layer gives rise to a
surface wave, two or more layers will cause a number
of surface waves less than or equal to the number of

layers. It would be helpful to study the analogous
linear chain with the same number of impurity atoms
at one end.

(2) The effect of surface roughness. The details of
this problem will be difficult but one may expect that
roughness will lead to a scattering out of surface waves
into volume waves and the formation of modes localized
near points on the surface.

(3) The effect of corners and edges (a type of
roughness). This problem has been studied for the
diatomic square and cubic RN lattices by Wallis. , He
exhibits corner and edge modes, using a perturbation-
theory approach. We have studied the same problem
using a square piece of the model of the Appendix.
We find that symmetrized combinations of simple
exponential-type solutions are possible only if we
introduce particular values of a second type of impurity
mass a,t the corners. For any other corner mass value,
one might say that the equations do not separate and
a Green's function method of solution is appropriate.

Finally we point out that a complete study of surface
excitations shouM start with a finite lattice and use
periodic boundary conditions parallel to the surface.
In this way one would discover waves of mixed surface
and volume character as well as pure surface and
volume waves. That such waves are possible can be
seen by examining the vibrations of a finite linear
monatomic chain with nearest and next nearest
neighbor restoring springs and no surface impurities.
It can be shown using a method of Slater" that the
normal modes of such a system are linear combinations
of two sinusoidal modes and combinations of one
sinusoidal mode and one exponential mode. No purely
localized modes exist. It is probable that semilocalized
modes are much more prevalent than surface modes.
This idea has also been indicated by Synge. "

Detailed three-dimensional calculations are tedious
and should await experimental impetus.

APPENDIX

We present here a brief outline of surface wave
considerations for the Rosenstock-Newell model.
Consider a semi-infinite square monatomic lattice
filling the half-plane y ~& 0, with nearest-neighbor
central and noncentral springs n and P and particle
mass M. We introduce central and noncentral impurity
springs n' and p' between adjacent surface atoms and
a surface atomic mass M'. The equations of motion for
the x components of displacement are:

(a) volume,

~ui~=n(ut+r, ~+a r,~—2ui.~)
+P(ui ~,+ut„r 2u, „);, (—A1)

"J. C. Slater, Massachusetts Institute of Technology Technical
Report No. 5, Solid State and Molecular Theory Group,
Massachusetts Institute of Technology, 1953 (unpublished).
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WEAK BOUNDARY.

000\1 )
~
gill&

i'll

FiG. 2. Dispersion
curves for surface waves
for a crystal with a
surface spring impurity.
The dotted line is the
dispersion curve for an
infinite lattice with

k, =k, k„=o.
I

I

I

k

lgl%

j

I

k - COS '(L —)—
(b) STRONG BOUNDARY

1

4

I'IG. 3. Dispersion curve for surface waves for a crystal with
both mass and spring surface impurities. The strengths of the
impurities are connected by the relation q =b.

1L
=M'/M, LL

=a'/n, 1.=p/a

(b) surface,

M SLO n (LLL+1. , 0+1'll 1,0 2QL, O)+p(N—L,—1 + , L)0~

The usual form of solution,

ulcc=exp i8+ . m icot-q

leads to the eigenvalue condition

coth q 2 =e,

i tanh(q/2) =0,
alid

Mco'/2n = 1—cosh+ r (1&coshq),
where

0= 1+7/L(1L—
LL) (1—cosh)+ r(ll —1)(1acoshq) ],

The upper signs and bracketed expressions are for
low-frequency surface waves and the upper signs are
for high-frequency waves.

%e sketch the forms of the dispersion curves for a
few simple cases. Figure 2 shows the results for g=1
(a pure crystal with the inevitable spring impurity).
In the strong-boundary case the mode does not appear
"out of thin air" but rises out of the volume band for
k„=m-.

Figure 3 shows the results for q =6. Here the cornpeti-
tion between the mass impurity and the spring impurity
causes q to have a value independent of k. Thus the

(A2) surface wave dispersion curve is parallel to the infinite
lattice curve with k =k, k„=0, but is displaced
upward. For motion in the y direction the results
shown in Fig. 3 have the same form except that v- is
replaced by 1/1. and LL-+8'=P'/P. This replacement
may cause significant quantitative changes because
v&&1 1n many reahstic cases.


