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Double injection in insulators is analyzed taking into account
that the lifetimes for the injected electrons and holes are different
and vary with injection level. Assuming charge neutrality, a
detailed solution is obtained for the simple model of an insulator
with a single set of recombination centers ulled with electrons in
thermal equilibrium. The major results are: (i) There is a threshold
voltage Vth below which the double-injection current is negligible
and at which this current rises steeply with voltage. At this
threshold voltage the hole transit time, r„,ts=L'/p„Vts, 1s com-
parable to the hole lifetime v„, i,„.The subscript "low" refers to
the lifetime at low injection levels. The lifetime at high injection
levels in this model will generally be longer. (ii) For an electron
capture cross sectj,on 0 much smaller than the hole capture
cross section r~, there is a negative resi, stance between Vth and
Vsr = (0„/~„)Ug, . With increasing current, the voltage decreases
from Vth to V~. This negative resistance has its origin in an
increasing hole lifetime with increasing injection level, owing to
electron depopulation of the recombination centers by hole

capture. (iii) At still higher currents the double-injection current-
voltage characteristic is similar to that for a semiconductor at
high injection levels. At sufficiently low currents the neutrality-
based, double-injection solution is no longer self-consistent with
respect to the neglect of space charge, and the true current is a
one-carrier SCL (space-charge-limited) current which, for the
simple model analyzed, is the electron SCL current for a trap-free
insulator. In real insulators the one-carrier SCL current may
mask the voltage threshold eGect, (i) above, depending on the
physical parameters of the crystal. On the other hand, under
the condition speciiied in (ii) above, the negative resistance will
always be observed. Experimentally, the negative resistance
should produce either current oscillations or a hysteresis in the
voltage vs current for dc applied voltages. Both eGects have
been widely observed in insulators and high-resistivity semi-
conductors. It is shown how the theory can be extended to
more complicated models.

I. INTRODUCTION

'N this paper the problem of double injection, that is,
~ - the simultaneous injection of electrons from a
negative contact and holes from a positive contact, into
an insulator is discussed. In a previous paper, ' hereafter
referred to as (I), the author, in collaboration with
Rose, analyzed field-driven, double-injection current
Row in semiconductors and insulators for the injected-
plasrna case, in which most of the injected e/ectrons
and holes are not trapped but remain free to carry
current. The theory developed in (I) is applicable when
the injected carrier densities are large compared with
the density of discrete states in the forbidden energy
gap. Under this condition there is a single, common
lifetime for electrons and holes. In real insulators, at.
low injection levels, the lifetimes of electrons and holes
are generally signihcantly different and, accordingly,
so are the free carrier densities. Charge neutrality is
maintained through absorption of the difference in the
free carrier densities in the deep-lying states in the
forbidden gap.

In this paper we analyze in detail a particularly
simple model of an insulator with the characteristic
feature of diGering lifetimes for electrons and holes at
low injection levels. This model is illustrated in the
schematic energy-hand diagram of Fig. 1. There is a
single, discrete set of recombination centers located in
the forbidden gap well below the Fermi level and
therefore completely ulled with electrons at thermal
equilibrium (no applied voltage). We emphasize that
this model was chosen for study because of the relative
ease of mathematical analysis and because of its
relatively simple behavior under double injection. The
same mathematical formalism will also yieM the
solution for far more complicated models.

' M. A. I-ampert and A. Rose, Phys. Rev. 121, 26 (1961'|.
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Before embarking on a mathematical analysis of the
model of Fig. 1 it is perhaps instructive to see what
signi6cant questions concerning its double-injection
behavior are suggested by an examination of the
problem on physical grounds. Referring to I ig. 1 we
see that the presence of the filled recombination centers
will interfere with the free transit of holes across the
insulator, in that the centers will act as a sink for the
injected holes. In this sense the recombinat, ion centers
present a kind of recombination barrier to the transit
of holes. A question which then suggests itself is
whether significant double injection, i.e., a two-carrier
current substantially in excess of the one-carrier current
that can be supported at. the same voltage, can take
place before sufFicient voltage is applied to make the
hole drift transit time t~ from anode to cathode con~-

parable to the low-injection-level hole lifetime 7„,&,

Here this question is answered negatively, contrary to
previous speculation. ' We show that there is a threshold
voltage t/'th for the onset of double-injection currents„
such that t„,,q-2r, , io.., where t, , h is the hole transit
time at voltage t/'&h.

A second interesting feature of our problem derives
from the variation of hole lifetime with injection level.
If the capture cross section for holes o.„of an electron-
occupied recombination center is much larger than the
capture cross section for electrons o-„of an unoccupied
center (e.g. o~ corresponding to a Coulomb-attractive
capture center, and o„ to a neutral capture center),

' I. Broser and R. Broser-Warminsky, J. Phys. Chem. Solids 6,
386 (1958). It is argued in this paper that even at low voltages,
such that t„))7„,i, and therefore with only a small fraction of
the density of holes injected at the anode reaching the cathode,
the double-injection current can be large compared with Ohmic
or single-injection, space-charge-limited currents. Their argument
leans, incorrectly, on an analog with a sensitive photoconductor,
in which indeed a small density of free holes is associated with a
much larger density of free electrons.
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then with increasing injection level the recombination
centers will tend to be depopulated by electrons in favor
of holes. Consequently the hole lifetime must increase
with increasing injection level; the recombination
barrier to hole transit decreases as the double-injection
current increases. We are led to inquire whether this
behavior of the hole lifetime can produce a negative
resistance in the current-voltage characteristic. Our
calculations yieM an affirmative answer; increasing
current is accompanied by decreasing voltage over a
voltage range from V~s to Vsr = (o /o „)Vt,s.s

The electron depopulation of the recombination
centers in favor of holes involves a transfer of electrons
from the recombination centers to the conduction band.
Thus, at the higher injection levels it is as if the
recombination centers of density iV& were also shallow
donors, thermally ionized at the ambient temperature.
One might therefore suspect a close relationship between
double injection into our model insulator at high
injection levels and double injection, at comparable
levels, into the corresponding n-type semiconductor,
with thermal free-carrier density no=E&, previously
studied in (I). This suspicion is borne out by our
calculations; the current-voltage characteristics for the
two situations are identical at high-injection levels.
Thus, our model insulator, in a manner of speaking,
is electronically converted into an n-type semiconductor
through double injection, and we describe the corre-
sponding portion of the double-injection current-voltage
characteristic as the "semiconductor regime. "The hole
lifetime in this semiconductor regime, rh sh (the elec-'

trons and holes have a common lifetime in this regime,
hence subscript P is omitted) is much longer than il.s

low-injection-level lifetime r„,to~. rs;ss (o„/o)r„,to~. .

Consequently the semiconductor regime persists down
to voltages much lower than Vt,i„since the voltage
requirement for validity of this regime is, from (I):
t„=l.'/1J, ~V(rs;sh. Accepting the fact that voltage
varies continuously with current, proved in Appendix
A, we now see, perhaps more clearly, why a negative
resistance is inherent in our model, for 0-„&)o- .

r E

FIG. 1. Schematic energy-band diagram for a simplified mode
of an insulator. There is a single set of defect centers, of density
Xz, located at energy Ez well below the thermal-equilibrium
Fermi level II. These centers function as recombination centers
under double injection. Eg and Ev denote the conduction and
valence band energy extrema, respectively.

' The fact that an increase in free carrier lifetime with injection
level can lead to negative resistance has been previously pointed
out by Stafeev, who discussed the question qualitatively and
with application to diffusive current Qow problems. V. I. Stafeev,
J. Solid State Phys. Acad. Sci. U.S.S.R. 1, 841 (1959}Ltranslation:
Soviet Phys. —Solid State 1, 763 (1959)g.

FIG. 2. Schematic
current (J)-voltage
(V) characteristic
(the solid curve), on
a log-log plot, for
double injection in
the model of Fig. 1,
for the case that
(vo„)))(so ). The
lower, dashed curve
represents the one-
carrier (electron),
space-charge-limited
current-voltage char-
acteristic for the
trap-free insulator.

VM

These various features of double injection for the
model of Fig, 1, with 0„))0.„, are illustrated in the
schematic current-voltage characteristic shown on a
log-log plot (the solid line) in Fig. 2. They constitute
the main results of this paper.

One feature of the present work is of particular
interest because it represents a departure from (I) and
other related literature4' on field-driven, double-
injection currents in solids; the above results have been
derived under the assumption of local charge neutrality
throughout the insulator. The double-in jecHoe currents
studied here are its uo toay sPace charge Hated, -but are-

purely recombinatiou 1imited LIn-precis.ely the same
sense, the so-called. "Ohmic relaxation regime" of the
injected plasma problem studied in (I) is also purely
recombination controlled; it is in no way space-charge
controlled, as was implied by the derivation in (I).
Thus, while the assumption of charge neutrality was
not made in (I) in discussing this regime, it could have
been made without altering the result. We show this
later in this paper and further provide a correction to
(I) bearing on this point. In this paper we shall here-
after refer to the "Ohmic relaxation regime" simply as
the "semiconductor regime, " thereby highlighting the
role of the thermally generated free carriers in deter-
mining the current-voltage characteristic. $

Interestingly, both at su%ciently low and su%ciently
high currents the assumption of charge neutrality is
necessarily incorrect and space charge plays an im-
portant role in the current Qow. At low currents, the

4 R. H. Parmenter and W. Ruppel, J. Appl. Phys. 30, 1548
(19S9).' M. A. I ampert, RCA Rev. 20, 682 (1959).
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actual current Qow in our model insulator is the purely
space-charge-limited, one-carrier electron current corre-
sponding to a trap-free insulator. Current varies as the
square of the voltage as indicated by the dashed line
in Fig. 2. The recombination centers, being 6Hed with
electrons in this regime, cannot serve as electron traps.
At very high currents, both recombination and space
charge play a role in limiting the current. This leads
to a cube law dependence of current on voltage, '
shown as the highest branch of the current-voltage
characteristic (the solid curve) in Fig. 2.

The scheme of this paper is as follows. %e first discuss,
in Sec. II, the assumptions underlying the theory and
some consequent limitations on its applicability. In
Sec. III are given simplified derivations, for the model
of Fig. 1, of the threshold voltage, of the semiconductor
(square-law) regime, and of the negative-resistance
regime which is present when 0-„))0-„.In the concluding
Sec. IV some implications of the theory for experiment
are discussed. It is pointed out there how the present
theoretical results may be related to some well-known
phenomena observed in insulators and in high-resis-
tivity semiconductors.

The mathematical details pertinent to the rigorous
solution are given in the Appendices. Because the
mathematical technique employed in the analysis of
the model of Fig. 1 is applicable to much more general
models of insulators, the theory is developed in some
detail. In Appendix A the formal solution is obtained
for the model of Fig. 1. In Appendix 8 this solution is
studied for the case that o-„))0-„,the condition leading to
a marked negative resistance. In Appendix C the
domain of self-consistency of the solution is examined
with regard to the assumption of charge neutrality.
In Appendix D it is shown that the mathematical
technique of the previous appendices can be extended
to analyze far more complicated models of insulators.
Finally, in Appendix E the space charge in the semi-
conductor regime is derived and a correction therein
made to (I).

The discussion in this paper is confined throughout
to steady-state, one dimensional current Qow. Further,
mks units are employed throughout except where
otherwise specified.

II. ASSUMPTIONS

The assumptions on which the theory is based are
as follows:

(i) Charge neutrality holds throughout the insulator.
For the model of Fig. 1 this assumption is equivalent

to the speci6c requirement that the injected space-
charge density be small compared to the difference
between the injected free-electron and free-hole densi-
ties, n, and p respectively. In Appendix E it is shown
that this requirement is indeed met in the semicon-
ductor regime of our problem, which sets in after the
common, high-injection level lifetime is attained. This

is the square-law branch of the solid curve in Fig. 2.
At still higher voltages finally the requirement is no
longer met, and space charge must be carefully treated
to obtain the correct solution. This is the so-called
insulator regime of (I), which is also a regime of the
present problem, namely the cube-law branch of the
solid curve of I'ig. 2. The solution for this regime is
already given in (I). The new results in the present
problem arise in the domain of currents below the
semiconductor regime, and therefore it is in this domain
that we must examine the assumption of charge
neutrality. Since p((rt in this domain, for our model
insulator, the requirement is simply that the space-
charge density be small compared to e. Clearly this is
also the condition characterizing significant double-
injection current Qow as opposed to one-carrier, space-
charge-limited current Qow. Thus, at currents below
the insulator regime, the domain of validity of the
neutrality assumption is simultaneously the domain of
phenomena peculiar to double-injection current Qow.

It is clear that the double-injection current Qow

described by our theory cannot hold down to arbitrarily
low currents. For the theory predicts a threshold
voltage for double injection, and corresponding to this
voltage there is a space charge which must be exceeded
by n if the solution is to be self-consistent with the
neutrality assumption. Thus at "low" current levels
the Qow must be a one-carrier, space-charge-limited
current; for the model of Fig. 1 this is the electron
current for a trap-free insulator, given bye J=9ett V'/
SI. , with e the static dielectric constant. This square-
law current-voltage characteristic is shown as the
dashed line in the log-log plot of Fig. 2. The transition
from one-carrier, space-charge-limited Qow to two-
carrier, neutralized Qow takes place where the respective
current-voltage characteristics intersect. This transition
is discussed in Appendix C for the case of greatest
interest a „))o-„.There it is shown that over a substantial
range of practical conditions our double-injection
solution is self-consistent, and therefore the negative
resistance should be exhibited as calculated.

(ii) The current is volume-controlled, i.e., the con-
tacts impose no significant constraints on the currents
which are entering or leaving the crystal.

(iii) Diffusion currents are negligible.
This pair of assumptions is identical to the pair of

assumptions (ii) and (iii), respectively, of (I). The
discussion of these assumptions in (I) is equally valid
here and therefore need not be repeated at length,
Both assumptions are violated in the immediate
neighborhood of an injecting contact. Therefore the
solutions obtained by our theory will give the correct
over-all description of double-injection current Qow

only if the separation between injecting contacts is
sufFiciently large. Since diffusion-type, rather than

6N. F. Mott and R. W. Gurney, E/ectronic Processesin Ionic
Crystals (Oxford University Press, New York, 1940), 1st ed. , p.
172.
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field-driven type, solutions dominate near the contacts,
"sufTiciently large" means L/L ))1, where L is the
separation between contacts and L, the ambipolar,
high-lifetime diffusion length: L,'= 2D„Dvri, i,i,/(D„
+D„), with D„and D„ the electron and hole diffusion
constants, respectively. For L/L, &)1, corrections to
the current-voltage characteristic over most of the
negative-resistance regime of Fig. 2 are of order L,/L.
This is shown in Sec. III C. Only at voltages extremely
close to the threshold voltage V&h will the corrections
be more substantial, and at such voltages and currents
the corrections due to space charge will also likely be
quite substantial, as shown in Appendix C. Corrections
to the current-voltage characteristic in the semicon-
ductor regime, due to the contact constraints, will be
small provided L/ L, »2/1 +1 n( J/ J3r)j, where Jjr is
the current at the voltage minimum V~ in Fig. 2 and
J is the actual current. '

(iv) Low-field, field-independent mobility conditions
obtain.

This assumption is necessary to make the problem
analytically tractable. It will frequently be realized in
insulator studies. It is most likely to fail in studies of
high-mobihty semiconductors.

(v) Thermal re-emission of carriers from the recombi-
nation centers is negligible.

Specifically, the rate of thermal re-emission of carriers
from the recombination centers to a band must be small
compared to their capture rate from the band. The
thermal re-emission rate per electron becomes negligible
compared with the capture rate when the localized
states involved lie more than a few kT below the
electron demarcation level. This situation ordinarily
characterizes a recombination center in insulator
studies. In those unusual situations where net recombi-
nation is a relatively small diBerence between large
capture and thermal re-emission rates there are sub-
stantial calculational difficulties not only with double-
injection problems but with photoexcitation problems
also. '

(vi) The thermally-generated free carriers can be
neglected.

First we require that the densities of injected free
carriers substantially exceed the densities of thermally
generated carriers for both electrons and holes. A
second requirement is, referring specifically to the
model of Fig. 1, that the hole transit time at the
threshold voltage V~i„hence the low-injection-level
hole lifetime, be shorter than the electron dielectric
relaxation time. The converse situation, where the
free-carrier lifetime is longer than the dielectric relax-
ation time, was studied in (I) under the assumption
that the lifetime did not change with injection level.
Both requirements will commonly be met in insulator
studies.

7 D. O. Xort.h {priva, te con&munication).
& A. Rose, Progress in Se~ucondlctor {Heywood and Company,

I td. , London, 1957), Vol. 2, p. 109,

the expression of neutrality:

ri —p —pii ——0,

the particle-conservation equations:

(2)

~.—(ph) = r = —u=(~&),
dx 8$

(3)

and the recombination-kinetic expressions:

r =p(va „)m~——n(vo „)pii, eg+ pii ——Xii. (4)

In the above equations J is the total current density,
e the magnitude of the electronic charge, jm„and p„
the electron and hole mobilities, respectively, h the
electric field intensity, x the position variable, r the
recombination rate density, o„(o. ) the cross section
for capture of a hole (electron) by a filled (empty) re-
combination center, and v the free-carrier velocity.
Angular brackets ( ) about a quantity denote the aver-
age of that quantity over the velocity distribution of
the free carrier in question. Further, e and p are the
injected free-electron and hole densities, respectively,
and we have neglected the thermally generated free
carriers. Finally, Xg is the density of recombination
centers, pii and Nii the densities of holes and electrons,
respectively, in these centers, and in thermal equilibrium
e~= X~.

The boundary condition appropriate to our problem
is that the electric field intensity vanish at the hole
injecting contact, x=L:

8=0 at x= L.

This boundary condition is discussed in Appendix A.
The two equations in (3) may be conveniently

combined to give:

(a+1)r (a+1)n (a+1)p—
C:(p

—)&j=
dS Py PpT ~ Itl pT p

with a= p, „/p, „, 1/r„=(vo„)pg, and 1/r„=(vo,)eii.
Equation (4), solved for pii, gives

1+(rs/p)(vo „)!(vo,).
@le discuss the different regimes separately.

uI. SIMPLE, APPROXIMATE ANALYTICAL
ARGUMENTS

In this section we present simplihed derivations, for
the model of Fig. 1, of the threshold voltage, of the
semiconductor regime, and of the negative resistance
regime for the case o-„))0„. The rigorous analytical
solution is given in Appendices A and B.

The equations characterizing the problem are the
current-Aow equation:

J=en@„B+epIJ, „8=constant,
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A. Voltage Threshold

This is a low-injection-level regime in which say
n(1Vz/4. Throughout this regime the recombination
centers are still largely filled with electrons, nz=Xz,
and therefore most of the injected holes are captured
by the recombination centers, p«n. It then follows
from (2) and (4) that

e be infinite at x=l. 7Vhen this is taken into account
the current rises steeply, but not vertically, near
threshold. More precise expressions are obtained in
Sec. III C and in Appendix A. The effects of the
constraint at the injecting hole contact on this regime
of current are discussed in Sec. III C; the effects of
space charge are discussed in Appendix C.

p rP(tea „)/1Vz(tio „). (8) 3. High-Current, Semiconductor Regime

Here we have assumed that n(1Vz(vo„)/(no„) as well
as n(1Vz/4.

Equation (1) is solved for h, giving

J 1 p n(t~.)—
) 0=—Q~— g)

enp, „(1+8) n 1Vz(i o.,)
where we have also used Eq. (8).

Computing d(nb)/dx from (9), and taking pz n in

(4), we obtain from Eq. (3) the result:

dn e(t a„)cVz

d8 (a+1)n—»z--- =
IJp7 n, high

(15)

%e discuss this regime for the case of greatest
interest, (eo.„)»(vo.„). Under this condition, at high-
injection levels the recombination centers fill up with
holes, pz 1Vz. Consequently, to a high degree of
approximation, the electron lifetime v.„,h;,h is a constant
independent of injection level: r„,t;,t, 1/(tio„)1Vz. .

Since p n= ——pz, from (2), and pz~1Vz independ-
ent of injection level and therefore of position, we may
replace p nin -Eq. (6) by JVz. —

Integrating this simple equation, subject to boundary
condition (5), we obtain

('v0'~)iVz
h = (I. r). — (12)

Since the Geld does not depend on current J as a
parameter, neither will the voltage. Consequently
there must be a threshold voltage for double-injection
current Qow, with the current rising vertically at low
currents. This threshold voltage V&h is given by

From Eq. (9) it follows that dn/n'= —(ep„/J)db,
with a correction term of order 0' which we neglect,
assuming 0((1.These results combine to give

(na „)1Vz
dS.

gdg= —Edx, E=—
87 h'ghP .Pp~i g

(16)

At this point it may be noted that Eq. (15), after
replacing 1Vz by nr pr, —is identical with Eq. (14) of

(I), which characterizes the semiconductor (ohmic
relaxation) regime of the injected plasma problem.
The properties of that regime are worked out in detail
in (I). These properties, replacing nr —Pr by 1Vz, apply
equally well to the present case. Nevertheless it is
convenient, for purpose of a simplified analysis of the
negative resistance regime in the following section, to
derive here some simple properties of the semiconductor
regime which were not explicitly spelled out in (I).
&Ye consider this regime in the limit e))»g, in which

case p=n and the electrons and holes have a common
lifetime 7 h'gh= 7 h gh as given above. In this limit e is

related to h, through (1), by (a+1)n= J/ep„h. Substi-
tution of this result into Eq. (15) yields the equation

(vo ~)1VzL'
Sdx=

&p, low
(va, )1Vz

)

2PyTp ioyv

(13)

Integration of this simple equation, subject to
boundary condition (5), yields the results:

8= $2Ã(L —x))'*, n= (I"1)

ep, „(a+1)L2E(L—x))&

Defining t~ ih
—L'/p„Vii„ the usual tr—ansit-time

expression, (13) is equivalent to the result:

The applied voltage V is given by V= Jo~hdx
= (-',)(2EL')'. Squaring both sides of this equation,
we obtain

t2,~h=2V.I i,w. (14) E= (9/8) V2/L' —+ J= (9/8)eri, ;~i'„ii~iVzV'/L' (18).
This is the result quoted in the Introduction.
Actually the assumption underlying the above

clerivation, namely n(1Vz/4, must be invalid near the
anode, since the boundary condition (5) requires that

This is precisely the result (A33b) of (I), except for
the replacement of (nr pi) by 1Vz. —This square-law

regime is a branch of the current-voltage characteristic
(the solid curve) shown in I.'ig. 2. Note that this
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derivation of the semiconductor regime in no way
involves the space charge; indeed we have explicitly
assumed neutrality. In Appendix E we show that,
consistent with the above derivation, the space charge
associated with the double injection is indeed small in
this regime.

The correspondence between the semiconductor
problem of (I) and the present problem is not a for-
tuitous accident. The transfer of electrons from the
recombination centers to the conduction band that
accompanies the capture of injected holes by the centers,
constitutes an electronic conversion of the insulator
into a semiconductor, as pointed out in the Introduction.
With completion of the transfer, the electronic behavior
of the insulator is thereafter precisely the same as the
equivalent semiconductor. This includes the electronic
behavior at still higher injection levels, namely at
voltages V such that Q=CV= eV/L) eX~L. This is
the insulator regime of (I).In this regime the neutrality
assumption i) is no longer a good approximation; space
charge now plays an important role, changing the
square-law current-voltage dependence to the cube-law
dependence:

J= (125/18) e~g;egg, p„V'/L'. (19)

Equation (19) is just Eq. (A38b) of (I). The static
dielectric constant e makes its appearance in (19) via
the Poisson equation which must be used in place of
the neutrality relation (2). The cube-law regime is a
branch of the current-voltage characteristic (the solid
curve) shown in Fig. 2.

In the "m(Xg" domain, 0(x(x&, Eq. (10) is
integrated to give

1 1 e&Vg(no. ~)+ (xg —x).
e EJt, uJ

(20)

J Xg(va-„)
+ (x,—x).

ep„Xg pp

In the "n)Xg" domain, x~(x&L, Eq. (16) is
integrated to give the same result as previously,
namely the relations (17), since the boundary condition
(5) still holds. The location of the plane x, is determined
by (17), taking x=x~ and +=X'. There is a discon-
tinuity in 8=BI at xI, as calculated from the two
domains: B~=J/ep„N~ from the "I&iV~" domain and
b~= J/ep Xg(1+u) from the "e)cV~" domain. For
a&1 the discontinuity is not appreciable and accurate
results are anticipated, whereas for u&1 the discon-
tinuity is substantial, and a correspondingly large error
is expected. These expectations are verified below.

The applied voltage V is given by: V= fo~Bdx
=fo*'B&dx+f,Ph&dx, where 8& and 8& denote 8 in
the "e&E&" and "m&Ez" domains, respectively.
Substituting in these integrals for 8& from (21) and
for 8& from (17), we obtain

The constant of integration in Eq. (20) is chosen to
satisfy the boundary condition at x= x&, namely
e=e&=X+. From Eq. (9), taking 8=0,

C. The Negative-Resistance Regime

The semiconductor regime discussed above is one in
which N&Eg throughout the solid. On the other hand,
at low double-injection currents in the neighborhood
of the voltage threshold, e&Sg throughout the solid,
in the simpli6ed picture of Sec. A above. The negative
resistance regime is one in which e&Sg over part of
the solid, extending out from the cathode, and e&Sg
over the remainder of the solid, up to the anode, with
e=X& at a plane x&, where 0&x&&L. (Strictly speak-
ing, this also includes the low-current regime near the
voltage threshold, but it proved convenient in Sec. A
to simplify the analysis by taking n &X+ everywhere. )
The location of x~ will, of course, depend on the current
J.

A considerable simplification in the derivation of the
properties of the negative-resistance regime is achieved
if the "e&Ãz" analysis of Sec. A is used up to the
plane x&, i.e, , for 0&x&x&, and the "e&E&"analysis
of Sec. 8 beyond the plane x&, i.e., for x&&x&L. The
corresponding solutions for n are joined continuously
at the plane x&. Since neither analysis is valid in the
immediate vicinity of xI, the entire derivation is only
an approximate one. Accuracy of the results is discussed
below.

J X~(vo,) )8E~ l»+»'+
I I (L—xi)' (22)

ep„)VS 2p~ 5 9 3
U=

With increasing current, x~ moves toward the cathode,
x =0. Finally, the negative-resistance regime terminates
at that current J~' where x~ ——0. (The prime superscript
is used to distinguish certain approximate results of
this section from the more rigorous results of Ap-
pendices A and 3.) Taking +=X', x=x~ ——0 and
J=J~' in (17), and using (16), we obtain

The voltage minimum V~', i.e., the voltage at the
high-current end, J=J~', of the negative-resistance
region, is determined from (22), setting x~ ——0 and using
(16) and (23):

4(u+1) L'E~(vo „)
U,M'=

38

From (1I) and (23) it follows that x~=L(1—(J/
J~ )}.Substituting this result into Eq. (22) and using

2(u+1)' eLiV~ 2(u+1.)'
JAI eLXe,'(no„). (23).

~high
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(23) and (24), Eq. (22) can 6nally be re-written as

J i(U=U-' l(a+1) II 1—,I+Jjr'l ( J,~'I J~'i

yv, .l
1—,I, (25)J ')'

U,~' 4(a+1)La —ln(1+ a)$'

V~ 3aL-', a' —a+in(1+a) ]

(26)

For a((1, both ratios in (26) approach unity, and
the approximate result (25) is very good indeed. For
a= 1, J~'/J~ 2.4 and U~'/V~ ——1——.3. For a))1,
J~'/J~r=2a and V~'/V~=2. 7; the approximate result
is here in serious error, as anticipated earlier.

An important feature of the negative-resistance
domain is the relatively small change of current with
voltage over most of the domain. We 6rst note, from
(13) and (24), that V~h/V~'=3(no~)/S(a+1)(eo. „), for
(no~)))(vo-„), so that V~q))V~r'. Therefore the depend-
ence of V on .(, Eq. (25), is completely dominated by
the term V,~,$1—(J/J~u')]'-', except for J very close to
JpI'. For exaniple, for .I =-0.2J,~&', V 0.64Vf, ~, . Thus,
with current varying by a factor of only 5 from 0.2J~'

with V&& given by (13). This simple, approximate
result replaces the much more complicated, implicit
relation between V and J given by the rigorous solution,
Eqs. (A14) and (A15) of Appendix A. Of course, by
the very nature of the derivation, the use of Eq. (25)
is restricted to currents J&J~I'.

Equation (25) clearly exhibits the negative resistance,
V, decreasing monotonically as J increases from 0 to
approximately J~'. I'urther, the derivation clarifies the
physical origin of the negative resistance. The "e&SR"
domain, x) x~, is a region of low resistance, the "e&lV~"
domain, x(x~, one of high resistance. Therefore the
bulk of the applied voltage appears across the "m&X~"
domain. As current increases, the "e)Xg" domain
grows at the expense of the "e&Eg" domain, i.e., x~
moves toward the cathode: x& ——L(1—(J/J~r')). The
resulting small increase in the resistance of the "n) iV~"
domain, due to its increased width, is more than offset
by the resulting decrease in the resistance of the
"e&Eg" domain due to its decreased width —hence
the negative resistance. Note that the voltage threshold
is also contained in this analysis; as J~ 0 in Eq. (25),
U ~ V~& as given by (13).

The accuracy of Eq. (25) can be assessed by com-
paring J~', V3r', as given by (23) and (24), respectively,
to the rigorously derived J~, V~ as given by (810)
and (A6), and (89) and (AS), respectively, in the
Appendices:

J,~' 2 (a+1)'La—ln(1+a)]

to J~', the voltage varies over the much larger range
from 0.64V&h down to V~'. The rigorous solution of
Appendix 8 yields about the same corresponding
voltage swing, namely from 0.67V&h down to V~.

If a more realistic model of the hole injecting contact
is employed, in which the electron current is blocked
at this contact and the hole current is predominantly a
diffusion current in the immediate vicinity of the
contact, then it may be shown, ' via an approximate
analysis along the above lines, that Eq. (25) is modi6ed
as follows:

( L.&' (L.l '
V=/ 1+—

I V(») —
(

—
I

1+—
f
V~', l, (27)

LI kL) Ll J ')

where Vt~5& denotes the right-hand side of Eq. (25)
and L„ is the high-lifetime, ambipolar diffusion length,
J. '=2D„D~rh;gh/(D„+D~). In Eq. (27), L is no longer
the total spacing between cathode and anode; rather it
is the length of solid over which the field-driven
currents are dominant. Likewise V is the potential
drop over the latter length. Clearly, for L))L„V

V(2;),' further, there is then small error in taking I
as the total crystal length and V as the total applied
voltage. Equation (27) is valid, approximately, down
to current J"=J~'/(2L/L, +1). I or J(J", there is
no "e&Eg" region over the distance L, whereas the
existence of such a domain was assumed in the deriva-
tion. For a)1, Eq. (27) is in error in the same way
that Eq. (25) is, and for the same reason. Nonetheless,
this analysis establishes the important result that, for
LV)L„, the negative-resistance and threshold regimes
are adequately described through use of assumptions
(ii) and (iii) of Sec. II, at least down to currents of
order J'=L,J~/2L. Indeed, the breakdown of our
double-injection theory, for L»L, is likely to occur,
going dome in current, at a higher current than J' due
to space-charge effects, i.e., due to the failure of the
neutrality assumption (i). This is discussed in Ap-
pendix C.

IV. RELATIONSHIP TO EXPERIMENTS

The theory presented in this paper has been worked
out in detail only for the simplest model, that in which
there is a single set of defect states in the forbidden

gap, completely filled with electrons in thermal equi-
librium and functioning as recombination centers under
double-injection excitation. The negative resistance in
the predicted current-volta, ge characteristic (Fig. 2)
has its origin in the unequal capture cross sections of
the defect states, o-„&)0- . This condition corresponds to
acceptor-like behavior of the defect state, where the
state is negatively charged. when occupied by an
electron. We may envisage charge neutrality maintaine(l
in this case through the presence in the insulator of an
equal number of shallow donors which play no further
role in the dynamical behavior of the insulator. In the
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current state of the art there is no semiconductor or
insulator available whose electronic structure is domi-
nated by such a set of ssmpte (single), deep-lying,
acceptor levels. On the other hand there are a number
of known deep-lying, double acceptors in Ge, e.g. , Ni,
Fe, %In, etc. , and Au is a known triple acceptor.
Highly purified Ge, doped with one of these elements
and suitably compensated with shallow donors, is a
high-resistance insulator at liquid nitrogen temperature.
Holes injected into such a sample of Ge would have a
low lifetime at low-injection levels and a higher lifetime
at higher injection levels where the acceptor levels had
been depopulated with electrons in favor of holes. The
magnitude of the change in hole lifetime would depend
directly on the initial electron occupancy of the deep-
lying acceptor states and this occupancy, in turn, is
determined by, and therefore controllable through,
shallow-donor compensation during crystal growth.
Since suitable injecting contacts for both electrons and
holes are available, it would appear that Ge and
perhaps also Si, for similar reasons, are promising
materials with which to look for a quantitative check
of our theory. Such experimental studies remain to be
carried out. However there do exist reports in the
literature, describing phenomena observed in high-
resistance Ge at liquid nitrogen temperature, which
appear to confirm the broad picture of double injection
presented in this paper.

Before giving these references we note that a current-
voltage characteristic such as that of Fig. 2, exhibiting
a current-controlled negative resistance, might ordi-
narily be revealed experimentally through either of two
striking effects: spontaneous oscillations under appli-
cation of an appropriate dc voltage, or an apparent
breakdown at some critical voltage followed by a
marked hysteresis in the current going down in voltage
after the "breakdown. " The oscillations wouM be due
to the dominance of the negative resistance over the
external circuit resistance. If the oscillations are sup-
pressed by the external circuit, then the "breakdown"
would likely be observed when, at some critical voltage
the current jumps from the lower branch of the char-
acteristic in Fig. 2 to some point on the upper branch,
the semiconductor regime. Following this "breakdown, "
the current will follow this upper branch as voltage is
lowered down to some other critical voltage, where the
current will drop sharply down to the lower branch,
extinguishing the "breakdown. "

Both types of phenomena have been observed in
high-resistivity Ge at liquid nitrogen temperature,
spontaneous oscillations in Au-doped Ge, ' and "break-
down" and hysteresis in Fe-doped Ge.' In neither case
are sufhcient data furnished by the authors to make a
conclusive, quantitative analysis of the observed sects

' A. A. Lebedev, V. I. Stafeev, and V. M. Tuchkevich, J. Tech.
Phys. (U.S.S.R.) 26, 1419 (1956) /translation: Soviet Phys. —
Tech. Phys. 1, 20'/1 (1957)).

'0 W. W. Tyler, Phys. Rev. 96, 226 (1954).

in the light of our present theory. It is interesting to
note, however, that in both cases the authors' "
attribute the observed phenomena, to double injection
with hole capture by the deep-lying acceptors. In the
Fe-doped Ge study, for example, the "breakdown" was
quenched by infrared excitation correlating well with
the known infrared quenching of bandgap-excited
photoconductivity in e-type Fe-doped Ge. This optical
quenching is due to optical release of the holes trapped
at the Fe sites into the valence band.

Hysteresis in the dc current-voltage characteristic is
a common observation in insulator studies. This effect
has been reported by Nicoll" for CdSe powders, and
further data and ana, lysis were published more recently
by Bube."He attributes the effect to double injection
accompanied by changing carrier lifetime; however
for this material his model is necessarily more compli-
cated than the simple one of Fig. 1 of this paper.
Smith" has frequently observed a hysteresis associated
with steeply rising, and falling, double-injection currents
in single crystals of CdS. In his experiments the double
injection is verified directly by observation of the
bandgap light emitted through the radiative recombi-
nation of electrons and holes.

Finally we may note that there are also extensive
observations of spontaneous oscillations in photocur-
rent, with dc applied voltage, in single crystals of
insulators: CdS "ZnSe "and high-resistivity GaAs."
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APPENDIX A

Formal Theory for a Single Set of Recombination
Centers, Comyletely Occupied by Electrons

in Thermal Equilibrium

The equations de6ning the mathematical problem
are Eqs. (1)—(4) of Sec. III. The key choice of inde-
pendent variable for our solution is the free-carrier
density ratio n/p, which we denote by v. .

1 F. H. Nicoll, RcA Rev. 19, 77 {1958).
12 R H. Bube, J. Appl. Phys. 31, 2239 (1960)."R. W. Smith, Phys. Rev. 105, 900 (1957), and private

communication."S.H. Liebson, J. Electrochem. Soc. 102, 529 (1955); R. H.
Bube and L. Barton, RCA Rev. 20, 564 (1959)."R.H. Bube and E. L. Lind, Phys. Rev. 110, 1040 (1958).

's J. Blanc, R. H. Bube, and H. E. MacDonald, J. Appl. Phys.
(to be published).
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8=J/eZz. p(u+a). (A3a)

For the model of Fig. 1, p is given by (A2), so that
(A3a) becomes

J (u —1)(Pu+ a)
h(u), h(u) = (A3b)

eap, „Nzz (u+a)

The recombination equation most useful for the
present analysis is Eq. (6). Substituting for pz, p, zz,

and 8 in this equation the corresponding expressions in
u as given by (A1), (A2), and (A3b), and carrying out
the indicated differentiation, (6) reduces to

f(u)du=—
ae!Vzz'(va„) (u —1)(pu+a)'

dx, f(u)= . (A4)J u(u+a)'

The boundary condition used in solving the problem
is that stated in (5), namely, 8=0 at the hole-injecting
contact, x=L. This choice of boundary condition
requires some discussion. In the more rigorous formu-
lation of the problem, in which the space charge is
correctly accounted for by the Poisson equation,
N —p —p~= (o/e)d8/Cx in place of Eq. (2), there are
two boundary conditions on the problem. For a theory
of field-driven, double-injection currents with non-
constraining contacts the appropriate boundary condi-
tions are those employed in (I), namely the vanishing
of the electric field intensity at both injection contacts:
h=0 at @=0 and at x=L. In assuming neutrality
Eq. (2), and thereby dropping the d8/Cx term, the
order of the differential equation determining 8, not
written down here, is reduced by one, and therefore it
is necessary to drop one boundary condition. %e know
from the discussion in Sec. III 8 that at high injection
levels the present problem is equivalent to that of
double injection into an e-type semiconductor. The
analytical solution to this problem in (I) shows that
in the semiconductor (Ohmic relaxation) regime the
field intensity rises smoothly from zero at the hole-
injecting contact, the anode, to a maximum extremely
close to the cathode. This is also the solution one
obtains by assuming charge neutrality and dropping
the condition h=0 at the cathode. (In this case the
field is a maximum right at the cathode instead of very
close to the cathode. ) Indeed, following this prescription,
in Sec. III 8 we explicitly re-derived the J~ V' current-

As a function of u, pa as given by (7) is re-written as

pzz = aN Jz/(pu+a), u == zz/p,
(A1)

a =zz„/zz„,
'

p= a(oo „)/(oa „)

Equations (2) and (Al) give for p and zz:

P = acVzz/(u 1)(P—u+a),
(A2)

N =Pu= aN gu/(u 1—) (Pu+a)

Equation (1) gives for h,

g= J/Jg ——1/Ji(uo), Ji=aeiVzo'L(vo„), .

f(u)du
(A5)

More generally, at any plane x between cathode and
anode, the relationship between x and N is

x/L = 1—gF (u) = 1—F(u)/F (uo). (A6)

From (A3b) and (A4) it follows that the applied
voltage, V= Jo~hdx, can be written as

12
V=

a'e'zz „Nzzz(vcr „)

tz0

h(u) f(u)du

Combining (A7) with (A5), we obtain

&= V/Vi =gG(uo) =G(uo)/r'(uo),

Vl =

L'A'I~(oo'n)!zion)

G(uo) = g(zz)du,

(u —1)'(pu+a)'
g(u) =h(u) j(u) =—

u(u+a)'

(AS)

More generally, the potential V(x) at any plane x
between cathode and anode is given by

V(x) g' Vg G(u)——=1——G(u) =1—
V V G(uo)

(A9)

voltage characteristic for the semiconductor regime.
Actually this same procedure was implicitly followed
in the cruder argument of (I), Eqs. (14) and (15).

The fact that the boundary condition (5) is known
to be appropriate for the semiconductor regime of our
problem does not automatically establish that it is
proper at lower currents. Here we appeal to a physical
argument. The reason that, in the semiconductor
regime of the problem of the plasma injected into an
e-type semiconductor, the field rises to a maximum
near the electron-injecting contact, the cathode, is that
the holes are the difficult carriers to transport across
the solid. Volume-distributed, thermally generated
electrons are already available for charge neutralization
by Ohmic relaxation. It is obvious that, in the present
problem also, the holes are the dificult carriers to
transport across the solid, at all current levels below
the insulator regime. For this reason we expect that
the field intensity must grow with increasing distance
from the anode.

Returning to the mathematical development, it is
evident from (A3b) that 8=0 corresponds to u=1.
Integrating Eq. (A4) from x=0 to x= L, and letting no

denote the value of N at x=0, we obtain:
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8 C D
f(u) =A+ + +

u u+a (u+a)'
(A10)

A. =P' P= —1, C= (1—P) {1+(2a+1)P},
(A11)

D= a(a+1) (1—P)',

P Q R 5
g(u) =Mu+X+ —+ + —+

u u+a (u+a)' (u+a)'
(A12)

The essential equations for the determination of the
current-voltage characteristic are (A5) and (AS). The
relationship between current and voltage is an implicit
one, via, the parameter up= (ts/p) =p. Except over
certain limiting ranges of voltage it is generally im-

possible to eliminate the parameter Np in terms of
known, elementary functions and thereby obtain J
directly as an analytically describable function of
voltage. This same situation characterizes the solutions
to space-charge-limited current Row problems, for both
one-carrier flow" and two-carrier flow t the Appendix
of (I)j.

The integrals in (A5), with f(u) given by (A4), and

(AS), are evaluated by the well-known technique of
expanding the integrands in partial fractions:

numerical program in the future with the aid of a
digital computer. However, it is obviously desirable to
pursue further the analytical study of the problem in
order to gain further insight into the solution. The
simplified arguments of Sec. III are useful in illumi-

nating the physics of double injection. It remains to
put these results on a firm footing, to establish their
limitations Las for example in (26)j, and to provide a
more powerful analytical technique which will be
applicable to a more general class of double-injection
problems. The following discussion is aimed toward these
ends.

First we note that for u&1, f(u), g(u), and h(u) are
all positive, as is obvious from (A4), (AS), and (A3b),
respectively, by inspection. From this it follows from
their definitions as integrals, (A5) and (AS), respec-
tively, that both F(up) and G(uo) increase monotoni-
cally with increasing Np, from zero at Np

——1 to infinity
at up ——~. This last property is verified by inspection
of the leading (largest) term in the expressions for
F(up) and G(up), (A14) and (A15), respectively, at
large u. It is now obvious from (A5) that:

g is a monotonic decreasing function of up in the
interval

M=/', LV=P'{3a—(3a+2)P}, P= 1,
1&up& ~, with a't up= 1

and g =0 at up ——~. (A16)
Q=-(1-@{1-(3"-1)~+(6"+6+»~ },

(A13)
R= a(a+1) (1—P)'{(a—1)—2(2a+1)P},

g= —ao(a+1)o(1—P)P,

Substitution of (A10) into (A5) and (A12) into
(AS) give the final results:

+-,'S
(1+ )'

(A15)
(uo+a)'

Strictly speaking, the results obtained up to this
point are all that we need to obtain a complete picture,
within our mathematical model, of the current Qow,
including potential, field, and density distributions.
For given a and P we need only plot numerically all
quantities of interest versus I using the expressions
derived above. Indeed it is planned to carry out this

i~ M. A. Lampert, Phys. Rev. 103, 1648 (1956),

—=F(uo) =A(uo 1)+8—lnuo

up+a 1 1
+C +D —,(A14)

1+a 1+a u+a
'U—=G(up) =—M(up —1)+E(up —1)+P liluo

2

up+a 1 1
+Q ln +8 ——

1+a 1+a up+a

'U, being the ratio of two monotonic functions, 'U

=G(up)/F'(uo) from (AS), need not have such simple
behavior as a function of Np., in particular 'U need not
be monotonic and, further, it need not approach zero
as Np approaches infinity. Mathematically, this is the
source of the most interesting physical features in the
solution to our two-carrier problem.

%e first study the behavior of 'U at very large Np..
up))1, up))a, up))P. The asymptotic expansions (A14),
(A15), respectively, in this large-uo domain are:

F(up) Aup+(8+C) lnup+ — —C ln(1+a) —A
1+a p

1 1
+ (aC D) +a(D—', aC) —+— (A17-)

Np Np

G(uo) sMuo'+»p+ (P+Q) lnup

+ + —Q ln(1+a)
2(1+a)' 1+a

-', M + (aQ —E)—
Np

1
+(aZ —sS—-'a'Q) + . (A18)

Qp
'I

The asymptotic expansion for the voltage 'U is,
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from (AS), (A17), and (A1S),

2(B+C) lnup
Amp

+
M

(A19)

In writing (A19) we have replaced M/2A' by 1/2P,
using (A11) and (A13). The bracket { }z; appearing
in (A19) is given in (A17). The expression (A19)
directly yields several major results:

(i) There is a threshold voltage,
'U, h= Vzh/Vi ——1/2P or Vza ——Vi/2P,

for two-carrier injection. (A20)

That is, as current g approaches zero (up approa, ches
infinity) voltage 'U approaches 1/2P rather than zero.

(ii) The two-carrier current g rises steeply with
voltage near threshold 'Uzh. (A21)

Over the entire range of currents, g = g (up), for which
the term $ $/Aup in (A19) is small compa, red to
unity, the corresponding voltage change is relatively
small.

The results (i) and (ii) confirm the conclusions of
Sec. III A, obtained by a simplified analysis, the
expression Vz/2P of (A20) being identical with the
expression L'/2Iz~z„, ~, of (13). Both results rest on
the neutrality approximation, which breaks down at
low currents as discussed in Appendix C.

(iii) For appropriate values of a and P, e.g. , for
B+C&0, i.e. , for P&2a/(2a+1), there is
a negative-resistance region in the two-

carrier current-voltage characteristic. (A22)

This follows from (A19) noting that for up sufficiently
la, rge the term 2(B+C) lnup is the dominant term
inside the square brackets, and that for B+C&0, 'U

decreases as up decreases. Also we have used the
relation B+C=P{2u (2a+1)P} from—(A11).

Of major interest is the voltage range over which
there is negative resistance. In this connection it is to
be noted that for P«1, P«a the term 2{ }q inside
the square brackets in (A19) becomes dominant, with
decreasing up, over the term 2(B+C) lnup at very large
up However, . under the same conditions, 2{ }~ is also
positive and the net result is that there is a large
voltage range of negative resistance for P very small,
as shown in Appendix B.

Returning to the general theory, we expect from
(A19) that, under conditions where there is a negative
resistance, the plot of 'U versus Np has the form shown

schematically in Fig. 3. (Since zl simply decreases
monotonically from ~ at up= 1 to 0 at ut}= ~, we do
not include a plot of g in Fig. 3.) The negative resistance
region in up extends from u~g, that value of No at which
'U has a minimum, to N0= . The voltage region of

FIG. 3. Schematic plot of the dimensionless voltage variable 'U

versus the parameter zzo=zzo/Po for the case that {vo„))){va„).
'U asymptotically approaches 'Uth as N0 —+ ~. The negative-
resistance region in voltage lies between 'Uth and 'U~, where 'U~
is the minimum value of 'U.

negative resistance extends from 'Ut}, to 'U~~, the
minimum value of 'U. From (AS), '{) has a minimum,
1 e , d'U/d. u.p=0, at that up for which

dG(up) dF (up)
F(up) —2G(up) =0.

dQp dQp
(A23)

Noting from (AS) and (AS) that dF( p)u/d pu= f(up)
and dG(up)/dup= g(up), and g(up)/f(up) =h(up), Eq.
(A23) can be written:

—',k(up)F(up) —G(up) =0. (A24)

This equation relates three variables u, P, and up.
From the experimental point of view, a and P are
determined by the physical properties of the solid, and
therefore Eq. (A24) is to be solved for up. From the
mathematical point of view, Eq. (A24) is a transcen-
dental equation in the variable up which is difficult to
analyze. On the other hand, Eq. (A24) is "only" a
cubic equation in the variable P. We therefore find it
convenient here to regard a and up as given, and to
solve Eq. (A24) for P. After lengthy algebraic manipu-
lation can rewrite Eq. (A24) as

$(P)=BpP'+BOP'+BP+Bp=0, (A25)

No —~
Bp= —{(2u+1) (up+3+)+zzup}

up+8

up(up —1)(2a+1)

2 (up+a)

up+ zz

+6a'+6a+1 ln —, (A26a)
8
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a(up —1)(7up+18a+5)
Bg————

2 (up+a)

a (up —1)(2up —2a—1)

2(up+a)

up+a
+3a(3a+2) ln, (A26b)

This confirms the solution (18) of Sec. III B. From
(A2) Np —po= pp(uo —1)=aEa/(Pup+a); thus, for
Puo«a or (v0„)up/(vp. ,)=(vo „/(eo,)«1, up —pp
This was a simplifying relation used in deriving (18).

APPENDIX B

Solution for Small (I

a(up 1)—(uo+6a —1)

2(uo+a)

2a (up+2a) up+a
ln

up+a 1+a

The coefficients A, etc., of (A11), and M, etc. , of
(A13) reduce to

A =P' B= —1, C = 1+2', D= a(a+1), (81)

uo(uo —1) uo+ a
In— —, (A26c)

2(up+a) up(1+a)

a (uo —1) uo(a+2) +a uo+ a—ln
up+a 2(up+a) up(1+a)

(A26d)

F(uo) = opp —Qpp'+ 04p-

G(uo) = Sop' —5I4p4+Sop'—

(A27)

(A28)

We shall not attempt here a general study of the
roots of Eq. (25). The case of greatest interest to us,
that in which there is a prominent negative resistance,
corresponds to P«1, as already noted. The important
root of Eq. (A25) for this case is obtained in Appendix B.

%e complete the general analysis with a brief study
of the high-current region, corresponding to No near
unity, or up =1+upwith .e«1. Systematic expansions
of (A17) and (A18), respectively, give for this domain:

Bp aup(lnup —-', ),

B,--,'up/a —ln (1+a)],
(83b)

(83c)

Bp a——,'(a+2) ln(1+a). (83d)

We observe that Bo is negative for all a&0, B~ is
positive for all a&0, and —Bg((8~. Under these
conditions it is readily seen that a physically significant
solution, P)0, to Eq. (A25) is

M=P', E=3aP', 8=1, Q= —1+3a'P,
(82)R= a(a+1) (a—1), S= —a'(a+1)'.

~e first find the appropriate root of Eq. (A25) which
yields the voltage minimum. As will be shown, this
root corresponds to large no. Taking Np))1, No))a, the
coefficients in the cubic equation (A25), namely the
B; given in (A26a) —(A26d), reduce to

Bp- —uoL-', (2a+1) lnup —(3a+1)], (83a)

(a+I)'
0',2=

2(1+a)'

ep —— La'(3+a)+4' —(a—1)P'],
3 (1+a)'

(A29a,)
no))a, 1

(A29b)

P—~
Bp

~
/B]—n(a)/up ~ up—S(a)/P,

(a+2) ln(1+a) —2a
~t(a) =

a—ln(1+a)

84 —— fa'(a'+4a+6)
4(1+a)4

+6aP 2''+P'$ —(A29c)
(a+I)'

(A30a)$3=
3(1+a)'

6I4= Pa'(a+4)
4(1+a)4

+aP (3a+28) (3 P)+P'~, (A—30b)

Sp —— Lao (a'+5 a+ 10)+18a'P
5(1+a)'

—9a(a —1)P'+ (a'—4a+1)P'j. (A30c)

Retaining only the lowest order terms in (A27) and
(A28), respectively, and eliminating e, the 6nal result is:

g= (9/8)'U ~ J= (9/8)exp„IJ~NgV'/L',
(A31)

r = 1/(Nip(vp „))= rg;, i,.

For small a, a«1, S(a) a/3; for a=1, Q, (a) =0.257;
and for large a, a))1, Q, (a) lna —2.

More accurately, P is given by (84) multiplied by
the correction factor, 1—Bp~Bp~/Bio The second te.rm
in the correction factor is equal to 2(lna)(lnup —p)/up,
and vre are clearly justified in neglecting it.

Returning to the physical problem, a and P given,
we see that, for P«1, there will be a root uxr of Eq.
(A24), and correspondingly a voltage minimum 'U&i,

at uir~'8(a)/P, as given in (84).
It remains to compute Uir. Using (81) and (82),

we first rewrite the asymptotic expansions (A17) and
(A18):

F(uo) P'up+2aP lnup+ La—In(1+a)]
—a'/uo+a'(2a+1)/uo'+ . , (85)

G(uo) pP' u'o+3 PaPup+3a'P Inup

+-', j a' 2a+2 ln(—1+a)j ao/up-
+a'(3a+2)/2uoo+ - . (86)



M URRAY A. LAM PERT

F(uM) a—ln(1+a),

G(uM) -', [a'—2a+2 ln(1+a)]. (BS)

From (AS), (A6), (87), and (BS) we have finally:

G(uM) —,'a' —a+in (1+a)
='UM(u) = (89)

[a—1n(1+a)]'U3f
F'(uM)

For up given by (84), the consta, nt (up-independent)
terms in (85) and (86) are dominant, so that

As Np decreases below N~ the current moves into the
Hatter portion of the negative-resistance region, and
the applied voltage is concentrated increasingly toward
the cathode, as discussed in Sec. III C. A convenient
measure of this concentration of applied held near the
cathode is the ratio of the true field Bp at the cathode
to the nominal, ohmically distributed field V/L. From
(AS) and (812) we have, noting that V /i(J /icy„N i)i

=I,
@pL/V- (Pup+ a)F(up)/G(up). (813)

p}M— p}M (&)
1~'(uM) a—ln(1+a)

(810)
Detailed analysis shows that BpL/V has its maximum

value at up ——up ——[a'—2a+2 ln(1+a)]l/Pl. Letting
Sp ——hpg and V= t/'2 at Up=le,

up))1: Sp
Pup+8

At up ——ui, defined above, up=upi PaiVz/4[—a ln(1—
+G)]((Nii. A't up= uM, up= 1$pM~GNip/[8(c)+g], with

uM and S(a) given by (84). For a»1, npM' 'N~,. for
a= 1, aping 0.8Eg, and for a((1, epg~0. 75/g.

For the electric field intensity at the cathode, we

have from (A3b) and (A5),

J (up —1)(Pup+a)

„Nil (up+a)

Ji (up —1)(Pup+a)

eu„&To (up+a)P(up)

J& (Pup+ 8)
(Pup+~)—,(812)

ep„Nri F (up)

with F(up) given by (A14) or its asymptotic expansion

(85), whichever is appropriate. We first note that for
up&ui, F(up) P'up, so that hp Jie/p„NEAP=2 Vih/L,

as seen from (A5), (A20), and (AS). The factor of two

comes from the linear variation of b with x in this

range of u, as exhibited in Eq. (12).

The negative-resistance region lies between 'U&i„given

by (A20), and 'UM given by (89). For large a, a))1
but pu((1, 'UM(u) —,

' and gM(u)~1/u; for u= 1
'UM=2. 0 and /M=3. 3; and for small a, a«1, 'UM(a)

4/3a and JM(a) 2/a'. We see that for p(&1, p(&a
the voltage range of negative resistance is quite large.
Over most of this range the corresponding change of
current is relatively much smaller. To see this we first
note, from (85), that F(up) is appreciably larger than
F (uM) only if P'up exceeds a—1n(1+a). For convenience

define ui by: ui ——4(a—1n(1+@)}/P'. For up ——ui, it is

easily seen that G(ui) P'ui'/2, so that Ui=G(ui)/
F'(ui) 2&tq/3. Further, pi= g(u, ) =1/5{a—in(1+a)}
=0.2gM from (810). Thus, as up varies from ui down

to uM, the voltage decreases from 2'Utq/3 down to 'UM,

whereas the current increase is only from 0.2/M to gM.

Thus, with the exception of the mobility-factor cor-
rection required for a) 1, discussed in connection with

(26), the results of Sec. III C are confirmed.
For the electron density at the cathode we have,

from (A2),

(SpL/V), = Bp2L/V2 (3u/Sp) l.

For P«&1, this represents a considerable concentra-
tion of applied potential near the cathode.

At up uM,——BpL/V = 8pML/VM=', , so that the
potential again varies gradually between anode and
cathode.

APPENDIX C

Domain of Validity of the Neutrality Solution

The domain of self-consistency of the neutrality-
based solution of Appendices A and 8 can be obtained
directly by calculating the ratio

~
(p/e) (d 8/dx)/(u —p) ~

evaluated, say, at the cathode, x=0. The numerator in
this ratio is the magnitude of space-charge density
accompanying the field distribution calculated using
the neutrality assumption. Where this ratio is small
compared to unity the neutrality-based assumption is
self-consistent with respect to the neglect of space
charge. This calculation has been carried out with
results that can also be obtained by the simpler argu-
ment which we now present.

In the discussion of the neutrality assumption in
Sec. II we saw that, because there is a threshold voltage
for double injection, the theory is necessarily incon-
sistent with respect to the neglect of space charge at
currents below some critical current J„, and that
below J„the flow is a one-carrier, SCI. (space-charge-
limited) current. The transition current J„from one-
carrier, SCL Qow to two-carrier, neutralized Qow is
located where the respective current-voltage character-
istics intersect. For the model of Fig. 1, the appropriate
one-carrier SCL Qow is the electron current given by
J~pp„V'/L', as discussed in Sec. II. If J., is written
as J„=nJM, with JM given by (810) and (A5), then
at the intersection of the two characteristics we have

J= ep, VP/LP=nJM nf(a), f(g)=-— (C1)
a—ln(1+a)

Using (13), it is convenient to rewrite (C1) as

V )' 4neaf(a)ii~(pg„) ngf(g) u„(pp. „)~10-P (C2)
Vth) Kpp(vp'y) I (pg &)
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where ~ is the relative dielectric constant and subscript
"pr" denotes that the quantities involved are to be
evaluated in practical units.

The steep portion of the neutrality-based, two-carrier
characteristic in Fig. 2 corresponds to currents J&0.2J,~
and voltages V V~~. If the one-carrier SCI. curve is
to cross the two-carrier curve somewhere on this steep
portion, then (V/Vz&)' as given by (C2) with n=0.2,
must exceed unity.

For pure Ge at liquid nitrogen temperature, a
f(a)~4, p„4&(10' cm'/volt sec, and ~=16. Then
(V/Vzs)'~10 '{o„/0.„')~„where we have taken (va„)
=10'a„and (no~)= 10zo~. Taking 0.„=10" cm' and
0.„=10 " cm' for a singly-charged acceptor state,
(U/Vzq)' 10, whence J„0.1nJzz. Thus, about one
decade of the steep double-injection characteristic
would be observed if the sample were prepared so that
the deep-lying acceptor states were only singly-nega-
tively charged. On the other hand, if 0.„10" cm'

and 0„~10" cm' (V/V, h)'~1, and the intersection
of the two characteristics would occur at the end of the
steep portion of the two-carrier characteristic. In any
case, the entire negative-resistance regime is a valid.

domain.
For CdS at room temperature, u(1, uf(u) 2,

@~=10' cm'/volt sec, and x 10. Thus (V/Vzq)z=3
X10 "{o„/o„')~,. In this case any reasonable values

of cr„and o.~ for a singly charged acceptor state give

(V/V, ~)'(1, and there is no prospect of observing the
steep portion of the double-injection characteristic.
On the other hand, (V/Vzz)z= (Vzq/Vzr)'(V/Vzh)'=5
&(10 "/0.„, where Vzz is taken from (B9) and (A8).
Since O.„corresponds to a neutral cross section, (V/Uzz)'
certainly exceeds unity, and a substantial portion of

the negative-resistance region is a valid domain.
At higher currents, beyond the negative-resistance

region, namely in the semiconductor regime, Eq. (18),
the neutrality assumption is still valid, as shown in

Appendix E. At still higher currents, namely in the
insulator regime, the neutrality assumption is once
again not valid. However, for this regime we already
have the correct solution, including space-charge effects,
from (I), namely Eq. (19).

APPENDIX D

Generality of the Mathematical Technique

For the sake of simplicity we chose for detailed study
in this paper the simplest model, that of Fig. 1, exhibit-

ing the characteristic behavior of insulators under
double injection, namely carrier lifetimes strongly
dependent on injection level. Actually the mathematical
technique employed is sufficiently general to handle
successfully, under the same assumptions, (i) through
(vi) of Sec. II, considerably more complicated models,
in particular the model with an arbitrary number of
sets of recombination centers arbitrarily located in the
forbidden gap with respect to the Fermi level. On the

other hand, with the inclusion of traps (centers such
that the carriers bound in them are in quasi-thermal
equilibrium with the free carriers of the same species),
the technique of this paper cannot be used to obtain a
rigorous solution. However, in the two extremes where
the traps are largely empty or largely filled, the tech-
nique is once again successful in yielding a solution.
The gaps in the solution so obtained occur where either
of the two steady-state Fermi levels moves through a
trap level. Due to the nature of Fermi-Dirac statistics,
these gaps accordingly occupy relatively narrow ranges
of voltage. There should be no difficulty in filling in
the gaps by simple interpolation between the analyti-
cally derived pieces of the solution.

For a general model, including both recombination
centers and traps, the current-flow equation (1) and
particle-conservation equations (3) are valid as written,
whereas the neutrality equation (2) and recombination
expressions (4) must be generalized as follows:

zz+2; «;—p —Zz p~!,—p; &pzz;=0,

.,=p(~ „,)(n„—~p„)=u(. „,)(p„+~p„), (D2)

zza~+ pzz'=!&z;.

P;(1—8,)

Substituting for Apzz; from (D3) back into (D2), we
have for r, :

z, =aXz,( z)opu/(a+ p,u). (D4)

Thermal equilibrium between free and trapped
carriers is expressed for electrons and holes, respec-

Here m&,
- is the density of electrons in electron traps of

type j, total density E&„,. and located at energy level
E&» , p&& is the de. nsity of holes in hole traps of type 0,
density E&» and located at energy level A&~I,. Since
we are dealing with insulators we neglect here the
initial, thermal occupancies of the traps, consistent
with our neglect of the thermal densities of free carriers.
%here a set of traps is nearly filled in thermal equi-
librium, this is taken into account very simply, as
shown below. The Apg, are the increases in the densities
of holes in the recombination centers of the set i, i =1,
2, , of total density A z; and initial hole occupancy
p&;. Because a large change in free-carrier density does
not necessarily imply a large change in recombination-
center occupancy, we must deal with changes in the
populations of the recombination centers. Other
symbols are defined as previously. Solving Eq. (D2)
for Apg, ,

1—8,zz (vo „;)
Apg; ——a8,!Viz, —, p, = a

a+p,u (zo~;)
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tively, as C= a(81NR1+82NR2),

elNR1(P2 abl) +82NR2(P1 ab2)A,„;
nl, ——

, N„; =N, exp! —,(DSa)
1+N;/g, n 5 k T ttlNR1Plbl+tt2NR2Plb2

Substituting for p from (D9) into (DS), we have
p, z

————— , N„t,= iV, exp —,(D5b)
1+-tV,2/gv2p a'u(A+Bu) (C+Du —Eu')

(D10)

8Q

f,(u)du= ——dx,J
(D11)

(u —1)(Plu+a)'(P2u+a)'

u(u+a)'(A+Bu) (C+Du —Eu')
f (u)=

1 t'u —1) 1 e
d! —!

= du= ——rdx.
1+a (s+al (u+G)2 aJ

(D6)
This equation can be integrated after a partial-fraction
expansion of f2(u). Substituting for p from (D9) into
(A3a), we obtain

The procedure to demonstrate analytic tractability
of the problem is now straightforward. We must show
that r, expressed as a function of u, is such that
1/r(u+a)2 is integrable over u in known functions.
The actual integration is carried out via a partial-
fraction expansion of 1/r(u+a)2 as in Appendix A.
%e have also to show that the integration for V,

(u —1)(P,u+a) (P2u+ a)
h2(u), hl(u) = (D12)

(u+a) (C+Du Eu')—
Substituting for h from (D12) and for dx/du from
(D11), (D7) can be written:

The g„;, g~~ are statistica weight factors for the trap (u —1)(Plu+a)2(P2u+a)2
levels in question. In the simplest situation g=2. iV,
and N, are the effective state densities for the conduc- Substituting for r from (D10) into (D6), we get
tion and valence bands, respectively. We have assumed
that each trap has but one level and holds but one
carrier.

From (A3a), (n —P)h= (I/et'„)L(u —1)/(u+a)], so
that Eq. (6), with r given by (D2), can be written ss

"o dx
6—de,

dg
(D7) J2

h, (u)f, (u)du (D13)

with 8 given by (A3a) and dx/du by (D6), can be
carried out in terms of known functions.

We now consider in detail a representative, general
model involving only recombination centers.

Case I. Tlvo Sets of Reconibination Centers, Arbitrarily
Located vn Energy; No TraPs (nl; =Pa,=0)— —

From (D2) and (D4),

t 1VBl(va.l) ~VR2(v~.2)y
r=r, +r2 apu!——

plu+8 p2u+8 )
apu(A+Bu)

(Dg)
(P,n+ a) (P2u+ a)

A = aLNR1(vo. l)+NR2(vo „2)j,
p2NRl(vo nl)+PlNR2(v&n2)

It remains to express p as a function of u. In (D1),
replacing APB1, APR2 from (D3), we obtain

a ( 1 o&u 1—biu)—
p= ! O,N. , +e,N..

u —1 k a+Plu a+P2u)

The integration in (D13) is carried out via a partial-
fraction expansion of h2(u) f2(u).

It is clear that this procedure will also work for more
than two sets of recombination centers. The only
additional complication will then be the presence of
polynomials of degree higher than two in the denomi-
nators of the integrands. In order to carry out the
integrations in these cases, via the partial-fraction
expansions, one must first find the roots of these
higher degree polynomials.

The mathematical dif6culties encountered with the
inclusion of traps in the problem is illustrated by the
following example.

Case II. A Single Set of Reconzbination Centers,
Arbitrarily Located in Energy, and a Single Set of
Electron T2'ajs, In~t~ally Emjty.

Dropping subscript j, (D5a) can be rewritten as

nl Ng pu/(pu+——Nn'), N„'=N„/g„. (D14)

Substituting for APR from (D3), dropping subscript i,
and for n& from (D14), the neutrality condition (D1)
can be written as

a(C+Du —Eu')

(u —1)(Plu+a) (P2u+a) (D9)

1V,.pu
p(u —1)+

pu+1V „'
a8NR =0. (D15)—

Pu+a
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This yields a quadratic equation in p:

r u(1 —bu)
p'u(u —1)+p~ N„'(u 1—)+Ng.u a—8$~

l pu+ a

1—bu—a8N~N„' =0. (D16)
pu+a

It is obvious that, solving this equation for p as a
function of u and substituting into (D6) and (D7), it
will be impossible to carry out the indicated integra-
tions. %e conclude therefore that our mathematical
technique breaks down when trapping is included in
the problem, if a rigorous solution is sought.

On the other hand, in the two limits N„'))pu and
N„'((pu the method is applicable, as we see simply by
rewriting (D15) in these limits:

~Yg„.V„'))pu, n; pu:

r Ni) 1—8u
p u~ 1+

~

—1 a8Ng — =0, (D17)
N„') Pu+a

N „((pu, ng—Ng„'.

p(u 1)+Ng„—a8Np —=0.
pu+ a

As discussed earlier, a reasonable program is to solve
the problem analytically in the two limits (D17) and
(D18), and to interpolate between these solutions for
the transition region, N ' pu.

Note that if the traps are initially almost completely
6lled, say with occupancy n&&S&„, then we need only
be concerned with the trap-filled limit, Eq. (D18),
replacing S~„by S~ —n&.

APPENDIX E

Syace Charge in the Semiconductor Regime.
A Correction to (I)

Since n pN p charac—terizes the semiconductor
regime, Q(V)& Jo~e(n p)dx eNriL, —with Q(V) the

total injected space charge per unit area at voltage V,
so long as V& Vr where Q(Vr) =eNrrL Si.nce the plot
of 8 vs x with 8 given by (17) in the semiconductor
regime, is convex, Q~CV= eV/L as shown in Appendix
8 of (I). Thus Vr eN~L'/e and Q(V)/eNzL V—/Vr
Since Vi marks the transition from the semiconductor
to the insulator regime of the double-injection problem,
as shown rigorously in (I), Q(V)/eNzL&1 in the
semiconductor regime, and the solution in this regime
is self-consistent with respect to the neutrality assump-
tion.

Ke take the opportunity here to correct an error in
(I). In the physical argument of Sec. III of (I), Q was
guessed tobegivenbyQ=enLto„/7i, ;,&= enL/Nzp 7i, gi,

)Eq. (5) of (I), and we have replaced nr—nr —pr by
NR, as discussed in Sec. II Bj.Here n is the average,
injected free-electron density. To see that this guess
was incorrect, by virtue of a missing factor involving
the mobility ratio, we compute the correct Q=Q„„,
in similar form, from Eq. (15): Q„„=eL~d8/dx~»
= (a+1)enL/aNiitl, „rs;,q. This differs from Eq. (5) of
(I) through the factor (a+1)/a= (p„+@~)/u~. In
retrospect we see that it wouM have been quite dificult
to guess the precisely correct Q without any mathe-
matical analysis at all. If now we combine the relation
Q„„=CV=eV/L with the correct current expression:
J=enL)(1/t~)+(1/t„)f=enV(tr, „+p„)/L in place of
Eq. (1) of (I), we obtain directly the semiconductor
regime, Eq. (18), except for the factor 9/8.

From this discussion we see that merely guessing the
correct space charge and then using the simple approach
of Sec. III of (I), which will indeed then give the
correct current-voltage relationship, does not in itself
establish that the double-injection current Row is
actually space-charge-limited, rather than purely
recombination-limited. The Poisson equation must be
shown to be essential for the derivation before such a
conclusion can be drawn. %e have shown in this
paper, Sec. III 8, that the Poisson equation is indeed
not essential for derivation of the semiconductor
regime. On the other hand, it was shown in (I) that it
is essential for the derivation of the insulator regime.


