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The energy gap and other parameters of the superconducting state are calculated from the Bardeen-
Cooper-Schrieffer theory in Gor’kov-Eliashberg form, using a realistic retarded electron-electron interaction
via phonons and including the Coulomb repulsion. The solution is facilitated by observing that only the
local phonon interaction, mediated entirely by short-wavelength phonons, is important, and that a good
approximation for the phonon spectrum is therefore an Einstein model rather than Debye model. The
resulting equation is solved by an approximate iteration procedure. The results are similar to earlier gap
equations but the derivation gives a precise meaning to the interaction and cutoff parameters of earlier
theories. The numerical results are in good order-of-magnitude agreement with the observed transition
temperatures but lead to an isotope effect at least 159, less than the accepted —% exponent (7, proportional
to M~¥). Also, the present theory predicts that all metals should be superconductors, although those not
observed to do so would have remarkably low transition temperatures.

INTRODUCTION

LTHOUGH the original Bardeen, Cooper, and

Schrieffer (BCS) theory of superconductivity® has
gone far in explaining the basic processes which account
for the condensation of fermion systems, it must still be
considered as a phenomenological theory with respect
to the use which is made of a rather nonphysical
“effective potential” to describe the complex Coulomb
and phonon-induced interactions between the electrons
in a metal. We may recall that the BCS effective
potential is instantaneous and displays a strongly
oscillating behavior in coordinate space (since its
Fourier transform is sharply cut off in momentum
space). Since the strength V of this effective interaction
appears only as an adjustable parameter, the BCS
model is still adequate to describe most properties of
superconductors; it is difficult, however, to see how
this parameter V could be related to the retarded,
time-dependent electron-phonon interaction and the
essentially instantaneous Coulomb repulsion or a
combination thereof.

On the contrary, several physical reasons lead us to
the conclusion that the coordinate space dependence
of the interaction potential plays a very subsidiary
role whereas its retardation in time is indeed of major
importance in determining the various cutoff phe-
nomena. Firstly, it appears that the quite long range
part (in space) of the phonon-induced interaction
results primarily from the emission and absorption of
very long wavelength phonons. These phonons can
enter either through ‘“direct” processes, in which the
dielectric screening of the metal is nearly complete, or
through ‘“‘umklapp” processes. These latter processes

1J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957); hereafter referred to as BCS.

have been supposed in the past?? to play a major role,
but this appears very much in doubt in view of the
deformation potential theorem which requires that the
effective potential acting to cause scattering by any
phonon be, to first order, proportional to the strain
produced by the phonon and not to the displacement.
In this perspective, an Umklapp process may be viewed
as the excitation of a true phonon corresponding to an
actual deformation of the lattice plus a stationary wave
corresponding to a translation of the lattice as a whole.
Since the electron wave functions follow adiabatically
a translation of the lattice, only the actual deformation
causes any scattering. Consequently, Umklapp processes
are no more effective than direct ones. The net result,
then, is that the phonon-induced interaction is mediated
primarily through short-wavelength phonons. It is well
known experimentally and theoretically that the short-
wavelength part of the phonon spectrum is rather
sharply peaked about a few definite frequencies, so that
it is a quite good approximation to think in terms of an
Einstein model of a few groups of single-frequency,
nonpropagating phonons. And of course, phonons which
do not propagate in space lead directly to a localized
interaction.

A second line of reasoning leading to the same
conclusion stems from the particular form of the
Gor’kov-Eliashberg energy gap equation.*® In these
works, the energy gap function in coordinate space

2D. Pines, Phys. Rev. 109, 280 (1958).

3 P. Morel, J. Phys. Chem. Solids 10, 277 (1959).

4L. P. Gor’kov, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 735
(1958). [Translation: Soviet Phys.—JETP 7, 505 (1958).] G. M.
Eliashberg J. Exptl. Theoret. Phys. (U.S.S.R.) 38, 966 (1960).
[Translation: Soviet Phys.—JETP 11, 696 (1960).]

5P. W. Anderson, Proceedings of the Seventh International
Conference on Low-Temperature Physics (University of Toronto
Press, Toronto, 1960).
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and time is
(-1 i—)=F@a—r1,i—1)V{—r,t—1),

where V' is the retarded potential caused by phonons
and F is the Gor’kov pair Green’s function. F has a
long range in space and oscillates with a wavelength of
the order of 2k¢' (ko is the Fermi momentum), while
the spatial dependence of V is only related to the
particular features of the phonon spectrum and may
display an oscillating behavior with wavelength of the
order of the inverse of the Debye momentum. Destruc-
tive interference makes the product of # and V small
for all but quite small spatial distances (r—r’). Thus,
we find once more that only the short-range part of
the interaction potential is important.

It is therefore desirable that a treatment actually
taking into account the time dependence of the electron-
phonon interaction be developed, with the hope that
the main features of the BCS model, and particularly
the isotope effect, may be retrieved by this approach.
Fortunately, a new and powerful analysis of the
condensation phenomenon in terms of particle propa-
gators has been derived by several authors,* thereby
providing us with a suitable formalism for our purpose.
In the first section, we shall briefly set up our notation
and write the Dyson equation for the problem. In Sec.
II, we reduce this equation to a single integral equation
after integrating over all spatial variables; we then
solve this equation approximately by a suitable iteration
process in the case of electron-phonon interaction only
and within the frame of the Einstein model; we find
that the corresponding gap equation is identical to the
BCS equation. It has been known since the work of
Bogoliubov® that the screened Coulomb interaction
acts to a degree like a hard core, at least in the instan-
taneous interaction model previously used, and so is
quite ineffective in weakening the phonon-induced
attraction. In Sec. III, we find that this result does
indeed hold in our time-dependent treatment; adding
an essentially instantaneous repulsive potential to the
retarded phonon-induced potential, we solve the inte-
gral gap equation to find identically Bogoliubov’s result.
All the above results are derived in the case where the
phonon spectrum reduces to a single frequency. We
investigate in Sec. IV the effect of the spreading of this
spectrum about one central frequency and we find
closely similar results (identical in the weak-coupling
limit) thereby justifying a posteriori our use of the
Einstein model. Finally (Sec. V), we derive the expres-
sion for the isotope effect and we compute the transition
temperatures for nontransition metals. Unfortunately,
as in the calculation of Swihart,” the exponent in the
isotope effect is found to differ appreciably (10 to 209)
from the ideal value %, more in fact than the quoted

8 N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov,
A New Method in the Theory of Superconductivity (1958) (trans-
lation: Consultants Bureau, Inc., New York, 1959),

7J. C. Swihart, Phys, Rey. 116, 45 (1959).
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errors of the present experimental data. On the other
hand, we find a general order-of-magnitude agreement
between the computed and measured transition
temperatures better than that of Morel.?

I. THE DYSON EQUATION

Following closely the notation of Gor’kov and
Eliashberg,* we define the Green’s function G(x—x’)
describing the propagation of an ordinary single par-
ticle:

G(x—a") =Ty () * (@) = AT (¥ (7)), (1)

as well as the Green’s function F(x—x’) describing the
merging of two particles into the condensed phase or
the inverse process (i.e., the creation or the destruction
of a “ground pair”’):

Flam=a!) =ie (T () ()
=i WY ), ()

where the last equality is obtained by time reversal
(provided we use a representation in which the state
vectors are invariant under this transformation). Here
x stands for the four-vector x, ¢ and 7" is the usual time
ordering operator (see reference 4). The average in
(1) is taken in the ground state | ¢o(V)) corresponding
to a total number N of particles; the averages in
(2) are taken between the ground states | ¢o(V)) and
| @o(N+2)). Lumping together in e, the kinetic energy
of a single particle and the mass correction due to the
self-energy in the normal fluid, we may write the
Dyson equations in momentum space:

w+ €x
G(k,w) = LD
w'— e —2(k,w)+16 3
2 (k,w)
F(kw)=

w— e 2—2%(k,w) +i5)

where Z(k,w) is the self-energy corresponding to the
processes in which two particles either merge into the
condensed phase or emerge from it. This self-energy
plays the part of the “energy gap” of BCS theory
since the energy spectrum of the individual excitations
of the condensed fluid is now given, in the low-energy
limit, by

By="[e2+22(k,0) % 4)

Y (k,w) is related to the propagator F(k,w) by
7
2(kw)=—— / I(k—K, o—o)F(K @)K de', (5)
(2m)*

where T' is the exact vertex part, i.e., the sum of the
contributions of all possible interaction processes or
combinations of elementary electron-phonon inter-
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action: \ @
N\%?ZqV(q
Hel-ph= —’L Z ('——) (bq"l‘b_q*)Ck'*Ck
ke \M/ [20q]
=12 aq(bg+b_q*)cw¥c, (6)

k!
and direct Coulomb interaction:

Heou= Y. V(K —K)cw ¥ ex_w*cx—iCr. @)
K

k,k/,

In the above expressions, N, M, and Z are, respectively,
the number of ions per unit volume, the mass, and the
valency of the ions; oy (b4*) and cx (c*) are the usual
annihilation (creation) operators of the phonon and
electron fields, respectively; V(g) is the Fourier trans-
form of the screened electrostatic potential:

47re? 4re?
¢+kE @HaneN,

Vig)= (8)

where k;7! is the screening radius (for the Fermi-
Thomas model, k. is proportional to the density of
states Ny on the Fermi surface). Finally, let us remark
that the phonon momentum ¢ appearing in Eq. (6) is
equal to (k’—k) only if this vector happens to be in
the first Brillouin zone (normal process). In general,
q is a function of the vector (k'—k) given by the
momentum conservation relation:

a=k'—k+Ky, ©)

where Ky is a suitable vector of the reciprocal lattice.
It must be clearly stated that the summation in (6)
extends over all k and k’ near the Fermi surface, since,
because of the periodicity of the crystal, the deformation
potential caused by the phonon of momentum q has
nonvanishing matrix elements not only for scattering
from the electron state k to the state k’ such that:

k’-k:q,

but also to the states k’ satisfying the more general
condition (9). Because of the deformation potential
theorem, the matrix element is approximately the same
whether the scattering is a normal or an “umklapp”
process, for a given q.

Now, we shall restrict the vertex part I' to its lowest
order terms only, i.e., the sum of

1 204’
]= e (w), (10)
wqFw—mnq Wq

1
Do<q,w>=aq2[ +

Wq ™ W Mg

and —V(¢) for the phonon induced and Coulomb
interactions respectively. Here w, and nq are the real
and imaginary parts of the frequency of the phonon of
momentum q. Since the phonon damping is rather
small (ngq is usually of the order of 10~%w,), the frequency
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dependent factor #q(w) may be written:

2 7

- :|+_2’_"qu6 (0Fwg)—8(w—wy) ] (11)

qu_w2

#q(w)=P l:
It has been shown by Migdal® that this simplification
is acceptable for the phonon-electron interaction since
higher-order terms are of the order of (M)~% or smaller.
We have approximated the exact Coulomb interaction
by an instantaneous potential, neglecting high-order
retarded polarization terms: This is perfectly acceptable
since dispersion occurs only at rather high frequencies
of the order of the plasma frequency and is completely
negligible in the small energy range we are considering
here. We are also neglecting mixed terms corresponding
to a combination of phonon exchange and Coulomb
interactions: These terms are certainly smaller than
(M)~%. The gap equation (5) together with (3) and
(10) constitutes therefore the mathematical formu-
lation of the problem. We shall now be concerned with
simplifying and solving this equation in the perspective
outlined in the introduction.

II. SOLUTION OF THE GAP EQUATION FOR
ELECTRON PHONON COUPLING ONLY

We shall first neglect the Coulomb repulsion alto-
gether and consider only the contribution Do(g,w) to
the vertex part I'. The gap equation then becomes

i 20
Show)=—— | —ttg(0—o')F (K k"

(2m)* Wq
Xsing'd0'd ¢'dk'dew’, (12)

where F(k,w) depends only upon the kinetic energy :
ékzilo(k‘*k()). (13)

(w0 is the velocity of the electrons on the Fermi level)
and q is given by (9). Since F vanishes rapidly?® when
K’ is allowed to depart from the Fermi surface, we may
replace the integration over k’ by integration over the
energy and the angular variables. Moreover, we see
from (6) that

2o NZF dwet ¢ 1[ kE P
pe R
wg, Melre+gl NlLritg

We have made use of the standard expression for the
velocity of sound (see reference 3). Note that this factor
is almost independent of ¢, so that we may replace ¢
by a mean value of the order of the square or the
Debye momentum (more precisely 2¢p?). The factor

8 A. B. Migdal, J. Exptl. Theoret. Phys. (U.S.S.R) 34, 1438
(1958). [Translation: Soviet Phys.—JETP 7, 996 (1958).]

9 The ¢~ dependence of I'(g,») insures the convergence of the
original equation (5). Replacing the integration over %’ by
integration over ¢’ may, however, introduce an artificial divergence
in the case of an instantaneous interaction. We shall in this case
cut off the energy integration at the Fermi energy.
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Fic. 1. Contour of integration (L) in the complex (3) plane
for Eq. (18). Note that (L) does not cross the branch line of the
function D(z) on the real axis (heavy line).

#g(w—w’) is strongly dependent upon the phonon
frequency wq. For polyvalent metals, however, the
relation between w, and the vector (k’—k) is quite
complicated, so that the angular average of (12) requires
a complicated procedure taking into account the
structure of the crystal (see Morel, reference 3). On
the other hand, since we expect Z (k,w) to be essentially
independent of k, we may average (12) over all k in
the energy shell. This is equivalent to averaging
#q(w—w’) over the phonon spectrum (all phonon
momenta are roughly equiprobable). This approxi-
mation, which is akin to the spirit of BCS theory, is of
course self-consistent since it removes all k dependence
in the right-hand side of (12); it amounts simply to
assuming that the gap is isotropic, which has been
shown to be approximately correct from an experi-
mental point of view.!* We obtain then

DN
Z(w)=— /de'/dw' F(e,0)U(w—o'), (15)
2
where A is a parameter which plays the role of the

“NoV?” of BCS:
k82 2
x=%[——-4],
kg0

and U(w) is the average of the phonon propagator
#q(w) over the phonon spectrum, represented by the
distribution function g(wg):

(16)

wm=/”m%wmm»mw (17)

It is worthwhile to pause at this point and remark that
A is not directly proportional to the density of states
on the Fermi surface N, as the analogy with BCS’s
expression NoV tends to suggest. The dependence of A
upon N enters only through %,? and we find particularly
that however large Vo may be or however complicated
the structure of the crystal may be [ (¢?).,<<gp*], the
value of this parameter cannot exceed 3.

Restricting ourselves for the time being to the
Einstein model, i.e., to the case where the phonon
spectral distribution function g reduces to a single &

10 P. W. Anderson, Ph. D. thesis, unpublished.
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function centered at w,=w;, we shall proceed to inte-
grate (15) over the energy. Before doing so, however,
we write this equation in the equivalent form:

i\ oo 2(z)
Z(w)=— d dé———U(w—3),
“ %ﬁm4; Do
D@)=[z—22(z) ] (19)

Note that D(z) retains the same determination when z
follows the contour (L) represented in Fig. 1. If we
choose the determination in the upper half of the
complex plane, we obtain in a straightforward fashion:

w1 1
2(w)=>\/ —[——
@ 2 Lwi—z+w—1in

+

(18)

1 2(z

1 . dz.  (20)
w1+z~w—i17_|2D(z)
As we expect from the time-reversal invariance of F
and V, this equation is compatible with an even
solution on the real axis. On the other hand, the
detailed features of the solution do not appear clearly.
It is, therefore, illuminating to go back temporarily to
the time representation of relations (3) and (18):

F(k)~[2 (Ex)/2ExJe s,

Hee (21)
S=NU@CH)=AU¢) / Fk'Hd¢ .

The oscillating time dependence of the integrand is
smeared out by the integration and C(¢) is a rather
slowly varying function of time (see Sec. IV) so that
the resulting 2 () behaves essentially like U (£). Conse-
quently, we expect that the solution of the integral
equation (20), may be approximately proportional to
U(w). In order to test this possibility, we shall try to
solve it by iteration, starting from the trial function:

Zi(w)=AU (w),

54(6) =)\A/ U(z)U(w—2)ds

i[A2—22 (22)

y

* U ) U(w—2)dz
+f, o

where we have taken advantage of the smallness of
Z(w) to replace it by the constant Z(0)=A in the
expression for D(z). These integrals cannot be computed
with any accuracy near the singularity w™w;; however,
in the regions both above and below this singularity,
the integration can be carried out approximately and
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one finds:

22 (w0)=NA[In 2w1/A) U (w)+3 (1 —in/2)w/wi1+0(w?) ],
wKLwi, (23)

Zy(w) =AA[In (201/A) U (w)—ir (0*/«®)+0 (1/wh) ],
WwSDwi.

This expression is reasonably similar to the trial
function 2;(w) and, indeed, converges toward Z; in
the weak coupling limit (A1) if the value of the gap
2(0) = A satisfies the following condition:

1/A=1n(2w,/A), (24)

identical to the BCS gap equation. Finally, let us note,
for further reference, that =,(0) is real and also that
25 (w) has no singularity at w= 2w, although its complete
analytical expression includes the term:

pVAYARY 1 1
ri‘n’( — —~)

2w(w——2w1+2in)|_ w—w; w1

1

W— w1

A

In

+

1 w1\’
w1 A

which corresponds to a pole with a vanishing residue.

wW—wi

III. SOLUTION OF THE GAP EQUATION INCLUDING
THE COULOMB INTERACTION

On account of the reasonable success of the above
scheme, we wish to extend it to solve the gap equation
including the Coulomb repulsion — ¥V (g). Since Eq. (5)
is linear with respect to the vertex part T, the intro-
duction of the essentially instantaneous Coulomb
interaction is equivalent to adding a constant to the
frequency-dependent potential, i.e., replace AU (w) by

U'(w) =AU (w)— 4, (25)
where u is the angular average of V(g):

1 20 dgre? ki [hi44k?
w= / qdq= ln[ —] (26)
41!'21)0 0 k32+q2 8k? ks*

s

We are looking for a solution displaying the general
behavior of U’ (w) and more precisely, we shall start the
iteration process with the trial function:

2y (@)= AL(A+EU(w)—£], @7

with two adjustable parameters A and £. We have then

=y (w)= A/A [(H—E)U(z)—S]D\U(w_.z)_ujdz

i[A— g
 [A+DU (&)= N (=2 —4]

dz. (28

+f T 5 (28)

Note that we have introduced a cutoff of the order of
the Fermi energy in the last integral in order to prevent
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the logarithmic divergence due to the constant term &u
in the numerator of the integrand (see footnote 9). As
before, these integrals cannot be computed near the
singularity w~w; but we obtain the following expres-
sions for Zy'(w) in the low- and high-frequency limits,
respectively :

2y =AM In(2w1/A)— (14 £)u In(2w1/A)+ gu{ln(2er/A)
—im/2}+ (w/w) (P (1+£) (1—ir/2)

+Gr/2D)E}H0 ()], wKwi, (29)
2y = —ALu(14£) In(201/A) — £u{ln(2er/A) —im/2}
Fimhéwi/w+0(1/0?)], w>w:.

Although (27) and (29) are not as accurately self-
consistent as (22) and (23) in the previous section,
2y’ does indeed converge towards X,/ in the weak-
coupling limit (A, u<<1). In this limit, the adjustable
parameters A and £ must satisfy

(A—w) In(201/A)+pué In(er/wr) =1,
pIn(201/A) = ué In(ep/wi) = £.

20)1 M“ —1
ln(—>=|:)\— -*w——~] .
A 1+u In(ep/wi)

This relation is identical to the equation found by
Bogoliubov and coworkers® using a similar model, with
the difference that the cutoff w; of the phonon-induced
interaction and the cutoff er of the instantaneous
Coulomb repulsion appear now as the consequence of
the frequency dependence of these interactions rather
than as arbitrary cutoffs in momentum space of an
effective instantaneous interaction. The effect of the
Coulomb repulsion is indeed a reduction of the pa-
rameter “VoV”’ as expected but we find also that the
Coulomb repulsion is somewhat less effective than the
phonon-induced attraction on account of its instan-
taneous character {u appears in reference 6, Eq. (3.7)
reduced by the factor [14-u In(er/wi) I of the order
of 0.4}.

(30)
Hence,

629)

IV. EFFECT OF THE FINITE RANGE OF
THE PHONON SPECTRUM

The actual phonon spectrum of a solid extends over
a finite range, the width 2w, of which may be a signifi-
cant fraction of the Debye frequency (of the order of
209, for example). Accordingly, we see from (17) that
the singularities of the average phonon induced inter-
action U(w) are spread over the same range and
therefore, U (w) is much smoother than its components
#4(w). Equivalently, U(f) has only a rather short range
in time, of the order of ws™, since the components ()
interfere destructively if the time interval ¢ is of the

1 The most striking deficiency is the appearance of an imagi-
nary term —i(x/2)£u in the zero-order term of the expansion
(29). It is likely that this imaginary term (negligible injthe'weak-
coupling limit) is spurious and due to our introducinglan‘artificially
sharp cutoff of the term proportional to fu at the Fermi energy.
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order of ws™! or larger. This may be best demonstrated
by taking a simple model for the phonon spectrum,
namely a Lorentz distribution:

w2

1
glwg)=- (32)

T (wq—wl)z—}-w‘f‘

Note that this mathematically simple model is still a
reasonably accurate approximation of the ‘“well-
behaved” phonon spectra found for a rather large
class of metals. It would not be a satisfactory approxi-
mation for multi-peaked spectra observed in some
instances. The corresponding phonon-induced inter-
action is found immediately to be

U () =% (w1~ dwp)e il el

1 1 (33)
U(w)———%(wl—in)l: 1 :l
w1t w—iws wi—w—1iws
Note the rapid damping due to the large imaginary
part of the pseudo-phonon frequency (wi—iw,). Because
U (w) is actually smoother than #,(w), one sees physi-
cally that the actual solution of (20) should be smoother
than (27). However, the computation scheme used in
the previous sections is not suited for this generalization
because it relies upon the sharpness of the singularity
of #4(w). We shall, therefore, take a different approach
to the problem, involving the transformation of Eq.
(20) to the time representation (21).
Our iteration procedure now consists in the following
steps. Firstly, we choose a trial function

Zi(w)=ALA+E=)U (w)+54 (0) =],

where A, £ and { are adjustable parameters and 4 ()
an even function of the frequency, smoothly decreasing
from 1 at w=0 to zero at w==+w;. Secondly, we carry
(34) into the expression for C(f):

21(2)
) 2D(2)

(34)

etz (35)

Cy=C(—t)=

Thirdly, we compute Z5(¢) according to relation (21):
() =AU ) —ws()1C (1), (36)

and finally, we shall Fourier-transform the resulting
expression for 2, in order to compare it to the initial Z;.
In the course of this program, however, we shall need
to make some approximations, the most important of
which is described below.

Since expression (35) is practically linear with respect
to = [we may replace Z(z) by 2(0)=A in the expression
for D(z)], the three terms of (34) contribute, respec-

tively,
(1+£—§')Cl(t)) g-c?-(t)y '—EC(&(Z)}

to the final expesstion of C(¢). The most important
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term is the first one and is found to be (for positive ¢):

C1(t) = A[In2— Ci(Af) J+AL cos (wif) Ci(wrt)
" fsin(d){Si(e)—/2) J—i(r/2)A
+i(r/2) Aeoriwe (37)

where Si(z) and Ci(z) are the sine and cosine integral
functions. In spite of its appearance, the second bracket
is a perfectly smooth function of ¢, increasing monoton-
ically from — « at ¢=0 [logarithmic divergence, of the
order of In(w:f)] and approaching zero like — (w:#)~2 for
large ¢. Consequently, this function is very accurately
approximated by

In(e?wit) —% In(1+e"w ).

Both the third and the fourth terms are imaginary and
we notice that the latter introduces a correction
proportional to exp[—2i(wi—iwz)f] in the expression
for 25(¢) or equivalently a pole at 2(w;—iws) in the
corresponding expression for 2s(w). Moreover, this
extra term will in turn bring about corrections at 3w,
4w, etc., upon iteration. Our intent is, of course, to
neglect these high-energy corrections (which are quite
small in the weak-coupling limit) but we must not
overlook the fact that the corrections at 2w, 4wi, 6wy,
-+ bring small imaginary contributions which ulti-
mately cancel the imaginary contribution of the third
term —i(w/2)A of (37) [for Zs(w) is the average of
(29) with respect to the phonon frequency and, there-
fore, Z3(0) must be real]. In order to be consistent,
we shall therefore neglect both imaginary terms of (37)
and retain only

C1(f)~A[In (2w1/A) — 3 In(1+e7w2?) ], 0<< AL (38)

Here v is the Euler constant. Similarly, the second
term of (34) is cut off at a frequency of the order of
2w and therefore

Ca()~A[n2— Ci(At)+Ci(3ert) ]

~A[In(w/A)—3 In(1+-2erw2®) ] (39)

Finally, the last term of (34) is cut off at a frequency
of the order of the Fermi energy; thus:
C3(1)~A[In2— Ci(Af)4-Ci(ert) ]

~Alln(2er/A)—% In(1+e7ep22) . (40)

Collecting terms and performing the required Fourier
transformation, we obtain the expression for Z;(w) in
the three regions: w0, w~w;, and w>>w;, respectively :

2y (@) =MA[In(2w/A)+0.23 (14 £)40.14¢ ]
w=~0
—pA[In 2w;/A)—¢ In2— ¢ In(er/wi) ],
3y (@) =AU (@)[In(2ws/A)+0.284-0.12£40.12¢ ]

o —uA[In(2w1/A)—¢ In2—¢ In(ep/w1) ],
2y (w) = —uA[In(2w1/A)— ¢ In2—EIn(ep/wi)].

W o

(41)
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Adjusting A, £, and ¢ to fit 2, and 2, in these regions,
we find the following self-consistency condition:

2w, A " 1
ln<—>=[ - } . (42)
A 1—-0.23n  14puIn(ep/w1)

almost identical to (31). Note that the phonon-induced
interaction (attraction) is enhanced by the factor
(1—0.230)" typically of the order of 1.05 to 1.1. This
close similarity with the results of Sec. III justifies
@ posteriori our use of the simplified Einstein model;
this also encourages us to place actual numbers on the
parameters A and p and compute the corresponding
transition temperature. We have plotted the self-
consistent “gap-function” Zj(w) for the typical case
7\=03, y.=0.25, w2=w1/5 and ln(ep/w1)=6 (Flg 2)
Note the striking similarity with the simple model of
BCS and Bogoliubov, i.e., a constant gap, cutoff at
w=wj. .

V. TRANSITION TEMPERATURE AND
ISOTOPE EFFECT

It is interesting at this point to use our model to
evaluate the critical temperature (or rather the corre-
sponding “NoV”) for some well-behaved metals and
compare our predictions with experimental data.
Firstly, we notice that the two most important pa-
rameters characterizing the electronic behavior of
metals, i.e., the electron density (or Fermi momentum)
and the density of individual states on the Fermi level,
enter the expressions for A and p only through the
combination :

@=k2/4k=4me2N o/ 4. (43)

We may compute both ¢ and N for the Fermi-Thomas
model from the interelectron spacing (obtained from
basic crystallographic data). Now, the actual density
of states on the Fermi surface is the Fermi-Thomas
value corrected for the effective mass (which in turn
is estimated from specific-heat measurements). From
(26), it is clear that

w=3In[(1+a*)/a’].

On the other hand, we have not accurately computed
the angular average of the strength of the phonon-
induced interaction because of the complication brought
by the existence of Umklapp processes; we have,

rigorously,
1 a‘l 2
= [_—} b,
0 aZ+q2/4k02

where x= | k—k’|/2k is equal to ¢/2k, only for normal
processes. For alkali metals, it is indeed a fair approxima-
tion to neglect the effect of umklapp processes and take

1 @

1 (12 2
)\z/ [ :I xdx=-— .
o La* a2 21+4a?

(44)

(45)

(46)
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Fie. 2. Plot of the self-consistent energy-dependent “gap
function” Z(w) for typical values of the parameter. The full line
and the dashed line represent the real and imaginary part of
2(w), respectively. The step function represents the gap function
used by Bogoliubov (equal to 1 from 0 to w; and to — £ from w,
to the Fermi energy).

For polyvalent metals, however, the umklapp processes
play an important role and it is preferable to replace
¢*/4k¢* by the mean value over the first Brillouin zone.
For metals with a simple structure (quasi-spherical
zone), this mean value is of the order of 2(42)~%; then

1 a2 2
m—[——_] .
2l e+2(4z)

Now, it must be emphasized that the above expression
is no more than an order of magnitude estimate of \;
for, we have not taken into account any effect of the
crystalline structure although it is clear that it deter-
mines the mean value of ¢2/4k2. Also, (47) is based
on the assumption that the screening radius of the
electron-ion interaction is the same as the screening
radius of the direct Coulomb interaction between
electrons and may be estimated on the basis of the
Fermi-Thomas model. This assumption is very much
open to doubt, particularly for the heaviest ions. In
any case, it may be seen from Table I that this simple
model leads to a fair order of magnitude agreement
between the “NoV” estimated from experimental data
using the BCS expression for the critical temperature
and our parameter:

(47)

I

A—p*f= A —
14+u In(ep/w;)

(48)

computed from basic crystallographic and thermal data.

We have also plotted both parameters A and p*
versus ¢ for monovalent, bivalent, and tetravalent
metals [using a typical value In(ep/wi)=67. Since a2
is always of the order of 0.3 or larger (0.8 to 1 for
alkali metals), this plot indicates that most if not
all metals should be superconducting (see Fig. 3). On
the other hand, the computed critical temperature is
exceedingly low if (A—u*) is smaller than 0.15, say.
For example, the critical temperature of sodium would
be of the order of 103 °K; it is then safe to assume
that even if perfectly pure sodium were supercon-
ducting at such low temperatures in zero magnetic field,
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TasLe I. In this table, a* is computed from crystallographic data and m*/m is estimated from the electronic specific heat. These
data, as well as the Debye temperature and the critical temperature (columns 3 and 4) are taken from the “American Institule of Physics
Handbook,” McGraw-Hill, 1957. NV (column 8) is estimated from the critical temperature with the help of BCS equation. The ex-
ponent of the isotope effect (last column) is derived from this experimental value of VoV with the help of relation (50).

a m*/m ©p(°K)  T.(°K) A u* A—p* NoVexp  —(da/A)(M/dM)

Na 0.67 1.6 160 0.25 0.12 0.13

K 0.83 e 100 0.25 0.12 0.13

Cu 0.45 1.15 343 0.20 0.10 0.10

Au 0.51 1.1 164 0.18 0.10 0.08

Mg 0.45 1.3 342 cee 0.32 0.12 0.20

Ca 0.55 0.75 220 e 0.27 0.11 0.16 o .o
Zn 0.39 0.9 235 0.9 0.25 0.09 0.16 0.18 0.35
Cd 0.43 0.75 164 0.56 0.23 0.09 0.14 0.175 0.34
Hg 0.43 2 70 4.16 0.37 0.10 0.27 0.35 0.46
Al 0.35 1.5 375 1.2 0.33 0.10 0.23 0.175 0.34
In 0.40 1.35 109 3.4 0.34 0.10 0.24 0.29 0.44
Tl 0.415 1.15 100 2.4 0.32 0.09 0.23 0.27 0.43
Sn 0.37 1.2 195 3.75 0.34 0.10 0.24 0.25 0.42
Pb 0.38 21 96 7.22 0.40 0.10 0.30 0.39 0.47
Ti 0.32 ~3 430 0.4 0.41 0.11 0.30 0.14 0.25
Zr 0.51 1.1 265 0.55 0.37 0.11 - 0.26 0.16 0.30
\4 0.28 =~ 338 4.9 0.47 0.12 0.35 0.24 0.41
Nb 0.29 = 320 8.8 0.47 0.12 0.35 0.32 0.45
Ta 0.29 ~ 230 4.4 0.45 0.11 0.34 0.25 0.42
Mo 0.27 1.9 360 o 0.38 0.10 0.28 e e
U 0.30 8 200 1.1 0.47 0.12 0.35 0.19 0.36

the least residual field (magnetic impurities) would
exceed the very small critical field and prevent super-
conductivity. This argument practically excludes all
monovalent metals.

Finally, we notice that all experimental values of
“NoV” for metals appear to be smaller than 0.4 (see
Table I) in good agreement with our prediction since
w* is practically 0.10 in all cases and A cannot exceed
0.5 (to the first order of the expansion in the electron-
phonon interaction).

Isotope Effect

The isotope effect consists in the dependence of the
energy gap A upon the phonon frequency w; (the
phonon frequency itself is proportional to M—%, every-
thing else being equal). Differentiating (31) with respect
to the phonon frequency, we obtain in a straightforward
fashion:

dA/A=—1(dM/M){1—[AIn(2w/A)—1). (49)

0.4

0.3

0.2

0.1

F16. 3. Plot of the parameters A and u* vs a2 [see expressions
(44) to (48)] for different valencies Z=1, 2, and 4

Using the property u*=0.1, we can derive from (49) a
semiempirical relation:
dA/A=—3(dM/M)[1—0.01(N,V)2],  (50)
indicating a significant discrepancy from the “ideal”
value —3(dM /M) postulated by BCS. Note that the

discrepancy is larger for low temperature supercon-
ductors (see Table I).

VI. CONCLUSION

The positive aspect of our results is that they confirm
the approximations to the effective potential made in
the past, particularly Bogoliubov’s approximation, and
give a precise meaning to each parameter which can,
therefore, in principle, be computed from the basic
crystallographic data. Also, the orders of magnitude of
the computed transition temperatures are generally
satisfactory.

The negative features are, firstly, the isotope effect
which is particularly in conflict with the results of
Geballe and Matthias on zinc, secondly, the prediction
that all metals should superconduct at sufficiently low
temperatures, and thirdly, the fact that it is not
obvious from the theory why no material with 7,
higher than 18°K have yet been found. This last point is
not really too disturbing since the drastic simplifications
on which this theory is based could only be expected to
be reasonable in the weak-coupling limit; in the strong-
coupling case of high-transition-temperature super-
conductors, such effects as the phonon scattering
lifetime and, in general, the complex diagrams which
have been omitted from our Eq. (12), should be
incorporated in the theory.
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On the other hand, the first and second difficulties
are of a more serious nature for they do occur in the
weak-coupling limit. Because our results are essentially
insensitive to the actual computation scheme [compare
Egs. (31) and (42), and also Eq. (6.21) of reference 6],
we do not feel that our solution of the basic equation
(5) could be in serious error, at least in the weak-
coupling limit. Moreover, the predicted transition
temperatures are not remarkably sensitive to the errors,
or approximations, which do remain in our treatment,
with the possible exception of the cases in which zone
boundary perturbations are too extensive at the Fermi
surface (such as Bi, Sb, ---), so that the free-electron
Fermi sphere is a very poor approximation. This
suggests strongly that the results derived here are
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exactly the logical conclusions of the original assump-
tions of the BCS theory. Consequently, what serious
difficulties, such as the isotope effect, are to be found,
seem to us to require either a new look at the basic
assumptions of the theory, possibly using a different
interaction taking into account more complex diagrams
than the lowest order diagrams implicitly contained in
the BCS’s treatment, or re-examination of the experi-
mental evidence.
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Effect of an Impurity Layer on Surface Waves*
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We study here the effects of a homogeneous impurity mass layer on the surface waves of a semi-infinite
monatomic square lattice with nearest and next nearest neighbor central springs. In the long-wavelength
limit the impurity layer does not alter the surface waves from those of a pure semi-infinite lattice. However,
depending upon the ratio of the impurity mass to the host mass, and for wavelengths shorter than a critical
wavelength, the long-wavelength surface wave may disappear and new surface waves with frequencies either
higher or lower than the spectrum of the pure infinite lattice may appear. The relationship of this model to
the analogous one- and three-dimensional problems is discussed. We expect this theory to be applicable to
problems such as the effect of an oxide layer on the surface vibrations of a crystal.

I. INTRODUCTION

URING the past several years a number of

powerful experimental techniques for the study
of the details of the vibration spectra of solids have
become available. Specifically, analysis of the inelastic
scattering of slow neutrons from crystals® has enabled
plots of w(k) (frequency as a function of wave number
in a Brillouin zone) to be made in various directions in
k space for many solids. Visscher? has discussed the
application of the Mdssbauer effect for similar
determinations.

Along perhaps more conventional lines, Jacobsen?
and Bommel and Dransfeld* have produced strong
microwave phonon beams in solids and plans exist for
extending this technique to higher frequencies. One

* Research supported in part by the Air Force Office of Scientific
Research.
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may therefore hope that an extension to infrared
frequencies is not too far off. Changes in the velocities
of propagation of elastic energy due to dispersion of
both volume and surface waves could then be studied.

The existence of these high-frequency techniques
makes it desirable to have a more detailed picture of
the short-wavelength (dispersive) portion of the lattice
vibration spectra of real crystals than was needed to
interpret insensitive average properties such as the
specific heat.

Various aspects of this problem have been studied
by many authors: Montroll and Potts® and their
collaborators and Lifshitzé and his collaborators have
studied the nature of localized vibrational modes due
to point impurities; Lax? and Cochran et al.® have
clarified the nature of the dispersion of the volume
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