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Classical Microscopic Model for Magnetic Resonance Including Relaxation Effects
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A classical theoretical model for magnetic resonance is suggested, and several of its implications are
developed. The solution to Bloch s equations for magnetic resonance, without relaxation, is assumed for
each incremental portion of the total magnetization of a system, With a suitably rotating coordinate system,
an investigation is then made of the steady-state angular distribution of magnetization that results from
the random relaxation process to which each element of magnetization is subject. When the longitudinal
relaxation time, T&, is taken to equal the transverse relaxation time, T2, this procedure leads to the same
results as the direct solution of Bloch s equations with relaxation. In addition, the model yields a general
description of the saturated dispersion signal for sinusoidal modulation of the external field, for both homo-
geneous and inhomogeneous broadening of the resonance line. A method for measuring Tl based on this
description is presented. For T&&T2, the model reveals on classical, geometrical grounds an inconsistency
in Bloch s implicit assumption that the transverse relaxation effects are independent of the applied radio-
frequency field.

I. INTRODUCTION

HE model. described in this article grew out of
an e6ort to form a reasonably clear intuitive

picture of the classical behavior of the individual
elements of a paramagnetic system under the conditions
of ordinary magnetic resonance experiments. In such
experiments the system is placed in a magnetic field,
Ho, and a radio or microwave frequency (rf) magnetic
Geld, 2H1 cos~t, is applied in a direction perpendicular
to Hp. Also, as a rule, Hp))HI. Since the magnetic
moment of the system has associated with it a definite
amount of angular momentum, the torque resulting
from the action of the applied field, Hp, causes the
moment to precess around the applied static field at
the Larmor frequency, 2vrpHp, where p is the gyro-
magnetic ratio. As the frequency of the applied alter-
nating field approaches the Larmor frequency, the
alternating field will have an increasing effect on the
orientation of the magnetic moment and various
resonance phenomena can be observed.

Also aHecting the orientation and magnitude of the
magnetic moment will be those fields that, in the
absence of the alternating field, would relax the system
to a state of equilibrium within itself and with its
surroundings. In his now-classic paper on nuclear
induction, Bloch' wrote phenomenological diRerential
equations in which he added the gyroscopic terms,
which describe the time dependence of the total
macroscopic magnetization of the system in the absence
of the relaxation fields, to relaxation terms, which
describe the time dependence of the macroscopic
magnetization in the absence of the alternating field.
Simply adding these terms is tantamount to assuming
that the presence of the alternating field does not
aHect the relaxation process. This assumption has been
examined by a number of authors, notably Redfield. '

The approach here is to assume that the macroscopic
magnetization is divisible into incremental elements of

' F. Bloch, Phys. Rev. 70, 460 (1946).
~ A. G. Red6eId) Phys. Rev. 98, T787 (I955).

constant amplitude, each of which obeys the gyroscopic
part of Bloch's equations, precessing about the external
static field and nutating in response to the alternating
field. For brevity, these elements are referred to as spins
even though no attention is given to the quantum
mechanical implications of the model. It is arbitrarily
stated that each spin is subject to a simple relaxation
event in which it discontinuously changes its orientation
from whatever that may be to alignment along Hp.
This is a randomly occurring event with a probability
per unit time of 1/Tr. ' As a result. of the simultaneous,
and presumably independent, action of the two e6ects,
the magnetization of the system assumes a steady
state distribution in a phase space whose variables
describe the orientation of the magnetization elements.
With this distribution known, the signal can be pre-
dicted under several sets of conditions commonly
encountered in magnetic resonance experiments. Kangs-
ness and Bloch' have achieved a similar objective on a
quantum-statistical basis. However, the present ap-
proach is justified by its intuitive transparency, and
by certain new results to which it leads.

This paper is divided into several sections. In Sec. II,
the basic model is developed for TI=T2. Next, the
model is used to obtain expressions for the saturated
dispersion signal when the external field is changing
with time. This is done for a single adiabatic sweep and
for adiabatic sinusoidal modulation of the external field.
Included in this section is an explanation of the de-
pendence upon reference signal phase of the line shape
recorded by the phase-sensitive detector employed in
field modulation spectrometers. A method for using
this dependence to measure TI is also described. In
Sec. IV the model is used in an examination of Bloch's
assumption that the spin-spin relaxation process is
independent of the strength of the applied radio
frequency field. The discussion section includes a

3 Quantum mechanically, for spin -, the probability per unit
time is given by 1/2T1. 'this arises because each transition changes
the difference in occupation of the two available states by two.

4 R. K. Wangsness an/ F. Bloch, Phys, gf;v. 89, 728 (1953).
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I'IG, 1. Cone of precession in a rotating coordinate system.
The external field, IIO, is static. The angle @ is measured here in
the direction of precession for positive y.

effective field with an angular velocity given by

f1=
I ~ I

E&~'+ (&o—~/I ~ I)'3'*= 5'&~'+ (»—~)'j'* (1)

If we consider only a single resonance line, uncompli-
cated by structure, the magnetization will lie on a cone
centered on the effective Geld as shown in Fig. 1.

To inject the concept of relaxation into this picture,
the total magnetization is taken to be made up o&

independent spins. The term "independent" here
implies that the spins have a negligible average effect
upon each other in times comparable to T~, the spin-
lattice or longitudinal relaxation time, and thus that
T~——T~, where T~ is the transverse relaxation time.
Each such spin will precess about the eRective field.
For the present, only the spin-lattice relaxation process,
characterized by a probability per unit time of 1/T&,
will be considered. As indicated in Sec. I, the relaxation
event is pictured as the disappearance of a spin and its
immediate reappearance at the s axis. The physical
reality of this assumption is examined in Sec. V. After
relaxation, a spin will begin to precess again around
the eRective field.

The resultant distribution of magnetization around
the cone of precession can be determined by noting
that in the steady state the amount of magnetization
arriving at any position on the cone per unit time must
equal the amount leaving per unit time. Thus

consideration of the physical reality of the model. An
appendix discusses the relationship between the
methods of this article and Chamber's solution to the
classical Boltzmann transport equation.

M/T, M(y)dy/T, —=MQ)n, (2)

II. BASIC MODEL

The description of magnetic resonance phenomena
will be referred to a rotating, right-handed coordinate
system. ' ' The s axis is taken to lie along the direction
of the applied static field, Ho, in the positive sense, and
rotation occurs about this axis at the frequency of the
applied radio-frequency field in the positive or negative
sense for negative or positive gyromagnetic ratios,
respectively. The applied rf field, 2'& cos~t, is resolved
into contra-rotating components of amplitude H~', and,
at high static Gelds, only the component that is sta-
tionary in the rotating system has a significant physical
eRect. It is taken to lie along the x axis in the positive
sense, and it forms the x component of the eRective
field in the rotating coordinate system.

The s component of this effective Geld is given by

fe H.(g Bs co/iyi. —— —

If relaxation eRects are neglected, the total magnet-
ization of a system characterized by the gyromagnetic
ratio 7 may be thought of as precessing about the

where M is the total magnetization, M(@) is the
distribution function sought, and p is measured in the
direction of precession, as shown on Fig. 1. The first
term gives the rate of injection of magnetization at the
s axis. The second gives the rate of relaxation in the
range of azimuthal angle from zero to qh. M(p)D is the
rate at which magnetization passes the position at Q

because of precession in the rotating system.
Differentiating (2), one has

M(y)/QT, =dM—(y)/dy.

The solution for (3) that also satisfies (2) is

M(@)= (M/QTg)e &'nr'

The same result could have been obtained by subjecting
the solution of (3) to the requirement that the total
magnetization be M.

The dispersion signai (u, in Hloch's notation') in the
laboratory coordinate system is in phase with the
applied radio-frequency Geld and is thus proportional
to M, the projection of the distribution of magnet-
ization on the x axis of the rotating frame.

' R. K. Wangsness, Am. J. Phys. 21, 279 (1953).
I. I. Rabi, N. F. Ramsey, and J. Schwinger, Rev. Modern

Phys. 26, 167 (1954).
M = M($) (1—cos$) sin8 cos8d8,
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where the integration is carried to infinity to account
for the possibility that many precession periods will

pass before a given increment relaxes. Similarly, the
absorption signal (—t, in Bloch s notation, for positive
p) is given by

M„= MQ) sing sin8dp.
0

magnetization all lies in the y-s plane, as it does at
resonance for any value of H&. Thus, the dispersion
signal saturates in a different manner than does the
absorption signal. This last statement requires elabo-
ration, since (11) and (12) have the same denominator.

In many experiments, co is held constant and Ho is
slowly varied, the signal being plotted as a function of
Ho. When the signal is plotted as a function of 6,

Also'

M, = M(@)(cos'8+sin'e cosp)dp. (7)
where

M.+MS/(1+ 2+n'),

M„=Mn/(1+P+o. '),

(14)

(15)

M„=xocopHg---
1+ysH12Tts+ (rpp tp)sTP

1+(cup
—cp) sTP~.=XO&0-

1+rHPTP+ (tpp oi) TP
(13)

These will be recognized as the steady-state solutions to
Bloch's' equations for T&——T2 in the rotating coordinate
system, where the total radio-frequency field is taken
to be 2II~ cosset along the x axis in the laboratory
frame of reference.

The model permits a simple intuitive interpretation
of various relaxation phenomena. To give an example,
if 7Hi))1/Ti, the average spin precesses many times
around the eGective Geld between relaxations. Thus,
the distribution of magnetization around the cone
shown in Fig. 1 becomes uniform because of the random
nature of the relaxation process. (See Appendix. ) Then
there will be no projection of the distribution of magnet-
ization on the y axis, and the absorption signal will be
saturated. On the other hand, a projection on the x
axis persists until H~ is so large that the effective Geld
lies essentially along the x axis, in which case the

' These expressions are reminiscent of those obtained by
Garstens (reference 18), who treated gases and averaged the
components of magnetization resulting from gyroscopic motion
over the time since the last collision. See also reference 17, p. 109.

The trigonometric terms are the projections on the
appropriate axes of unit vectors on the cone of preces-
sion. It should be noted that these expressions auto-
matically take into account the fact that the cone of
precession will be in the —x, +z quadrant when the
effective field is in the +x, —z quadrant, since cos9
will be negative for that case. Equations (5)—(7),
together with (4) and (1), yield:

Mz 7HtMTP(pip tp) (1+Q2TP)—1

M„= yHtMTt(1+O'TP)

M, =Mt 1+ (ppp
—cp)'TP j(1+0'TP)—' (10)

But M=XpHp, thus
Ti ((vp —pp)

Mg =Xp(dpBy
1+'r Hi Ti +(G&p—cp) Ti

(dM, /dHp) . =Mp/Hi, (16)

(dM„/dH p), =a (4s) **Mp/yTiHP. -(17)
To obtain the actual signal detected as a function of
the radio-frequency susceptibility, (16) and (17) must
be multiplied by H /Hi, where H is the modulation
amplitude. Thus, the peak dispersion and absorption
derivatives saturate in substantially differing manners;
even though, for systems obeying Bloch's equations, the
dispersion and absorption saturate according to the
same function for constant field. '

III. PASSAGE EFFECTS

A. Single Sweep

This section treats the case for which H~ is large
enough to ensure uniform distribution of magnetization
around the effective field in the rotating coordinate
system and for which the external field is changing.

Equation (17) is an extrapolation of case 1 of reference 16.
The more complicated cases will not be treated here.

6= (Hp —H*)/Hi ——cot8, Hr"= pi/ill,

~= 1/I v I
HiTi.

Bloch obtained expressions analogous to (14) and
(15) by direct solution of the equations of motion for
the slow-passage case. Note that the absorption signal,
for constant 8, can be entirely eradicated at sufficiently
high rf Gelds, whereas the dispersion signal cannot. In
the model this corresponds to the fact that, for constant
8, a uniformly occupied cone of precession at 8=cot '8

has a zero projection on the y axis and a finite, constant
projection on the x axis. Perhaps one can say that, in
systems obeying Bloch's equations for T&= T2, large rf
Gelds "kill" the absorption signal, whereas they only
"push aside" the dispersion signal.

This distinction is important in the common type of
experiment where Ho is modulated sinusoidally with an
amplitude much less than the line width and with a
frequency low enough to ensure equilibrium throughout
a modulation cycle. The resultant modulation of the
components of magnetization is translated into a signal
proportional to the Grst derivative of the appropriate
magnetization component with respect to Ho. But from
(14) and (15) it may be shown that, for n&(1:
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distribution is uniform around the effective field, the x
projection of the magnetization in a differential cone
is given by

dM, =dM(0') cos0' sin0d0'.

Thus, the total x projection is

M, (t)=(1/Ti) M(t')s i' 'lt 'cos0(t') sin8(t)dt'

FlG. 2, Representative cone of precession in a rotating coordinate
system. The external Geld, II0, is changing.

We limit the discussion to changes that are slow
relative to the precession rate, Q. Specifically:

(dH s/d t) /Hi«yH, .

Under this "adiabatic" condition, each spin continues
to precess around the effective field at a constant
angle, until it relaxes to the s axis. ' It then precesses
around the effective Geld at a new angle equal to the
angle between the s axis and the effective field at the
instant of relaxation. If the precession rate, 0, is
sufFiciently large, the distribution of magnetization in
a differential range of cones characterized by de' will be
uniform around the effective field. (See Fig. 2.)

It is of interest to find the distribution, M(0'), of
magnetization in the various cones centered on the
effective field. A given differential cone can receive
magnetization only while it is in contact with the s axis.
Subsequently its magnetization is assumed to decay
exponentially at a rate determined by 1&. Thus, to
first order,

M -p(-Et(0)-t(0')1/T ),
dM (0') =— — —d0'.

Ti (d0/dt)
'

Here t(0) is the present time; t(0') is the time at, which
the cone at 8' touched the 2' axis. The rate of change of
0, (d0/dt)', is evaluated at t(0'). Strictly speaking, M is
not a constant, since the external field is varying. M
will not even have its equilibrium value at any given
time, so it is complicated to evaluate exactly. The
signal will be determined by the projection of the total
distribution of magnetization on the x axis. Since the

' An intuitive picture of adiabatic passage without relaxation
is given by J. G. Powles, Proc. Phys. Soc. (l.ondon) 71, 497 (1958).

d0/dt))7r/Ti. (24)

Unless this condition is met, the distribution of magnet-
ization in cones around the effective field will change
during the passage, tending to relax into cones close to
the s axis, and (22) will not apply. But 0=cot '8, and
thus

d0/dt= —H (1+0s)-'(dH, /dt).

Hence, in addition to indicating the well-known
condition that passage through a line must occur in a

+M(r)e " '1' i cos0(r) sing([), (20)

where the variable has been changed from cone angle
to time. The time at which the sweep started is v, and
0(r) is the angle at which the system was allowed to
come to equilibrium before the field sweep started.
The second term accounts for the magnetization still
in the cone at 0(r) at the time t If r=. —oo, (20)
reduces to Bloch's solution of his equations for

Ts Ti) 7H——i»1/Ti, d Ho/dt«yHP. (21)

Equation (20) applies for all rates of passage, providing
only that (21) is obeyed.

This approach provides a useful picture of the
adiabatic rapid-passage phenomenon. ' If the sweep of
the external field from above resonance to below
resonance is suKciently rapid relative to the relaxation
rate, most of the magnetization will remain in the
initial cone at 0(r) during the entire passage. Thus the
contribution of the integral in (20) to M, will be small,
and the second term will dominate.

M, (t) =M(r) cos0(r) sin8(t).

If the sweep is started sufficiently far off resonance,
0(r) =0 or m. Thus, cos0(r) =&1, where the plus sign
applies for a sweep starting at a field above that for
resonance, and the minus sign applies for a sweep from
below resonance. Thus:

M. (t) =&M(r) sin0(t)=+M(r)/Li+B(t)'gi. (22)

This is the usual expression for the rapid-passage signal.
It is generally stated that, for rapid passage, the

field sweep must obey the condition:

dHs/dt&&Hi/Ti. (23)

The model indicates that a further restriction should
be applied. This is that
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time less than Ti, (24) implies that, in a sweep over a
portion of the wing of a, line, dHs/dt must be larger
than at the center of the line. This fact has application
in the summation of rapid passage signals from several
lines "

B. Sinusoidal Field Modulation

If the external field ISO is modulated sinusoidally"
so that Hs(t)=Hs+H coso~„t, differential cones that
touch the s-axis at fieMs within the modulation range,
Ho+H to Hs H, —will do so twice during a modu-
lation cycle. In the steady state, the occupation of each
such cone will be a periodic function of time, and the
total amount of magnetization entering the cone per
cycle must equal that leaving the cone per cycle. It, is
assumed that the sweep through resonance of the
external field on which the modulation is superimposed
in most experiments is sufhciently slow so that the
steady state prevails at all times. Again, only the
saturated case is considered; i.e., II~ is assumed large
enough to ensure uniform distribution of magnetization
in each differential cone. As in equation (20), time is
used as the variable. Thus, the differential cones
correspond to intervals of time, dt', spent in contact
with the s axis. The total magnetization, M, is taken
to be constant over the modulation range, 2H . In the
steady state:

2Mdt'/Ti AM (1 e——'r '"""')— —

+(AM e 1 '&t '+Mdt'/Ti)(1 —e "'t ') (25)

Here T=2~/ ~,othe modulation period, and t' is the
first time during a cycle of the modulation field that a,

given differential cone touches the s axis. The cycle is
assumed to start at 3=0. Essentially, t' is the variable
that defines the differential cone of interest. Thus, Eq.
(25) applies to that cone making its first contact with
the s' axis at time t' after the start of the modulation
cycle. 63f, is the occupation of the cone immediately
after its first contact. Equation (25) may be solved to
yield

hM~ —(M/Ti) (1+e '"»i) (1 e—rtri)—'dt'. (26)

Similarly

AMs ——(M/Ti)(1+e —~"-"&t ')(1—e— t ')—'dt' (27)

where B,Ms is the occupation of the cone first touching
the s axis at t immediately after its second conta, ct with
the s axis.

M, at any instant, t, is given by the integral of the
contributions from all cones. The calculation is straight-
forward and only the results under certain approxi-
mations will be given here. If or T~((I, the saturated
dispersion signal is obtained as expected. If one con-

' A number of authors have treated modulation effects by
direct integration of Bloch's equations. See, for instance, R.
Gabillard, Compt. rend. 232, 1477 (1951); K. Halbach, Helv.
Phys. Acta 27, 259 (1954),

siders a line lying within the modulation range and
takes H ))Hi and nt H~))H /iT i (ensuring that the
modulation range is much greater than the linewidth,
B~, and that the rate of field change is sufficient to give
a rapid-passage signal), M, may be evaluated at the
times during the cycle when the field has the value for
resonance. This procedure yields the formula employed
by Brain" in his method for determining T&.

It is also possible to use (26) and (27) for determining
the phase of the first harmonic of M, (t) relative to the
modulation field. Since this result appears to be in
part new, the calculation will be described in more
detail.

The signal from one differential cone, characterized
by t', is given by

dM, (t.', t) =dV(t', t) cos0(t') sin0(t), (28)
where

dM(t', t) = AMse "+'~tr'

dM(t', t)=AM. e &' ""r'
dM(t't)=DMse " +'" '

0&t&t',
t'& t& T—t',

t—t'& t& T.

Ms'=-M(~) ' cos0(t')d(co t'), (29)

M„i'=2(m. ) '(1+co,sTis) 'M cosco, t'

Xcos0(~o t')d(co„t'), (30)

Mgi'=2(vr) 'co~Ti(1+os„'Tis) 'M costs„t'
&&cos0(oi„t')d(co t'). (31)

Note that

cos0(t ) = L0s+H~(Hi) cosoi~t j
)&(1+l0o+H (Hi) i cosco t']s) ', (32)

where 0,=(H,—~.r/lpl)/H, .
The phase lag P' of the projection on the effective

field of the magnetization in a single cone is given by

tanP'= Msi'/M. i'.

From (30) and (31) we see that all such phases are the
same, and the projections of all cones on the effective
field may be added algebraically. Thus, the net signal
from a single line may be regarded as the projection
on the x axis of a time dependent magnetization
directed along the effective fi.eld and having the pha, se
of any individual cone. That is,

M, (t) = (Msai+asM, i) cos~o t

+ (Msbi+apMpi) sinned„t. (33)

"L.g. Drain Proc. Phys. Soc. (London) A62 301 (1949).

Equation (28) is the product of two periodic functions
of time; thus

dM (t) = (Mp ai+apM i ) costs

+ (MO ~1+aOMbl ) SlnM~t+ ' ' '
)

where Mo', M.1', 3fbl', and go, a1, b1 are the appropriate
coefficients for the Fourier analysis of dM(t', [) cos0(t')
and sin0(t), respectively. Higher order terms will

henceforth be neglected. Thus
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ol
M~(t)=(asA —IMoail) cosa~ t=D coso~ t,

«A=D+
l
boa, l. (35)

At intermediate frequencies

iV, (t)= —IMoail cosa& t

+(1+oi„'Ti') *IMpail cos(o~ t tan oi„Ti)
+(1+ate 'Tis) lDcos(o~„t —tan 'o~„Ti). (36)

At high frequencies (a~„Ti))1)

M, (t) = —I3fsail cosa~„t. (37)

Equation (36) is shown vectorially in Fig. 3. Note that
the first and second terms of (36) combine to give a
signal at a phase lag of vr/2 with the second term. The
third term is either in phase with or at 180' to the
second term. Hence, a phase-sensitive detector set in
quadrature with the combination of the first and second
terms would detect only the third term.

An experimental procedure for determining the
relaxation time, T,, is to observe the shape of D as Hs
is swept through the line at low modulation frequency.
The spectrometer must be tuned to reject higher
harmonics of the modulation frequency. Then, at an
intermediate frequency and the same modulation

' It is interesting to note that this result implies that an
observer in a frame of reference having its s axis along the effective
Geld would see an oscillating s component of magnetization that
conforms to the Debye function and obeys the Kramers-Kronig
relations. See C. J. Gorter, Paramagnetic Relaxation (Elsevier
Publishing Company, Inc. , New York, 1947), p. 22.

The constants here cannot be evaluated so readily as
350', M &', and M»', but certain qualitative comments
can be made regarding them.

1. as is positive, since 0~8(t) ger.
2. a~ is positive for lines resonating above Ho, and

negative for lines resonating below Ho. This can be
appreciated by examining an appropriate plot of
sin8(t) in each case.

3. bi 0,——since sin8(t) is symmetric about t=0
4. Mo is positive for lines below Ho, and negative for

lines above Hs, because, when 8(m/2 for a greater
portion of a cycle, the net magnetization in the steady
state will spend a larger amount of time directed along
the positive sense of the effective field, and vice versa.

S. M ~ and M» are positive, since cos~ t' and
cos8(o& t') in (30) and (31) have the same sign for all
cones. Also

IlIIsi=(O~Ti(1+oitN Ti ) A, Sf~i= (1+to~ Ti ) A,

where A is a constant, independent of frequency,
obtained by integrating (30) or (31) over all cones."
Thus

M.(t) = [(1+os sTis) 'asA I3-fpat
I ]—cosa)„t

+oi Ti(1+a&„'Tis)—'apA sino~„t. (34)

Note that Moa& is always negative from 2 and 4 above.
At low freouencies (oi Ti«1),

NET SIGNAL

&m~i I Mo a, l

()+ 2 TR)I/2

IMoail

0
( ) + 2 T R ) I/2

)Mo a~I
+gp2 TR ) I/2

ill I

~ CON liP~t

F&G. 3. Components of the signal at intermediate modulation
frequencies. Here co is the modulation frequency, D is the signal
obtained for co~T&((1, and (3fooi~ is the signal obtained for
mT1)&1.

amplitude and radio frequency power, the phase lag of
the reference signal to the detector for which a spectrum
of the same shape is obtained will be given by

tanO~ =M~Ti. (3g)

This will be true without regard for the values of H
or H~ as long as T~=1'2 and the adiabatic passage
condition (18) is obeyed throughout a modulation
cycle. At sufficiently low modulation amplitudes, D
will simply be the saturated dispersion derivative. At
other phases of the reference signal a combination of
the high-frequency and low-frequency signal shapes
will be observed, except at a phase lag given by tano'
= —

(&a Ti) ', where a pure high-frequency shape will

be recorded. If the modulation amplitude is kept
sufficiently small so that the dispersion derivative is
not distorted, there is no need to keep the amplitude
constant as the frequency is changed.

A related result has been obtained from Bloch's
equations by Halbach' and discussed further by
Redfield. ' The approach here has the advantages that
it applies for any modulation amplitude whether or not
the line shape is distorted, and it gives a complete
description of the line shape for any reference phase.
It has the disadvantage that it is limited to conditions
at complete saturation.

The present treatment extends to the case of a
spectrum of partially or totally unresolved lines, all
having the same relaxation time. At any point in the
spectrum, the phase of the signal from the first two
terms of (36) will be the same for all lines. The third
term for each line will be either in phase or 180' out of
phase with that for other lines. Thus the high-frequency
and low-frequency components of all lines will add
algebraically and the experimental method described
above can be applied.

Of particular interest in this regard is the case of an
inhomogeneously broadened line. From the work of
Portis, and of Feher" we can identify the high-frequency
term at a phase lag of 180' relative to the modulation
field, —IMsail coso~ t, as very nearly equal to the
absorption envelope, providing H is sufficiently less
than the total linewidth and sufficiently greater than H&.

13 A. M. Portis, Technical Note No. 1, Sarah Mellon Scaife
Radiation Laboratory, University of Pittsburgh, 1955, Air
Research and Development Command (unpublished). See aLso
G. Feher, Phys. Rev. 114, 1219 (1959).
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Under the same circumstance the low-frequency term,
D costs t, will be the derivative of the dispersion
envelope. At intermediate frequencies different combi-
nations of the two will be recorded depending upon the
phase of the reference signal. That such combinations
occur in electron magnetic resonance is confirmed by
the experience of Hyde" and of Weger. " It is also
con6rmed by observations of the author on F centers
in KCl, on paramagnetic radiation damage sites in
fused quartz, and on free radicals in a large variety of
irradiated organic solids.

The ratio of the amplitude of the absorption, recorded
at a reference signal phase of tan 'P(or Ti) 'j, to the
amplitude of the dispersion derivative recorded at a
phase of tan '(cu Ti) may be computed from the
theory:

R= (~ M,a, ~/D)~. T,. (39)

Equa, tion (39) applies only for constant II and Hi.
The linear dependence on modulation frequency has
been confirmed by the author for P centers in KCl.

One further point should be made about the phase
method of measuring T~. Redfield' has shown that at
sufficiently high radio-frequency fields, I'2= T~. Thus
the method applies for determining T~ even if T2@T~

providing suKciently high values of H& are employed.
This point will be reinforced in a qualitative manner
in the following section.

IV. INTRODUCTION OF T2

In the preceding sections the steady-state angular
distribution of magnetization under the combined-
effects of a radio-frequency field and spin-lattice relax-
ation has been determined. The question naturally
arises whether the effect of additional processes that
tend to cause dephasing of spins around the external
field can be treated. This should have the effect of
injecting T2 into the solutions for various experimental
conditions.

By analogy with (3) the differentia, l equation for
the steady-state distribution of magnetization over an
entire sphere, instead of only around a cone, is

RM(8y)= —V V. (40)

Here 8 is a general relaxation function that may be
dependent on 8, P, and on any external parameter such
as IIi. V is the flux vector on the surface of the sphere
of the tips of the spin vectors. Equation (40) contains
the assumption that the relaxation rate from any
surface element of the sphere is proportional to the
amount of magnetization associated with that element.
The additional dephasing processes require the presence
of static and of certain fluctuating local variations in
the 2 component of the net field to which spins are
subjected. "When it is proper to use a single effective

'4 J. S. Hyde, Phys. Rev. 119, 1483 (1960)."M. &cger, Bell System Tech. J. 39, 1013 (1960).' N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev.
73, 679 (1948).

field, V=M(8,&)QXr where r is the radius of the
reference sphere. This radius is unity, since M(8,&) is
normalized to give a total magnetization M. Further,
if there is no local field variation, R=1/Ti, and (40)
reduces to (3), in a left-handed coordinate system
having its s axis along the effective field. If there is a
local field variation, (40) becomes difficult to use.
Under appropriate conditions, however, and by making
certain assumptions, it is possible to derive the solution
to Bloch's equations for T~/T~. The conditions are

yHi))1/T2 and dHO/dt«yHP.

Since T2=1/~y~H', where H' is the spread of local s
field components, the first condition means that H~
will greatly exceed the range of local field variation
and, thus, that the use of a single effective Geld for all
spins will be appropriate. Further, the distribution of
magnetization will be uniform around this effective
field. The assumption that turns out to be necessary is
that R in (40) is a function such that the projection on
the effective field of the magnetization in a cone
characterized by 3', AM(t, t'), will obey the following
equation:

dhM (t,t') cos'8(t) sin'8(t)—
+ AM (t, t'). (42)

The elliptical relaxation term in (42) reduces to the
spherical term, 1/Ti, when Ti T2. Then, ——by direct
analogy with the method of deriving (20):

On the assumption that each cone receives magnet-
ization only while it is in contact with the s axis,

M(t) = (1/T, ) dt' M(t') cos8(t')

Xexp — Leos'8(t")/Ti+ sin'8(t")/'I'2]d/", (44)

where M(t) is the projection of all of the magnetization
on the effective field in the rotating coordinate system.
Note that, since the distribution of magnetization
around the effective 6eld is uniform,

M, (t) =M(t) sin8(t).

Equation (44) can be reduced to give

M, (&')8(i')
M(r) = d&'

—. T (1+&'(~'))'
' 8'(t")+T,/Tg

Xexp — dt", (45)
T,L1+82 (t")g

dM (t,t') = AM (t', t') exp — Leos'8(i")/Ti
gl

+sin'8(t")/T~]Ch" . (43)
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which is the appropriate solution to Bloch's
equations.

However, the development of (45) contains an
inconsistency. It was assumed that each cone received
an amount of magnetization Mo(t') dt'/T~ while in
contact with the s axis. Subsequently this magnetization
decayed at a rate dependent on T& and T2. Thus, (45)
fails to take into account the signal from magnetization
leaving each cone by means of the dephasing process
between the time it leaves and the time it relaxes to
the s axis. This can only be proper if, during that
intermediate time, the magnetization goes into a
distribution having no projection on the x axis. But it
was assumed that the rf held is suf6ciently large to
ensure that all spins see nearly the same effective field,
and thus they are prevented from relaxing into the
necessary temporary distribution but are held very
nearly in their original cones until lattice relaxation
occurs. Thus, even though T&AT2, Eq. (20) should be
used under conditions (41).

These arguments lead, on purely classical, geo-
metrical grounds, to the conclusion that the effects of
the rf 6eld and the spin-spin relaxation processes are
not independent. In fact, the distribution of effective
6elds, both static and fluctuating, in the rotating
coordinate system is a function of H & under any
circumstances.

Certain qualitative considerations can be made on
the basis of the model. For instance, the spin-spin
interaction that rapidly transfers the energy absorbed
a,t one frequency in a dipolar broadened line to all of
the spins" is seen to break down at high rf fields.
Classically, this interaction requires for its occurrence
between two spins that they be precessing around the
external field, Ho, out of phase with each other. They
must continue to do so for a time sufficient that each
spin will experience a signi6cant change in its orien-
tation as a result of the oscillating 6eld induced by the
precession of the other spin. The maximum effect will

occur when they are in quadrature. Near resonance a
relatively large rf field will tend to prevent the spins
from precessing in the proper phase since they will all
be nearly in the y-s plane of the rotating frame. Off
resonance, the conical distribution of magnetization
allows the proper phase relation to prevail for some
spins, but, since H& greatly exceeds the range of local
fields, this phase relation will not last long enough for
a change in orientation to occur. In fact, for a given
pair of spins, the effect during one-half of the period,
1/Q, will cancel that during the other half. Since
T~))1/0, the net effect will average to zero.

V. DISCUSSION

Some discussion of the physical reality of the model
is in order. Its most obvious deficit is that the relaxation

'7 Ã. Bloembergen, thesis, Leiden (unpublished), p. 49.

event described does not conform to the true state of
affairs. .To a 6rst approximation relaxation in a classical
picture must take place into a Boltzmann distribution
around the external field, not to alignment with the
external field as in the present model. However, this
will have no effect on the result, since a group of spins
existing at a given moment in a Boltzmann distribution
symmetrical around the applied static field will subse-
quently move in the rotating coordinate system in such
a way as to remain symmetrically disposed around the
direction of a spin starting out aligned with the 2 axis.
This group of spins can thus be replaced, for the
purposes of the theory, by an increment of magnet-
ization moving in the cones of Figs. 1 and 2. Such a
group gradually would be attenuated by relaxation, an
e8ect replaced in the theory by a single, statistically
equivalent event.

Even relaxation into a distribution around the
applied static field is not strictly correct, since the
susceptibility of the paramagnetic system can be
reduced to the proper Debye formula for low static
fields only by assuming an event in which the magnet-
ization relaxes into a Boltzmann distribution relative
to the instantaneous net 6eld' —' in the laboratory
coordinate system. However for Ho))II& the simpler
picture of the relaxation event employed in this paper
will be adequate. For another method of introducing
relaxation effects into the rotating coordinate system,
see papers by Bonera a,nd co-workers. "

With regard to the quantum mechanical implications
of the model, P~abi et u/. ' have shown that, if relaxation
effects are neglected, the correct quantum mechanical
expectation values of M„M„, and M, are given by the
classical description of the resonance phenomenon in
a rotating coordinate system. Thus, in the model, the
description of the behavior of each element of rnagnet-
ization between spin-lattice relaxation events leads to
the correct value of the observables for that element.
It has not been shown that the expectation values for
the entire assembly of elements are correctly given by
the averaging process used here. However, presumably
they are correctly given for those conditions under
which Bloch's equations have been shown to be quan-
tum mechanically correct. 4
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APPENDIX

KitteP' has pointed out that the methods employed

in this article bear a resemblance to Chambers'" solu-

tion to the classical Boltzmann transport equation.

Investigation of this point has revealed the following

very simple derivation of the solutions to Bloch's

equation for T1——T~. By accounting for all magnet-

ization entering the cone at times previous to the time

being considered, the rate of arrival of magnetization

elements at an angle p, where p is measured only once

around the cone, may be determined:

"C. Kittel (private communication).
"R.G. Chambers, Proc. Phys. Soc. (London) A65, 458 (1952),

see also V. Heine, Phys. Rev. 107, 436 (1957).

Rate= P M(T&) ' expL —(p+2s.e)/(QT&)]
m=0

=M(Tr) ' expL —(P/QTr)]/t 1—exp( —2~/QT, )].
But this must equal M($)Q, the Row rate by the
position, Q. Thus

M(P) =M(QTt) ' exp( —@/QTr)L1 —exp( —2s./QTr)] '.
This expression substituted into (5), (6), and (7) with
a range of int:egration from 0 to 2s. yields (11), (12),
and (13). Note tha, t as QTr —& oo, M(Q) —+ 3II/27r,
which explains the uniform distribution of magnet-
ization in the cone at high radio frequency fields.

It may be possible to extend this approach to account
for all magnetization scattered by various relaxation
processes into each trajectory passing through a point.
on the reference sphere, and thus to obtain a completely
general classical description of magnetic resonance.
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De Haas-van Alphen Effect in Bismuth-Tellurium Alloys*t

DANIEL WEINERf.
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De Haas-van Alphen measurements have been made on pure bismuth and several bismuth-tellurium
alloys. It is found that the observed variation of external cross section and cyclotron effective mass with
tellurium concentration and magnetic field orientation can be interpreted using a special case of Cohen's
nonellipsoidal model of bismuth. The results indicate that there is a thermal energy gap between the conduc-
tion and valence band of about 0.046 ev in agreement with various optical experiments and that there are
six electron "ellipsoids, " The results also agree with a model for the hole band involving one light-hole
ellipsoid and one heavy-hole ellipsoid and are used as evidence against some other possible models for the
hole band.

I. INTRODUCTION

ECENT experiments indicate that the Fermi sur-
face of bismuth may not be parabolic-ellipsoidal,

so that both the absolute and relative size of its effective
mass components depend on the Fermi energy. The
details of this dependence, if known, would establish
many of the parameters in Cohen's' nonellipsoidal
theory of the bismuth band structure.

The Fermi level in bismuth may be conveniently
changed without appreciably affecting the crystal
potential by addition of an electron donor such as
tellurium. Each tellurium atom presumably contributes
one electron to the Fermi sea. Since the instrinsic num-
ber of conduction electrons in bismuth is small (about

~ Submitted as a thesis in partial fulfillment of the requirements
for the degree of doctor of philosophy at the University of Chicago.
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Science Foundation to the University of Chicago for research on
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$ Now at Hughes Research Laboratories, Malibu, California.
~ B.Lax, Bull. Am. Phys. Soc. 5, 167 (1960).
2 M. H. Cohen, Phys. Rev. 121, 387 (1961}.

10 '/atom), very little tellurium is needed to increase it
appreciably.

A powerful method of studying the band structure
of these alloys is provided by the de Haas-van Alphen
effect. ' lt measures the extreme cross-sectional areas
of the Fermi surface and their energy derivative.
Furthermore, the interpretation of the effect is un-
affected by the changes in collision times on alloying.
Also, as we shall see later, we can find the number of
equivalent ellipsoid-like pieces of the electron Fermi
surface with our de Haas-van Alphen data and a
knowledge of the amount of tellurium present in those
alloys in which we have filled the hole band. In alloys
where we have not filled the hole band, a knowledge
of the tellurium concentration helps give us an average
density of states.

Indeed, Shoenberg and Uddin' have already explored

3D. Shoenberg, Progress in Low-Temperature Physics, edited
by C. $. Gorter (Interscience Publishers, Inc. , New York, 1957),
Vol. 2, Chap. 8.

4D. Shoenberg and M. Z. Uddin, Proc. Roy. Soc. (London)
A156, 701 (1936).


