
I' EI V S I C A L R I& V I E W VOLUME 125, NUMBER 1 JANUARY 1, 3 962

Resonance in Phonon-Phonon Scattering*
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The scattering process, two phonons ~ two phonons, is examined in perturbation theory. One of the
contributions of second order in the cubic anharmonic potential gives rise to an energy denominator that
can vanish. This difhculty is removed by noting that the intermediate phonon has a complex self-energy
associated with its instability in the presence of anharmonic forces. Approximating the irreducible self-energy
by its lowest-order contribution, one finds a Breit-signer form of width equal to the decay rate, one
phonon —+ 2 phonons, calculated to lowest order. An experiment is proposed to observe directly the predicted
resonance, This experiment appears to be somewhat beyond the capabilities of present apparatus. The
eBect of the resonance on heat conduction, phonon drag, and the analogous resonance expected in spin-wave
scattering, are not discussed in this paper.

INURING the course of a theoretical study of the
higher-order effects of anharmonic forces and

impurities' on phonon interactions in dielectric crystals,
we have found a resonance in the scattering process,
2 phonons —+ 2 phonons. In the past this process has
been ignored in comparison with the "elementary"
process, one phonon~ 2 phonons LFigs. 1(a), 1(b)),
so important in the theory of thermal resistance of
crystals. ' The reason for this situation is that the
scattering process either involves extra powers of the
cubic anharmonic interaction Vs, as in Figs. 1(c) and
1(d), or the presumably small quartic terms V4 (Figs.
1(e) and 1(f).' However, higher order effects in a
perturbation series cannot be ignored if the energy
denominators become small, or vanish. We 6nd that it
is easy to conserve both energy and momentum in the
process of Fig. 1(c), so that in the conventional pertur-
bation theory the energy denominator vanishes. Thus
it is necessary to evaluate the propagator for the
virtual phonon with more care. Since the phonon is
unstable in the presence of anharmonicities, the
self-energy is complex. 4 Thus we 6nd a resonance
denomination of Breit-Wigner form. The other scatter-
ing process of second order in V3, in which the incident
phonons are annihilated with one of a virtual triplet of
phonons (Fig. 1(d)j, is well behaved since the corre-
sponding denominator never vanishes. In Fig. 1(e) the
scattering due to the lowest order of V4 is shown. The
denominator corresponding to the process of Fig. 1(f)
can vanish, but upon using the correct phonon prop-
agator this term will be small compared to the graph
1(c).Hence we concentrate on the latter. A point worth
noting is that the resonance under consideration is an
example of what is called a "kinematical" resonance in

the literature of elementary particle physics. Such
resonances occur whenever the two colliding particles
are coupled to an unstable intermediate state by an
energy-momentum conserving process.

Now consider the process 1(c) in which phonons of
wave vector p and q coalesce into a phonon k=p+q,
which in turn disintegrates into the 6nal phonons y'
and q'. Setting 5=1 and ignoring umklapp processes,
the energy denominator is &u (y)+co (q) —ar (y+ q).
According to well-known selection rules as explained
by Ziman, for example, this quantity vanishes only if
the intermediate phonon belongs to the longitudinal
branch (l) and the initial phonons are longitudinal and
transverse (t) or both transverse. The Gnal phonons
y' and q' must likewise occur in the combination l+t
or t+t For illu. stration we consider the 6ctitious
isotropic dispersionless solid with constant longitudinal
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'In this paper we consider only "perfect" crystals in which
there are anharmonic forces but no impurities.' R. E. Peierls, Quaetlm Theory of SoMs (Oxford University
Press, New York, 1.960), Chapter 2.

3The nth order anharmonic interaction term V„ involves n
products of the phonon displacement Geld.

4 P. Carruthers, Revs. Modern Phys. BB, 92 (1961). Th
graphical representation of phonon interactions is explained i
Appendix D of this reference.

I'IG. .'l. {a) and (b) show the lowest order decay and absorption
processes caused by the cubic anharrnonic interaction V3. (c) and
(d) are the lowest order graphs for phonon-phonon scattering
induced by V3. The quartic interaction V4 gives rise to scattering
via processes like (e) and (f). The non-dangerous process of
scattering by phonon exchange has been omitted from this Ggure.

e
n ~ J. M. Ziman, Electrons and Phonons {Oxford U niversity

Press, New York, 1960), Chapter 3.
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Pro. 2. The graphical solution of Eq. (2) is indicated for the
longitudinal phonon / and the transverse phonon t. The minimuIn
scattering angle eo is given by cosoo=et/v&.

and transverse sound velocities v~ and v&, v~(e~ with
o) = nIl. For the transition (p,l)+ (q, t) ~ (k,l) the energy
conservation condition is

phonon k decays into phonons p and k—p according
to the process of Fig. 1(a):

I'(k)=2ir Ps[(k~ Vs~pk —p)['
&&85~(k) —~(—p) —~(k —p)j (6)

Keeping only Fig. 3(a) in Z (k) corresponds to replac-
ing the bare phonon propagator by the sum of the
bubble graphs in Fig. 3(c).

Thus we obtain the following expression for the
matrix element for phonon-phonon scattering:

(p+rtq)'= (p+ q)', )I—=v,/))i(1,

which has the solution

I7= 2p (rt —cos8)/ (1—)7') . (2)

~(p+ q p'+q')

(p'q'i Vsikh)(khan V&ipq)

o) (p)+o) (q) —o) (k,X) +-,'il'(k, X)
+M'. (7)

In Eq. (2), 8 is the angle between p and q, given by
cos8=p q/p)l. Since )l must be positive, we find the
restriction cos0 &g. A similar calculation for the
process t+t —+ l leads to the more restrictive condition
cos8& —1+it'(0. The minimum angle for which the
denominator can vanish is thus given by

cos8s ——
It = v)/i))) l+ t ~ l;

cos8p ———1+)I'= —(1—v)'/i)P), t+t —+ l. (4)

Figure 2 shows the graphical representation' of Eq. (2),
which gives Il in terms of p and cos8. In actual crystals
the eBect of anisotropy is to make the conditions even
less restrictive than the nondispersive case treated here,
as shown by Herring. 7

In order to study the analytic and physical properties
of the complete phonon propagator it is essential to
eliminate the so-called reducible self-energy parts. (If
a graph falls into two disjoint pieces when one phonon
line is cut, then that graph is reducible. ) In our problem
the eBect of summing the reducible graphs is to replace
LEs—o)(k)] ' by LEe—o)(k) —Z (k)j—', where Es ——c,)(p)
+o)(q) is the energy of the initial state and Z (k) is

the sum of all irreducible contributions to the phonon
self-energy. It is of course impossible to evaluate
Z (k) exactly. However, the most important contribu-
tion to Z(k) is most likely just the second-order term.
In Figs. 3(a) and 3(b) we show the contribution in
second order. The contribution of Fig. 3(b) has no
imaginary part, since the denominator in the interme-
diate state never vanishes. Hence its only effect is to
renormalize the frequency of the bare phonon. Thus we
do not consider this term further. The "bubble" of
Fig. 3(a) has a contribution which we call Z) (k). Th!s
wa, s calculated in reference 4 to be

Zs (k) =—)5o) (k) —,'-il'(k),

where the real part tIro(k) serves to renormaiize o)(k)
and the positive quantity I'(k) is the rate at which the

' This construction is due to Professor Mlayne Bo;vers.
r C. Herring, Phys. I&ev. 95,)954 (1954).

In (7) the sum goes over the three polarization modes X.
For resonance scattering only the longitudinal mode is
important. M' represents contributions from the
processes like 1(d) and 1(c).These will be unimportant
near resonance. The phonon frequencies appearing in

(7) are renormalized. The width I' is, not surprisingly,
equal to the inverse of the lifetime of the phonon k,
according to (6).'

Equation (7) will be va, lid only in relatively pure
crystals in which the decay rate (6) exceeds that due to
impurities. I or isotope and strain scattering the
forward scattering amplitude vanishes in Born approxi-
mation' so that the lowest order contribution to Z (k)
changes (7) only by adding to I' the rate of decay due to
these impurities calculated in lowest order. Thus the
resonance is broadened and lowered by these impurities.
The width in (7) is rather narrow, except possibly for
phonons of frequency of the order of the Debye fre-
quency, since I'(k) increases rapidly with k.

The successful detection of the proposed resonance
wouM provide a direct measurement of the decay rate
I'(k). The ideal experiment would involve two mono-
chromatic beams of phonons at appropriate angles and
polarizations. Varying the frequency of one beam
through the resonance region then gives rise to a maxi-
mum in the absorption of the other beam. In order to
minimize the background and absorption of beam
phonons due to the presence of the "host" phonons in
the lattice, very low temperatures are required (less
than liquid helium temperatures). The decay of beam
phonons by the process of Fig. 1(a) should not be a.

serious problem. In a perfect lattice the selection rules
say that transverse phonons will not decay. If the
longitu. dinal beam is detected, then requiring the
detected phonon to have an energy equal to the initial

8 Pote added im proof: A few rerIIarks are in order concerning the
renormalization of cv(y) and co(qI). If one prepares a harmonic
phonon at time 0, then it takes a time of order 1/Ro for the fre-
quency shift to occur. The imaginary part is not admixed until
a time of order A/I' has passed. Thus the imaginary part of the
frequency change of the external phonons may be ignored if
i/I r)&kv, where r is the colhsion time for the process of Eq. (7l.
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elements given in reference 4, Eq. (9) becomes

~~~(pP'(q) [&(k)+1jl C(peak) I'
K'gpg =—

4 ~'0'~(p)~(q)~(k)

b

F&G. 3. (a) and (b) show the second-order (in V3) contributions
to the phonon self-energy. The sum of graphs indicated in (c) is
the approximate phonon propagator obtained by approximating
the irreducible self-energy by Fig. 1(a).

phonon will eliminate the decay events since the
undetected phonon has zero energy.

In order to estimate the order of magnitude of the
effect, we keep only the (resonant) longitudinal part of
the sum in (7). Summing on all final states p' and q'

gives for the rate at which the initial phonons collide:

2'=—
[~(p)+~(q) —~(k)3'+ ll"

The total counting rate m&, t, under the resonant curve
obtained by varying ei(p) or ce(tl) is j'wdEp, As=co(p)
+u&(g). Making the usual assumption that the matrix
element is slowly varying over the width I', one obta, ins

te...= (2/~5')
I (k/I Vs

I pq) I
',

on reinstating the factors of A. Using the matrix

In Eq. (10), Ã(p) is the occupation number for the
pth mode, assumed to be due to the source alone. For
sufficiently low temperatures X(k) will be zero. 0 is the
volume of the crystal; p is the mass density. Approxi-
mating the coupling coeKcient C(pqk) by Eq. (2.23)
of reference 4 and introducing the intensities of the
initial beams by I(p) =1K(p)e(p)/0, Eq. (10) becomes
(for frequencies appreciably less than the Debye
frequency)

w„„=kPF(pqka')I(p)I(q)n/N7reM, (11)

where $ is a number, (=40, a is the lattice constant, F
is a coInplicated angular factor of order unity, ' e is an
average sound velocity, and M is the mass per unit cell.
The effect is clearly largest at high frequencies ka = 0(1).
For frequencies almost within reach of present appara-
tus, ka=pa=pa=10 ' (ei=10"/sec) using the con-
stants: e=3)&10" cm/sec, a=3X10 s, M=20 amu,
gives (per cm') wi, r/(I(p)I(g))=10 " cgs. In order
that w.„,r, be 10"/sec, we need [I(p) =I(q) =I] a beam
intensity of I=10's phonons/cm' sec. Converting to a
power flux, P=keiI, this is 10 Auw/cm'. Of course wi, r,

refers to aQ directions for the final phonons. If we
introduce a factor 10 ' for the detector (say of area=1
cm'), the scattered power flux in the peak is of order
10 ' pw. For lower frequencies the observable effect
decreases rapidly.

In a subsequent paper the role of the proposed
resonance and other higher order effects in the theory
of thermal conductivity will be assessed.
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'- However, in certain directions I' vanishes.


