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APPENDIX

KitteP' has pointed out that the methods employed

in this article bear a resemblance to Chambers'" solu-

tion to the classical Boltzmann transport equation.

Investigation of this point has revealed the following

very simple derivation of the solutions to Bloch's

equation for T1——T~. By accounting for all magnet-

ization entering the cone at times previous to the time

being considered, the rate of arrival of magnetization

elements at an angle p, where p is measured only once

around the cone, may be determined:

"C. Kittel (private communication).
"R.G. Chambers, Proc. Phys. Soc. (London) A65, 458 (1952),

see also V. Heine, Phys. Rev. 107, 436 (1957).

Rate= P M(T&) ' expL —(p+2s.e)/(QT&)]
m=0

=M(Tr) ' expL —(P/QTr)]/t 1—exp( —2~/QT, )].
But this must equal M($)Q, the Row rate by the
position, Q. Thus

M(P) =M(QTt) ' exp( —@/QTr)L1 —exp( —2s./QTr)] '.
This expression substituted into (5), (6), and (7) with
a range of int:egration from 0 to 2s. yields (11), (12),
and (13). Note tha, t as QTr —& oo, M(Q) —+ 3II/27r,
which explains the uniform distribution of magnet-
ization in the cone at high radio frequency fields.

It may be possible to extend this approach to account
for all magnetization scattered by various relaxation
processes into each trajectory passing through a point.
on the reference sphere, and thus to obtain a completely
general classical description of magnetic resonance.
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De Haas-van Alphen Effect in Bismuth-Tellurium Alloys*t

DANIEL WEINERf.

Department of Physics and institute for the Study of Metals, University of Chicago, Chicago, Illinois

(Received June 2, 1961)

De Haas-van Alphen measurements have been made on pure bismuth and several bismuth-tellurium
alloys. It is found that the observed variation of external cross section and cyclotron effective mass with
tellurium concentration and magnetic field orientation can be interpreted using a special case of Cohen's
nonellipsoidal model of bismuth. The results indicate that there is a thermal energy gap between the conduc-
tion and valence band of about 0.046 ev in agreement with various optical experiments and that there are
six electron "ellipsoids, " The results also agree with a model for the hole band involving one light-hole
ellipsoid and one heavy-hole ellipsoid and are used as evidence against some other possible models for the
hole band.

I. INTRODUCTION

ECENT experiments indicate that the Fermi sur-
face of bismuth may not be parabolic-ellipsoidal,

so that both the absolute and relative size of its effective
mass components depend on the Fermi energy. The
details of this dependence, if known, would establish
many of the parameters in Cohen's' nonellipsoidal
theory of the bismuth band structure.

The Fermi level in bismuth may be conveniently
changed without appreciably affecting the crystal
potential by addition of an electron donor such as
tellurium. Each tellurium atom presumably contributes
one electron to the Fermi sea. Since the instrinsic num-
ber of conduction electrons in bismuth is small (about
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10 '/atom), very little tellurium is needed to increase it
appreciably.

A powerful method of studying the band structure
of these alloys is provided by the de Haas-van Alphen
effect. ' lt measures the extreme cross-sectional areas
of the Fermi surface and their energy derivative.
Furthermore, the interpretation of the effect is un-
affected by the changes in collision times on alloying.
Also, as we shall see later, we can find the number of
equivalent ellipsoid-like pieces of the electron Fermi
surface with our de Haas-van Alphen data and a
knowledge of the amount of tellurium present in those
alloys in which we have filled the hole band. In alloys
where we have not filled the hole band, a knowledge
of the tellurium concentration helps give us an average
density of states.

Indeed, Shoenberg and Uddin' have already explored

3D. Shoenberg, Progress in Low-Temperature Physics, edited
by C. $. Gorter (Interscience Publishers, Inc. , New York, 1957),
Vol. 2, Chap. 8.

4D. Shoenberg and M. Z. Uddin, Proc. Roy. Soc. (London)
A156, 701 (1936).
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TABLE I. Atomic percent tellurium in bismuth and the alloys.

Sample and sample
weight

No. 1, 0.36g
No. 2, 0.62g
No. 3, 0.63g
No. 4, 0.75g
Bismuth, 0.32g

1.1X10-
2.9X10 3

4,0X10-3
10.8X10 3

0

2.1X10 3

3.7X10 3

4.2X10 '
13.0X10 '

2 ~ 1X10 '
3.9X10 3

6.8X10 '
13.8X10 '

Calculated atomic Analyzed atomic percent
percent Left of sample Right of sample

0.10
0.27
0.38
1.00
0

0.15
0.28
0.41
1.00
0

Ratio of Te in
sample to Te in

sample No. 4
Calculated Analyzed

Best estimate
of composition

(atomic %)
(2.1~0.5)X10 '
(3.8~0.5)X10-3
(5.5~1.5)X10-3

(13.4~0.7)X10-3
0

the de Haas-van Alphen e6ect in a number of dilute
bismuth alloys. However, their work was admittedly
exploratory and was done at only one temperature
and two magnetic field orientations for each alloy
which is insufficient to provide the necessary in-
formation. Furthermore, subsequent to these experi-
ments the techniques of preparing and analyzing pure,
uniform, single-crystal samples have been considerably
improved. Hence, a more thorough study of these alloys
appears worthwhile.

II. EXPERIMENTAL METHODS

A. Sample Preparation and Analysis

Bismuth of suitable purity was prepared by drip
melting 99.998% label purity Cerro de Pasco bismuth
into a quartz boat and zone-refining it for 20 passes
under a vacuum of 10 ' mm Hg using a 450-kc/sec
inductive heater. An essentially identical procedure by
Barrett' yielded bismuth with a residual resistance
ratio of R300/Ri. q ——1180 which exceeds the best in the
literature to date. A spectrographic analysis of some
of the alloyed bismuth showed a negligible impurity
level. This will be discussed in detail later. The resulting
bar of bismuth was cut with a jeweler's saw into
100-gram pieces and then etched; the end pieces were
discarded.

An alloy containing 0.2 weight percent tellurium was
prepared by melting 100 g of pure bismuth with 0.15 g
of purified Fisher tellurium that had been cleaved from
the interior of a rod to prevent oxide contamination.
The resulting ingot was zone leveled for 6 passes in a
quartz boat under a vacuum of 10 ' mm Hg. Then,
before each sample was prepared, a suitably sized piece
was cleaved with a steel scalpel from the interior of
this alloy. This piece along with a freshly etched and
polished 100-g piece of pure bismuth was put into a
quartz boat which had been etched for a few hours in
HF to remove irregularities that might nucleate
grains. These were melted together and the resulting
bar was zone leveled for 6 passes under a, 10 '-mm Hg
vacuum. It was found, however, that the HF etch did
not insure the production of single crystals of a useable
size. In preparing later samples, the interior of the boat
was therefore covered with a thick coat of carbon from

' C. S.Barrett (private communication).

an acetylene Game before the last zone-melting pass.
This procedure always resulted in a single-crystal
sample for almost the entire length of the boat.

A small piece was cut from the central portion of
each sample with a jeweler's saw and was easily cleaved
along the trigonal plane with a steel scalpel after being
cooled in liquid nitrogen. Its crystallographic directions
were determined with the aid of the principal cleavage
plane and a I aue pattern. The sample was cut perpen-
dicular to a binary axis with a toothless band saw
using 600-mesh carborundum suspended in water. This
cut and the cleavage plane were used to orient the
sample on the sample holder by aligning it with the
suspension rod with a straight edge. I aue patterns of
samples attached to the sample holder showed typical
errors in alignment of 1'—2'.

The composition of the alloys was determined by
Miss M. Bachelder of this Institute by a procedure
devised by Kiberley et al. ' Ten grams of material were
taken from that part of each bar adjacent to either
side of the sample. Each 10-g piece was dissolved in
HNO3, concentrated by evaporation in a steam bath,
and diluted in HCl. The tellurium was precipitated out
with SnCl2, and, after standing, the precipitate was
Altered out, washed and dried. The 6ltrate was dis-
solved in hot H2SO4, cooled and diluted to a speci6ed
volume with more H2SO4. The absorbance of these
solutions was measured with a Beckman Model D
spectrophotometer at 5200 A. From the absorbance one
can determine the tellurium concentration by com-
parison with calibration curves made using synthetic
samples. The scatter in these calibration curves from
a straight line going through the origin indicates an
error of about &0.0005 atomic percent for our tellurium
analysis.

Information relating to the amount of tellurium in
the samples is in Table I. Ke note that calculated
concentration is usually above 20+~ lower than the
concentration given by analysis procedure described
above. This situa, tion is not implausible because the
small region of the 0.4 atomic percent alloy with which
the final alloys were doped may well have had a 20/o
higher concentration than the mean. The final estimates
of the tellurium concentration are the means of the

6 S. E. Wiberley, L. G. Bassett, A. M. Burrill and H. Lyng,
Anal. Chem. 25, 1586 (1953).
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values for the analysis of material on either side of the
sample. The error given comes from two sources. One
is the error estimated from the scatter in the calibration
curve of &0.0005 atomic percent. The other is just
half the difference of the analysis values for the material
on either side of the sample.

Spectroscopic analysis of the 0.4 atomic percent and
the No. 3 alloys show the presence of Ag and Cu
impurities only and these with a concentration of

0.0001 weight percent. It has been our experience
at this laboratory that these are the most dificult to
remove by zone-refining so that other impurities should
be at a much smaller level. Now Goetz and Focke~ show
that Ag and Cu are not electron donors or acceptors in
bismuth. Hence the amount of relevant impurities
appears small compared with the intrinsic carrier
concentration of 0.002 atomic percent.

' A. Goetz and A. 8, Focke, Phys. Rev. 45, 18S (j.934).

B. Cryogenics and Magnet

The cryogenics consists of standard concentric
nitrogen and helium Dewars that neck down to a
28-in. o.d. in the vicinity of the pole caps. There are
provisions for pumping down to about 1.2'K. The
pressure of the liquid helium in the helium dewar is
measured by means of oil and mercury manometers
and a cathetometer. The sample is immersed directly
in liquid helium. Above the A. point, the disturbing
effect arising from bubbling at the liquid helium surface
was suppressed by surrounding the sample holder with
a long closed tube having small holes both above and
below the liquid helium surface.

The magnet is a standard low voltage electromagnet
with 4 in. cylindrical pole caps, a 238-in. pole gap and a
rotatable base. In this experiment it was used to
produce fields up to 6000 gauss that were uniform to
about 0.1% over the samples. The current through
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the magnet coil was electronically controlled via the
field windings of the current generator to about 0.1%.
The 6eld-current relationship was determined to
~-,'% with a fhp coil that had been calibrated by
nuclear magnetic resonance. During the experiment,
the current could be read to about &0.2%.

C. Susceptibility Measurement Assembly

De Haas-van Alphen oscillations in the suscepti-
bility were measured by the standard method of
determining the torque exerted on an anisotropic crystal
when a homogeneous magnetic 6eld is applied. along
a direction not collinear with a principal crystallographic
axis of the crystal. The main features of the apparatus
as shown in Fig. 1 are as follows: The samples are glued
to a small quartz plate with a cleavage plane Gush
against the plate. The plate is fused to a long quartz rod
attached to an assembly supporting a mirror, damping
vanes and a coil of about 100 turns of No. 30 copper
wire. This whole assembly is suspended by a 3-inch
piece of 0.005-in. diameter BeCu wire having a torque
constant of 100 dyne cm/radian so that the damping
vanes extend into an oil cup and the sample is centered
between the poles of the magnet. The torque on the
sample is determined by reading an illuminated scale
4—,
' meters away from the apparatus through the mirror

with a telescope. The scale can be read to about 0.3 mm.
In the alloys, the steady susceptibility is often much

greater than the oscillating de Haas-van Alphen com-
ponent for our available magnetic fields. With our low
torque constant suspension, this can cause serious
changes in sample orientation with magnetic field. Also
small Quctuations in the magnet current ( 0.1%)
cause changes in the steady torque are comparable in
size to the de Haas-van Alphen oscillations. Hence we
use a simple but effective scheme to buck out the
steady susceptibility, a scheme that does not use the
feedback mechanisms of previous methods. '

s D. Shoenberg, Proc. Roy. Soc. (London) A170, 341 (1cI39l,

Magnet current taken from a water cooled shunt wa, s
used to activate three parallel coils. One of these, the
5-ohm coil that is mounted on the suspended assembly
(Fig. 1) is connected to the outside by two loose
0.002-in copper wires. The other two coils, of 0.1 ohm
each, are mounted outside with their plane perpen-
dicular to the plane of the 5-ohm coil. The torque
exerted on the 5-ohm coil by the other coils is propor-
tional to the product of the current in each coil and
hence to the square of the magnet current. In the
region where the magnetic field is proportional to the
magnet current, the torque is proportional to the square
of the field. Since the torque due to the steady suscepti-
bility is also proportional to the square of the 6eld, we
can in principal adjust our shunt such that these two
torques cancel for all values of the 6eld. In practice,
magnet nonlinearity and the fields of the ea,rth and the
magnet at the coil make the bucking incomplete.
However, for magnetic 6elds of interest, the cancellation
was 98% effective and allowed observations of the
de Haas-van Alphen oscillations only about 1/500 as
large as the steady susceptibility at 1.3 K.

Distortions of the oscillations due to nonlinearity
in the bucking scheme are small and may be easily
corrected in the following manner. We measure the
torque for a given arrangement at an elevated tempera, —

ture where there are no oscillations, subtract this curve
from the curve with oscillations and divide by JI'. The
resulting curve should differ from the true curve by
only a constant due to the change of steady suscepti-
bility with temperature.

III. RESULTS

Some examples of the results are shown in Fig. 2.
These are more satisfactory than most results for the
following reasons. The field orientation is such that
there is a contribution to the couple from only one
extr|;,ma]. cross-scctiog. g,l g,rg@ so th. at then", @re Do



i230 DAN I EL KE I N ER

I

2
3-4
5
6
7
8

PURE BiSMUTH
PURE BISMUTH
ALLOY NO. I

ALLOY NO. I

ALLOY NO. I

ALLOY NO. 3
ALLOY NO. 3
ALLOY NO, 3

4.2I K
1.29'K

4.2 I'K
l.95'K
I.30'K
4.22'K
2.0I'K
I.XPK

(7.75 0.2)
(7.8 + 0.2)
(6.4 + O.i)
(6.4 ~ O.l)
(6.4 + O. I)

(3,34 0.03)
(+36+0.03)
(3.34+0.03)

xlo 5

xio
xio 5

xIO 5
xlO 5
xfO 5

xio 5
xIO 5

GAUSS
GAUSS
GAUSS-I
GAUSS l

GAUSS '

GAUSS '-
GAUSS '

1.6 I8 2.0 2.2 2.4 2.6 2.8
{I/O) x IO, GAUSS '

3.0 3.2 3,4

FIG. 3. Values of 1/H for the maxima and minima of C/H2 in the
curves of Fig. 2 versus successive half integers.

beats. ' Also, the damping is relatively small because
the cyclotron mass is small. Finally, the amplitude is

large because of the small mass and because the field is
not too close to a principal axis. These curves were
derived from the experimental measurements as
described in Sec. II.

The theoretical expression for the couple per unit
mass' is as follows:

According to Eq. (1), if we plot 1/H for successive
maximima and minima of CH ' vs 1/H we should get
straight lines of slope P/A'p. Examples of such plots
corresponding to the curves of Fig. 2 are shown in
Fig. 3.

The deviations of these points from straight lines
are caused by many factors. At high fields, eRects due
to harmonics and changes of sample orientation with
respect to the field caused by the torque are apparent.
These errors tend to displace the maxima to one side
and the minima to the other side of their true positions.
At lower fields and in the more concentrated alloys, the
small amplitude leads to difficulty in locating the
maxima and minima. In general, the errors are not
cumulative and are such that they define a slope to
within about &2/~. This is comparable to the error
expected from misorientation of the sample.

The effect of beats between different pockets of the
Fermi surface is seldom of any consequence in our
experiments. Usually, one periodic term dominates
CH '. In some cases, where the contribution to CH '
comes from very similar portions of the Fermi surface
a small modulation of both the amplitude and the
period of CH ' appears but again the errors are not
cumulative. Occasionally, a portion of a curve is
greatly distorted by beats and CH ' is definitely not
periodic in 1/H. These data are ignored.

The temperature dependence of C for a given H
determines P. The ratio of the amplitude of the de Haas-
van Alphen oscillations at temperature Tj and T2 for a
given field H is, neglecting harmonics

C A 3 a; 2z'kT '
—,=—z —',

( ) z(-i)
2rrpEp

sin —— exp (—2vr'pkx, /p, H)
P,H 4

2p& sinh(27r'pkT/p, H)

Ci Ti sinh(2ir'kTs/PH) sinhps

Cs Ts sinh (2''k T,/PH) p sinhs
(2)

where p=Ts/Ti, s= 27r'kTi/pH. Plo—ts of Ci/Cs vs s
are made for each p considered. From these plots and

(1) from the exPerimental values of Ci/Cs for several values

Here, the quantities of interest to us are C, the couple per
unit mass; H, the magnetic field; P, =-ehc '(dS/dE); ',
the effective double Bohr magneton for "ellipsoid" i;
Ee=P,e 'h 'c(R;, where 8; is the extremal cross section
of the Fermi surface "ellipsoid" i perpendicular to the
6eld; T, the absolute temperature; and x;, an effective
temperature due to scattering of electrons. In Eq. (1),
k, e, h, and c have their usual meanings.

For our purposes, we need only consider the p=1
term. The effect of the harmonics on the deduction of
the correct values of p/Ee and p from our curves is

very small even in the worst case, that of pure bismuth
with the magnetic field nearly perpendicular to the
trigonal axis. ' For other field directions and for other
materials, the larger masses and higher eRective
temperatures x; suppress the harmonics much further.

9 J. S. Dhillon and D. Shoenberg, Phil. Trans. Roy. Soc.
(london) A248, 1 (1955),
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of II, the corresponding values of s are found. Then
p=27r'kTI/sH is computed for each value of H. The
spread from the mean value of P is usually attributable
to uncertainty in the amplitude measurements except
at high fields where bucking errors may become
important.

The experimental results for P/Es are shown in Figs.
4—6, for the variety of experimental conditions for which
it was determined. The error in estimating the slope
P/Es is about 0.1X 10 ' gauss ' which is consistent with
the observed scatter except when we expect beats.
In the latter case the scatter is about twice this size.
The solid lines in the plots for pure bismuth are the
results of calculating P/Es from the ellipsoidal-parabolic
model of the Fermi surface for conduction electrons in
bismuth, ' using the relation

2m pE p nIP——,'+nsPv'+nsP, s+ 2n4P„P„(3)
with o.g

= 202' A2: 1 67 o;3:70& (x4:7 0) and Eo= 0.0177
ev. Our values of ns and n4 give a slightly better fit to
our data, than those of Aubrey" (ns ——83.3, nl ——8.33).
The difference may arise from a systematic error in
aligning our sample but, as it is our purpose to compare
the relative change in P/Es upon alloying, this effect
is unimportant. In any case, the disagreement is small
and the effect on the volume of the Fermi surface is

negligible. The solid lines in the case of the alloys
represent a scaling down of the calculated P/Es in
bismuth (for the relevant ellipsoids only) by the factor
indicated in Table V. We note that deviations from
the theoretical curves are greatest where we expect
beats. Hence, we see that to a good approximation for
the angles measured, the primary effect of alloying is
to change only the size of the Fermi surface and not its
shape or tilt.

The results derived from the temperature dependence
of the amplitude are shown in the last two columns of
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Table II. Here Ps is true double Bohr magneton so

P/Ps is the ratio of the true electron mass to the relevant
cyclotron effective mass. We note that there is a general
increase in effective mass for a given orientation upon
alloying. The quantity would represent the Fermi
temperature Tp in an ellipsoidal-parabolic model of the
Fermi surface. We note that to within experimental
error, TI is independent of angle and the temperatures
used in its determination.

There is no data for sample No. 4 and the data for
sample No. 2 is poor because of the large collision
damping effects. The largest damping in No. 4 is to
be expected as it contains the most scatterers. The
damping in No. 2 is greater than in No. 3 probably due
to some mistreatment during cutting.

A. The Energy Gajp in Bismuth

Table III shows a summary of the de Haas-van
Alphen effect data in several substances for a particular
direction of the field with respect to the crystal lattice.
Because ak I(dOl/dE) ' is approximately independent
of angle for a given substance, and because the shape
of the Fermi surface is approximately unchanged by
doping, the values of the ratios 8/0', ll;, (dS/dE)/
(d 8/dE)a;, and 8/k (d 8/dE)/j 0/k(d 8/dE) jrs; for the
various substances as shown in Table III are represent-

IV. CONCLUSIONS

The conclusions are treated in four separate sub-
sections: (A) the energy gap in bismuth, (8) com-
parison of the angular dependence with the non-
ellipsoidal model, (C) number of "ellipsoids", and (D)
density of states in bismuth.
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TABLE II. Values of tt/k(d8/dE) and P for bismuth and the alloys.

Sample

Alloy No. 3

Alloy No. 2

Alloy No. 1

Bismuth

Run

D
D
D
D

C
C
C
E
8

F
p
8
8
8
8
8

4.22
4.22
4.22
4.22
4.23
4.23
4.21
4.21
4.21
4.21
4.21
4.21
4.21
4.21
4.21
4.21
4.21
4.21
4.21.
4.21
4.21

1.30
2.10
1.30
1.30
1.29
1.29
1.33
1.99
1.33
1.30
1.30
1.95
1.30
1.29
1.98
1.29
1.21
1.99
1.21
1.21
1.21

Temperature
('K)

High Low

Sample
orien-
tation'

Angle of
Geld from
trigonal

78'
78'
45'

135'
76

106'
77
77'

117'
45'
78'
78

135'
78'

168'
168'
16-"
16—,
"

46—,
"

76-,"
106-"

6 (I/Fj)=p/Eo
=ek/cQ,
(10-5

gauss ')

3.34
3.34
2.28
2.80
2.80
2.91
4.5
4.5
3.75
4.3
6.4
6.4
5.5
7.8
2.75
2.75
3.00
3.00
5.33
6.67
6.56

k(d6, /dJ )
('K)

325~7
322&7
309~4
309~8
316~10
292+10

~250
~250
~270

226&10
228~15
218~8
216+5
195~7
196+7
193~7
203~5
201~5
200a8
195+7
205

P/P p

= (d e/dL)/2m nz p

81 ~2
80 %2
52.5~1.0
64.5~2.0
66 &2
63 +2

~82
~75

72 a3
108 &7
104 &4
88.5+2.0

113 ~4
40.0&1.5
39,5~1,5
45.5~1.0
45 ~1
79 &4
97 +3

100

IL 1 means bisectrix vertical; 2 means binary vertical.

ative of those for any angle. Here we see a marked
increase in effective mass with Fermi level.

The particular choice of field direction to be used
in this calculation was made for the following reasons:
Experimentally, beats are absent and the amplitude
of the susceptibility oscillations is relatively large;
theoretically, the pertinent cross-sectional area of the
Fermi surface is only 5% greater than the minimum
possible cross-sectional area, i.e., that for which the
field is along axis 2. In this direction certain expressions
in Cohen's' non-ellipsoidal-nonparabolic model of the
bismuth band structure have a particularly simple from.

The cross-sectional area of the Fermi surface cut by a
plane perpendicular to the 2 axis at ps is, in Cohen's
notation,

2a-(mrm;, ): E-
Eg

P2' P2'
+E,—~ sps+ +- . (4)

2NE2 2' g

and
e= 2~(mgms):E(1+RE/E, ),

de/dE=2a (mgms)k(1+2XE/E, ).

Accordingly, the ratio for two different values of E is

es XEs/ XEs XEr
I
1+ 1+

0'r Eg & Eg Eg E /

Now we make the simplifying assumption that A2 is
small so that we may take ps=0 for the extremal cross
section and that if H is off axis 2 we may still use Eq. (4)
if we substitute the appropriate cyclotron mass for
(m~ms)l. Ke will see in Sec. 8 that these assumptions
lead to agreement with experiment for the angular
dependence of S. Then using Eq. (4) and the
information in Table III we can derive values for
E,/(1+Jr+Ps), (mrms)' and I~ in the following manner.

Let X—= 1+Pr+Ps. Then, with the above assumPtions,
we have

TABLE IIl. Summary of results for the magnetic field 78' from the trigonal axis with the binary axis vertical.

8

P/Ep k(de/d j )
Substance (10 ' gauss ') ('K)

(d e/dL') rt/k (d 8/dE)

(d tt/dE)a; ft/k (d 8/dE)ai XE/E,
I',/x

E(ev) T('K) (ev)

Bismuth 7.80~0.05 195~7 113&4
Alloy No. 1 6.40~0.05 221&8 105&4
Alloy No. 3 3.34&0.05 323~7 80&~ +2

1,00 1.00 1.00 0.50 0.48 0.022 260 0.046
1.22~0.01 1.08&0.05 1.13%0.05 0.58 0.56 0.026 300 0.045
2.34+0.05 1.41+0.05 1.66&0,05 0.88 0.88 0.041 475 0.046
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E2 1- Ei (dQ/dE)2
1+2X— (8)

E, 2 E, (dQ/dE)i

Dividing Eq. (5) by Eq. (6), we find tha, t Fermi energy
E& is given by

Q, i 1+2)L'"i/Es
+1

(d Q/dE) i 1+)Er/Eg
(9)

from which it follows that

Ei 1 Q, 2 ) Q, 2 (d Q/dE) 2'—1! -1, (7)
Eg 2 Q, i J Q, i (d Q,/dE) 22 FzG. 7. Optical ab-

sorption of radiation
in bismuth by an in-
direct transition, (a)
when the hole and
electron band ex-
trema are at the
same point in k
space, (b) when these
extrema are some-
what removed from
each other in k space.

(a)

P,04R FV

Dividing Eq. (9) by Eq. (7) yields an expression for
E,/X. Finally the cyclotron mass at the bottom of the
band is given, according to Eq. (6), by

dQ', —1

(~,~,):=—( ) (&+2X—') . (10)

Note that in evaluating Eqs. (8)—(10) we must use
Eq (7).

The results of such a calculation are shown in Table
III. From the data for any pair of substances we can
calculate a value of XE/E, for each member. The values
of XE/E, calculated for the three possible pairs of
substances listed in the table are seen to be consistent.
The value of the Fermi energy in bismuth of 0.022 ev
is in excellent agreement with the value obtained by
Wolff" of 0.022 ev. Our value of E,/X, which represents
the thermal energy gap if 22=0 is 0.046 ev. Now
AVolff" derives an energy gap of 0.42 ev by assuming
that an indirect transition from the top of the valence
band to Fermi surface in the conduction band as is
shown in Fig. 7(a) is responsible for optical absorption.
Since the transition is indirect the same treatment holds
if one band is not on top of the other as is shown in
Fig. 7(b). Similarly, Brown et, al. r2 obtain a gap of
0.047&0.003 ev from magneto-optical experiments
assuming the valence band is just below the conduction
band. However, they point out that if the bands are
displaced by a small amount in k space their result
should be essentially unchanged. So we may interpret
both of these gaps as thermal gaps. Hence our gap is in
good agreement with those obtained from optical
measurements. However, it should be noted that this
very close agreement is somewhat fortuitous as even
in the most favorable case, our error is such that XE/E,
may be anywhere between 0.3 and 0.7 which corresponds
to values of E between 0.021 ev and 0.024 ev and of
E~,/X between 0.035 ev and 0.070 ev. Nevertheless,
the results suggest that the speciffc model of Jainis with
a thermal gap of 0.007 ev between the conduction and
valence band is incorrect.

"P.A. Wolff (to be published).
'2 R. N. Brown, J. G. Mavroides, M. S. Dresselhaus and B.

Lax, 1he Fermi Surface, edited by W. A. Harrison and M. B.
Webb (John Wiley 8r Sons, Inc. , New York, 1960), pp. 203—209.

'2 A. L. Jain, Phys. Rev. 114, 1518 (1959).

tb)

Finally we note that the cyclotron mass at the
bottom of the band is about half the cyclotron mass
at the Fermi energy for pure bismuth.

p 2 —2

pi+A rmi- 28$1F~g
Eg 2ffIgRg

p 2 —2

+ ps+Asms ——
Eg 2m2Eg

1 2

2RZ 3FM g

Asps ps'+,— (11)
Eg Eg 2es2'Eg

Now if we let A, =A2 ——As ——p, =ps=0 and ms m2', ——
we have

pl p22 E p22

+ —+1+

=;;,(., ')-,.:,'.-(,.:.',)' "

B. Comparison of the Angular Dependence
with the Non-Ellipsoidal Model

As we noted in Sec. II, Qk '(d Q/dE) ' is independent
of angle; the 0,"s fit an ellipsoidal model for any sub-
stance and scale down by the same ratio for any given
angle between various substances; and the cyclotron
mass for a given angle depends on the Fermi level.
Hence, the behavior of bismuth appears ellipsoidal-
nonparabolic to within experimental error for the
angles investigated. To show that this behavior is also
consistent with Cohen's' model for the sizable values
of E/E, encountered in bismuth and its alloys, we will

examine some pertinent special cases of his theory by
suitable approximation methods in the following
paragraphs.

The general form of the Fermi surface in Cohen's
notation is
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This special case is of interest for the following reasons:
6rst, if m2=nz2', this formula holds exactly if there are
three "ellipsoids. '" Now the best evidence to date, the
new interband magnetoreQection experiments by Brown
et an't. ,

" suggest that under the assumption of a three-
"ellipsoid" model ns2 and m2' do not differ by more than
20%.' Also we know that there are either three or six
"ellipsoids. '" Hence, if all our experiments are con-
sistent with the three-"ellipsoid" models there must
be three "ellipsoids. " Otherwise there are six. Second,
suppose that we find that there are six "ellipsoids. "
This means' that either A i, piWO or A2, A 2, p200. Now
if the angular dependence computed for A, =p, =-0 fits
our experiments, we will have shown that Cohen's
theory is capable of explaining the angular dependence
of the de Haas-van Alphen effect, and we will have
suggested that the A, 's and p s that do not vanish by
symmetry are nevertheless small.

Now we note that if p2'/2m2E, ((1 so that we can
neglect its square, Eq. (12) reduces to an ellipsoidal-
nonparabolic form, ' i.e.,

simply

E(—+1)
8$2tSg '

(
COSOP SS2 2—tan'go+1

m1

The results of evaluation of these formulas for
various angles for the case E/L', = 1, m2/mi = 100 which
corresponds to alloy No. 3, are shown in Table IV.
Even in this extreme case, the difference between the
two areas is less than 1% for 80 ——15 which is very
nearly the smallest experimental value of 8p. Hence the
angular dependence of Cohen's model and the ellipsoidal
model should be the same for our experimental
conditions.

E( +1i—
S E, ) (m2m2) '*(r'+r) *'

6=—
3 cosHp "+++1) +

+0 +0

where

1 (m2=—
~

—ttttt'tt, +1),
2&m,

But since m2»m~, m3 in bismuth, this should hold well

except for points on the surface within a small cone
of directions about axis 2. Ke will now demonstrate
this explicitly.

The equation for the area of intersection of the
surface described by Eq. (12) with a plane through
axis 3 that makes an angle Op with axis 2 as shown in

Fig. 8 is

t

FIG. 8. Diagram showing the cross section of the nonellipsoidal
Fermi surface that is tabulated in Table IV.

0', (0') =22r(m2m2):E(1+E/Eg) lit~'(t')),

Kith the torque method, the amplitude of the de
Haas-van Alphen oscillations disappears for the extremal
cross sections corresponding to Op=0 and for Op near
zero they are masked by oscillations from other pockets
of the Fermi surface corresponding to larger Op and
smaller cyclotron mass. However, we may infer the size
of cross sections for Op=0 which we will need in Sec. C
by applying Cohen's theory to our and other experi-
ments. For our purposes, as noted before, it will be
sufficient to look at the case of A, =P;=0.

Then for this special case, we have for 8(go) and
8/d Ct/dE(9o) for the ellipsoidal (subscript e) and
nonellipsoidal (subscript ri) cases:

ct.(90') = O',.(90') = 22r(m, m, )&E(1+E/E,)

e, (0') = 22r(m2m2) ~E(1+E/F.,),

8 E
r = 2'+——+1 +2

Eg Eg

E E'+++1)
jV

8
(0')

d8/dE

8
(90')

de,/dE

xLpj=

&Eph=

m'/2

dx(1 —p' sin'x) i,

m'/2

dx(1—p' sm'x)'*

8 1+E/Eg
(90') =E

d 0',/dE „1+2E/Eg
e — E/E m, ' dF/dS E )-2

(0') =E 1+
d 8/dE „2(1+E/Eg) m2 F E /'

are complete elliptical integrals of the first and second where () = (m2'/m2)(1+E/E, ) and F(8), the result of
kinds. For Eq. (13) the corresponding equation is evaluating elliptical integrals, and dF/d8 have the
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— (0')
de/dE

Eg =0.375,

6
(0')

de/dE
Eg ——0.43.

following approximate values:

F(2)=1.06, F'(2) =0.03, F(3)=1.04, F'(3) =0.01.

Hence for the case corresponding to bismuth, i.e.,
E/E, = s and ms ——ms', we have

(X,(0')/(2rrEg (msm s) *"7=0 75.,

8 (0')/L2~E, (msms)'7=0. 64,

FIG. 9. Schematic
diagram of the elec-
tron and hole bands,
(a) in pure bismuth,
(b) when enough
electrons have been
added to nearly 611
the hole band, (c)
when more than
enough electrons to
fill the hole band
have been added.

— =k

eno

l.b)

Now Shoenberg obtains a value for A~2, the principal
cross section through axes 1 and 2, by extrapolation
using the ellipsoidal model. Thus, we see that if our
special case of the non-ellipsoidal model holds, the
actual area is only 0.64/0. 75 =85%% of his value. Hence
we would expect a period = 17%%uo higher than we would
expect from the ellipsoidal model. Now magneto-
resistance oscillations" for Hs =0 (which do not disappear
for Os

——0) are observed to give a period higher than
what one might expect from the extrapolated ellipsoidal
value and, qualitatively, the change in going to a
non-ellipsoidal model is in the right direction to explain
this. However, there is quantitative agreement between
the magnetoresistance oscillation period and the
period of Brandt'sI5 very low temperature de Haas-van
Alphen oscillations that are attributed to holes. Further-
more, there is no reason to believe that the holes
should not dominate here since their cyclotron effective
mass for this direction is smaller than that for the
electrons. To find an unambiguous case of nonellipsoidal
angular dependence, one would like to look at magneto-
resistance oscillations without interference from the
holes. The higher tellurium alloys of bismuth, since
their hole bands are filled and since their E/E, is
higher, are ideal for such a study.

The mass corresponding to A23, the principal cross
section through axes 2 and 3, is so large that A23 cannot
be inferred from de Haas-van Alphen measurements.
Aubrey" determined it by multiplying dO/dE for this

TABLz IV. Variation of cross-sectional area with
angle for E/E, =1, m./mr=100.

gO 0' 5' i5' 30' 45' 60' 90'

Ellipsoidal
Cross section

L2sEg(mrms)&g '
Nonellipsoidal

cross section
! 2s.Eg(mama)&1 '

20 15.1 7.25 3.94 2.82 2.30 2$

15.0 13.0 7.20 3.94 2.82 2.30 2

'4 R. A. Connell and J. A. Marcus, Phys. Rev. 107, 940 (1957).
'5 N. B. Brandt, A. E. Dubrouskaya, and S. A. Kytin, Soviet

Phys. JETP 9, 405 (1960).

direction obtained in a cyclotron resonance experiment
by Shoenberg's value of Q, (d 0'/dE) —'. However,
according to our analysis of the non-ellipsoidal theory,
the correct 8(d8/dE) ' for this direction is 0.430/0. 375
=1.15 times as big as Shoenberg's. Hence the corre-
sponding area should be 15%%uo greater than that inferred
by Aubrey.

C. Number of E11ipsoids

We will assume that the effect of adding a tellurium
atom to bismuth is to add one electron to the Fermi sea
and to affect negligibly the crystal potential. The
assumption of the negligible disturbance of the crystal
potential is reasonable since the addition of antimony,
which is just to the left of tellurium in the periodic
table but is not an electron donor or acceptor in bismuth,
has negligible effect on the de Haas-van Alphen effect
when added to bismuth in the concentration used here. 4

The assumption of the donation of one electron per
tellurium atom will be justified in Sec. D.

The effect of adding electrons is shown in Fig. 9.
In Fig. 9 (a) we have pure bismuth with its electrons and
eo holes. Initially, some fraction of the electrons added
goes into the hole band as shown in Fig. 9(b). Finally,
after the hole band is filled, all of the electrons then
added go into the electron band as shown in Fig. 9(c).

Now let S, be the number of electrons added, t/'0 be
the phase space volume of conduction electrons in pure
bismuth and t/', be the phase space volume after the
addition of E electrons. Note that we can determine
V,/'Vs from the de Haa, s-van Alphen effect. Then if we

plot E,Ve/V, vs W, we get behavior as shown in Fig.
10. In curve (a) we have the situation for an infinite
hole density of states. Here for E,(e& all the electrons
go into the hole band so that Vs/V, =1 and we have a
straight line of unit slope. After the hole band has
been filled„which occurs for X,=me in curve (a), we
have the following situation. The total number of
electrons in the electron band 1V,= res (the initial number
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TABLE V. Calculation of the number of electrons in bismuth.

Present work

Shoenberg and Uddin

Tellurium
added

(10 ' at. %)
2.1%0.5
3.8&0.5
5.5w1.5

13.4+0.7
1.8
3.0
4.5
8.9

Electrons
added

37~
(10"cm '}

5.9a 1.2
10.7~1.2
15.4&4.2
37.6~2

5.1
8.4

12.6
25

Scale
factor

s

1.21
1.55
2.33
4.0
1.3
1.5
1.8
2.6

Ellipsoidal
DUO/Ua

=37s &

(10"cm ')

4.4~1.0
5.5+0,6
4.3~1.2
4.7+0.3

3.4
4.5
5.3
5,9

0.57
0.67
0.89
1.27

0.60
0.66
0.74
0.97

Nonellipsoidal
&.UOl U.
(101 cm ')

4.7~1.0
5.9+0.6
4.8~1.3
5.7&0.4

3.5
4.7
5.7
6.6

in pure bismuth)+X, (the total number added) —ns
(those added which went to fill the hole band) =E,
Now since E,=2V,/h' and no= 2 Vs/hs and since
1V,=X„we have 1l~', Vs/V, =1V,&2hsms/2h'n, =ns.
Hence we see that after the hole band has been filled
our curve has zero slope and a value eo. The situation
for a finite hole density of states is shown by curve b).
Here the initial slope is less, and A is larger before
the limiting value eo is reached.

Table V shows A' Vs/V, for various 1V, using our
data and, for reference, the data of Shoenberg and
Uddin. ' We have computed X,Vs/V, for two cases.
The erst, shown in column 4 is using the ellipsoidal
parabolic model. Here if s is the ratio of the extremal
cross section of the Fermi surface for any given angle
in an alloy to that in bismuth, then s: is the correspond-
ing phase space volume ratio. In the second case E/E,
is calculated for the various alloys using Ea,/E, =0.49
and A;= p, =0 in Cohen's theory. Here the relation

—1+—
/

1+ /=s
E, E,i E, E, i

gives us E/E, as shown in column 5. Then using the
formula

Sx
V=—(8m,m,msE, '):-—

3 jV

(15)

for the volume we compute the column ratio for the
case m2=m2' and A. =1. The final result is shown in
column 6.

Npf~/'tfa) p~

(b)

N (ELECTRONS ADDED)

Frc. 10. Plot showing the behavior of the quantity SOU0/U
versus X„(a)for the case of an in6nite hole density of states,
and (h) for a Qnite hole density of states

From this we see that the use of our data and the
nonellipsoidal model show the best consistency with the
expected levelling off of X,Vs/V, for high X,. From
this we estimate that

Ns= (5.8+0.5)&&10'r electrons or holes/cc.

In any case, all of the high E data give estimates of
Ns that lie in the range of (5.4&1.2) )&10"electrons or
holes/cc.

To find the number of ellipsoids: we need to know
the number of electrons/cc in a single ellipsoid in pure
bismuth. For the case of A, =P;=0 we find that this
number, which we shall call n, is given by

8 E/E m,
(ArsAisAss)*' 1+ F(6) . (16)

3haz-: 1+E/E, 5ms'

Here A,, are the cross sections of the "ellipsoid" made
by planes passing through principal axes i and j. Using
the results of Aubrey, "one can compute n=0.90& 10"
electrons/cc for a parabolic-ellipsoidal model. As we
noted in Sec. 8), if A;=P;=0 he overestimates A is and
underestimates Ass by about 15'. Hence his value of
(AisAr, A/3): is fortuitously correct. However, his use
of the ellipsoidal-parabolic model is tantamount to
having ( ) =1 in Eq (16). F.or E/E, = ,' and ms=ms'-
as we presume in bismuth, ( )=1.11. Hence our
estimate is n= 1.00X 10"electrons/cc "ellipsoid. "Thus
the multiplicity r = no/n is 5.8&0.5. It should be
emphasized that all the formulas used are exact in the
three "ellipsoid" case if m2=m2'. Hence we can say
with confidence that there are not three but six
"ellipsoids. "

Now if we have six "ellipsoids, " then either A ~,

P&WO or As, As, P&, PsNO by the symmetry arguments
of Cohen. ' But we find that if we assume A, =P;=0
that we calculate an r very close to 6 as well as the
correct angular dependence for the de Haas-van Alphen
effect. This indicates the likelihood tha, t those A;, P; that
do not vanish by symmetry are nevertheless small.
However, a careful investigation of cases in the theory
assuming large A, and P, would be necessary to show
that our agreement is not accidental.
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D. Density of States in Bismuth

Values given for the density of states in bismuth have
varied rather widely. Kalinkina and Strelkov's" low-
temperature speci6c heat work in very clean material
gives 2.66X10 '/ev atom after being corrected for
nuclear quadrupole effects."' Phillips'" specific heat
work in somewhat less pure material, again corrected
for nuclear quadrupole effects, gives 0.89X10 '/ev
atom. Heine" obtains a value of 1.65X10 '/ev atom
from an interpretation of Shoenberg and Uddin's4
experiments using the parabolic ellipsoidal model. Ke
wish to construct a model of the hole band to rationalize
this variation.

Our model must also accommodate the direct and
reliable information about the holes in bismuth obtained
from the cyclotron resonance experiments of Gait"
and from the very low temperature de Haas-van Alphen
measurements of Brandt. "Gait finds the shape of the
hole Fermi surface an ellipsoid of revolution about the
trigonal (3) axts with mt= ms=0. 068mp and ms=0 92me.
Brandt 6nds the extremal cross sections for this surface
of 6.75X10 "g' cm'/sec' for a plane perpendicular to
the trigonal and 25.75X10 "g'/sec' for planes including
the trigonal. The masses he determined are 30% lower
than Gait's but he does not claim much accuracy for
them. He gives the number of holes as ms ——3.4X 10"/cc.
Since the masses are relatively large, we may use the
ellipsoidal model to determine a Fermi energy. Using
Gait's masses and Brandt's areas, we find Tp= 135'K..

Now if we make special assumptions or assume that
certain experiments and their interpretations are either
slightly or grossly in error, we can make many models.
For example, if we reduce the number of holes per
ellipsoid by 5% and increase the number of electrons
per "ellipsoid" by 5% we can construct a 6 electron —2

light hole band model. Ke shall choose our model,
however, so that it incorporates the cyclotron resonance
and de Haas-van Alphen data directly and so that it
can rationalize two prominent features of experiments
on bismuth. These are the large, variable density of
states and the relative insensitivity of the parameters
of the light carriers to impurities.

Our model for the carriers in pure bismuth is as
follows: six electron "ellipsoids" containing 6.0&(10"
electrons/cc and with a Fermi temperature of 260'K as
derived from the non-ellipsoidal model; one light hole
ellipsoid with 3.4X10" holes/cc and Tp = 135'K; one
heavy hole ellipsoid with the remaining 2.6)& 10"
holes/cc needed for charge neutrality and with
Tp=7'K. The Fermi temperature of 7 K was chosen

"I.N. Kalinkina and P. G. Strelkov, Soviet Phys. JETP 7,
426 (1958)."L. S. Lerner (to be published).'». E. Phillips, Phys. Rev. 118, 644 (1960).

"V.Heine, Proc. Phys. Soc. (I ondon) A69, 505, 513 (1956)."J.K. Gait, %.A. Yager, F.R. Merritt, B.B.Celtin, and D, A.
Brailsford, Phys. Rev. 114, 1396 (1959).

"N. B.Brandt, Soviet Phys. JETP ll& 975 (1960).

so as to Gt Kalinkina and Strelkov's specific heat data
to our model. Ke used Kalinkina and Strelkov's data
as their material was considerably purer than that of
Phillips. '~" Kith our model the electron density of
states is 0.15X10 '/ev atom and the light hole density
of states is 0.16X10 s/ev atom. Hence we need a
contribution of 2.35X10 '/ev atom from the heavy
holes to get Kalinkina and Strelkov's value. For
2.6X10'r electrons/cc this requires T» = 7'K and, for a
single ellipsoid, a density of states mass of 2.6mo. The
latter decreases by the 3 power of the multiplicity;
multipl. icities of 1, 2, 3, 6 and 12 being allowed by
symmetry.

Now the model fulfills the requirements listed above.
For assume we have 9 parts per million (ppm) donor
impurities, which is not an unusual amount in bismuth
when no special pains are taken for purification. Then
the Fermi temperature will increase by 6-,' K. This will
have a negligible effect on the light carrier properties,
but it will almost fill the heavy carrier band and reduce
the specific heat to Phillips value. Finally, it has been
pointed out"" that the presence of a large mass band
near the Fermi surface seems necessary to explain the
results of Jain. 's

Following Heine, "we could also use the de Haas-van
Alphen data from bismuth alloyed with acceptors to
determine TJ for the heavy holes. Here we find some
convicting data in the work of Shoenberg and Uddin. 4

Their work shows, for example, that it takes 150 ppm
of Sn to reduce the electron extremal cross sections to 2

of its value in pure Bi whereas it takes three times as
much Pb for the same effect. If we assume that each
Sn atom accepts one electron from the Fermi sea and
apply the nonellipsoidal model, we find Tp 12' and a
density of states of 1.4X10 '/ev atom for the heavy
holes. If we apply the same assumptions to Pb, we find
a T& of 5—,

"and adensityof states of 2.9X10 '/ev
atom which is in better agreement with Kalinkina and
Strelkov. " Now on theoretical grounds one would
suppose that Sn or Pb should accept one electron per
atom if they are acceptors. Since Shoenberg and Uddin4
only claim order of magnitude accuracy for their Sn
work and since their work on Pb has recently been well
confirmed by Brandt and Razumenko, " the results for
Pb would appear more reliable. However, Goetz and
Focke' also find Sn 3 times as effective as Pb in chang-
ing the steady susceptibility. Because of this discrep-
ancy, Kalinkina and Strelkov's" experiments would
seem at present to give the most reliable estimate of Tp
for the heavy holes. However, high-field galvanometric
measurements in the alloys seem to be a potentially
more powerful method. Kith them we can determine
the change in Tp from their de Haas-van Alphen
oscillations. Also, according to Mase, "we can determine

N. B.Brandt and N. V. Raznmenko, Soviet phys. JFTp 12,
198 (196i)."S. Mase (private communication).
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the difference in hole and electron concentration
directly from Hall and magnetoresistance measure-
ments with H along the trigonal and with the current
along another principal axis. This information will
suffice to give us the density of states for our model. In
any case, the acceptor alloying work to date indicates
the need for a high density-of-states hole band.

Our model is also in good agreement with our data
for alloy No. 1. For if we are to raise Tp by 40'K as in
alloy No. 1, our model requires 2.6X10" electron/cc
to fill the heavy hole band completely, 1.5)& 10"
electrons/cc for the electron band, and 1.4X10" for
the light hole band. This gives a total of 5.5)&10"
electrons/cc in good agreement with the (5.9+1.2) X 10"
electrons/cc that we actually added.

Our data also disagree with some other models of the
bismuth band structure. One of these is the 6 electron —2

light hole ellipsoid model mentioned before. This model
is not necessarily in disagreement with the experiments
showing a large density of states if we postulate a band
with a heavy mass just below the Fermi surface in pure
bismuth and further assume that these experiments were
done in material with sufficient acceptor impurities.
This model is also in rather good agreement with the
anomalous skin e8ect work of Smith'4 although this
does not necessarily mean that his work disagrees with
our model. However, presuming that we started with
pure material, this model requires 4.4X 10tv electrons/cc
to raise T& by 40', 1.6X 10"being for the electron band
and 2.8&(10" for the hole band. This is considerably
less than the (5.9&1.2)X10'" electrons/cc actually
found necessary.

Another model our data for alloy No. 1 argues against
is a 3 electron "ellipsoid" —1 light hole ellipsoid model.

s~ G. E. Smith, Phys. Rev. 115, 1561 (1959).

This model would be consistent with our results for
alloys No. 2, No. 3, and No. 4 if we assumed on the
average one-half an electron per tellurium donor atom.
Now Goetz and Focke And that Se is only one-third
as eBective a donor as Te which we might interpret as
showing that a donor does not necessarily contribute
one electron to the Fermi sea. Again, however, this
does not appear theoretically plausible, a boiling away
of some of the rather volatile Se during crystal prepara-
tion seeming more likely. Now we can calculate that
we require 2.2X10" electrons/cc to raise Tz by 40',
0.8X10" for the electron band and 1.4)&10" for the
hole band. This is considerably less than the (3.0&0.6)
X10" electrons/cc that we added assuming one-half
an electron per Te atom. High field galvanomagnetic
experiments in our higher Te alloys would be an ideal
way to check this assumption as with them we can
determine the number of electrons directly, holes being
absent.
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