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with the absence of long-range order, the temperature
dependences of these mobilities in the liquid should
diBer from those reported for amorphous selenium.

The examinations of electrical and optical properties
of noncrystalline and low mobility semiconductors are
currently in an interesting phase, and future work
should contribute significantly toward a more complete
understanding of the physics of solids.
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We have shown for the cases of a free-electron gas, the two-spherical-band model, and the model of ma-
jority and minority carriers that certain portions of the Fermi surface can be mapped in detail. This can be
done by using geometric resonances in the sound attenuation in tilted magnetic fields, and the drift velocity
of the carriers along the magnetic field can simultaneously be determined. For this to be possible, co7- must ex-
ceed unity and the Fermi velocity must not exceed the sound velocity by more than a factor of 100. Then
the diameters of all the orbits, not merely the extremal orbits, can be measured and the drift velocity along
the magnetic field determined as well. The general features of the phenomena considered do not prove de-
pendent on the particular models used in our calculations. In addition to the results specifically pertaining to
tilted fields, we have found that when the assumptions of equal effective masses and relaxation times are
dropped for a two-band model of a semimetal, the contribution of the two types of carriers to the ultrasonic
absorption is additive. On examining the contribution to the absorption for a model of majority and minority
carriers, we have found, also, that the minority carriers dominate the attenuation when they are in the region
of geometric resonances.

I. INTRODUCTION

" 'N the past few years, experiments have been per-
&~- formed on magnetoacoustic absorption in metals
and semimetals at low temperatures. ' ~ Several inter-
esting phenomena have been observed which prove
useful in determining the electronic structure of metals.
In a transverse magnetic field, there are oscillations in
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the ultrasonic attenuation with magnetic Geld. "These
oscillations occur when the cyclotron diameter of an
extremal orbit is equal to an integral number of wave-
lengths. Also, in the high field limit, when the magnetic
field is tilted from a direction perpendicular to the
direction of propagation of the sound wave, there is an
increase in the attenuation. " This increase occurs
when the carriers drifting along the field with the
maximum velocity remain in exact phase with the
sound wave. The extremal dimensions of the Fermi
surface can be obtained from the periods of the magneto-
acoustic oscillations while the Fermi velocity can be
determined from the critical angle of tilt at which the
increase in attenuation begins.

The possibility of combining the tilt effect and the
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geometric resonance experiments to obtain information
about the dimensions of non-extremal orbits on the
Fermi surface now presents itself. " Through such an
experiment, whole pieces of the Fermi surface with
small Fermi velocity could be mapped out. For angles
of tilt beyond a certain critical angle, nonextremal
orbits drifting along the magnetic field come in phase
with the sound wave and dominate the attenuation.
The geometric resonances occur when the projection
of the orbit diameter in the direction of propagation
equals nA. . The purpose of this paper is to demonstrate
that this is the case for the various models which we
have considered.

In Sec. II we derive the expressions for the conduc-
tivity tensor that are appropriate in the region of geo-
metric resonances for tilted fields for spherical energy
bands. In Sec. III we treat the calculation of the ultra-
sonic attenuation for the case of the free-electron gas
in a uniform positive background discussed by Cohen
et al,.'as a model for a metal. In Sec. IV we do the same
type of calculation for a two spherical band model of a
semimetal discussed by Harrison. "VVe also examine the
effect of relaxing his assumptions of equal effective
masses and relaxation times for the two kinds of car-
riers. Section V is devoted to calculating the acoustic
attenuation for a model of majority and minority car-
riers with a positive background. A discussion of the
various phenomena which we have investigated theo-
retically and of their physical significance is given in
Sec. VI.

II. DERIVATION OF THE CONDUCTIVITY TENSOR

Previous theoretical work has indicated that the geo-
metric resonances and the tilt effect" arise from the
dependence of the components of the conductivity
tensor on the magnetic field strength and the angle of
tilt. Ke therefore begin by evaluating the components
of the conductivity tensor in the region of geometric
resonance for arbitrary angle between the direction of
propagation and the magnetic field. The general ex-
pressions for the conductivity tensor in the presence of
a magnetic field derived by Cohen et at. using a model
of a free-electron gas are

0.
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In the above, ' the magnetic field is in the s direction,
and the y direction is perpendicular to both the mag-
netic Geld and the direction of propagation of the sound
wave. The angle between the magnetic field and the
direction of propagation is —,x —v. The quantity X
= qpP/ol, is the sound-wave number times the cyclotron
radius (R= eP/&p, ) and &p is the sound frequency.

In the region of geometric resonance X is of order
but greater than unity, and if in addition

~
ol,T/(1 —ippT)

~

'
&)1we need only keep the m =0 terms in the summation.
The condition X sinv &1 also must be satisfied so that
our results do not hold in the limit P —+ zr/2. However,
we are mainly interested in angles of tilt just beyond
P,=sin '(P,/zlP), where w, is the sound velocity and nP

the Fermi velocity so this condition imposes no hard-
ship. The components of the conductivity tensor now
reduce to
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"H. N. Spector, Phys. Rev. Letter 6, 407 (1961).
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"It is to be noted that the sign of the carriers, i.e., whether
they are electrons or holes, comes into the expressions for the con-
ductivity tensor through the quantity X.Therefore the symmetric
components of the conductivity tensor, i.e., a, a.», 0.„,and o-„,
are the same for both the electrons and the holes while the anti-
symmetric components, i.e., o-„„and ~„„change sign for electrons
and holes.
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TABLE I. Values of the functions S and M for u&= 1, 10, and 100 and angles of tilt from v=0.007 to 0.015.

cog =100

0.007
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.015

0.017
0.018
0.028
0.043
0.060
0.078
0.105
0.129
0.151

—0.073—0.104—0.128—0.153—0.178—0.203—0.220—0.243—0.257

—0.221—0.331—0.484—0.574—0.232—0.062
+0.13

0.268
0.373

—0.065—0.126—0.261—0.610—0.928—0.999—0.994—0.957—0.912

—0.239—0.373—0.634—1.657—0.395—0.011
0.205
0.349
0.453

—0.007—0.014—0.036—0.756—1.367—1.276—1.186—1.105—1,034

where gp(X cosv) is an oscillatory function of X previ-
ously defined. ' tA"e are now interested in evaluating
integrals of the type that appear, e.g., in o.„.Then
cur&)1, the denominator inside the integral is a rapidly
varying function of 0 which gives rise to a resonance
when we have values of 8 that satisfy cos8=v, /vv sinv
when sin v & v,/vv. When the angle of tilt is less than the
critical angle given by sinv, = v,/vv we can no longer
have a resonance eGect in the denominator since the
cosine cannot be greater than one. When X is not too
large, the Bessel function is a slowly varying function
of 0 compared to the resonance denominator, and it can

be taken out of the integral an, d evaluated at the angle
8*=cos '(v, /vv sinv). The integration of the remainder
of the integrand can then be easily performed to yield
the following result' for o.„.

30p
a (1—icor)Jp'(X cosv sin8*)

(ql cosv)'

where E and M are functions of cur and v but not of
magnetic fieM':

(G+corH)
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arc tancorL1+ (vv/v, ) sinv] —arc tancorL1 —(vv/v, ) sinv]

slnv
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B=ln

1+(~r)')1 —(v,/v, ) sinv]'
2 sinv.

Numerical values of the functions X and M are given
in Table I for various values of &or and v.

For our further use, it proves necessary to calculate
explicitly the a» component of the conductivity tensor,
where we now transform to a coordinate system in
which the 1 direction is the direction of propagation of
the sound wave and the 2 direction is the same as the
previously defined y direction. It is only necessary then
to know the a„and o-„components to compute a».
We have for a»

3o p (1 icor)—
crgc

—— {1—gp(X cosv)
(ql cosv)'

+JpP(X cosv sin8*)(E—iM]}. (11.5)

Because of the fact that we have diffusion, the effective

conductivity tensor that plays an important role in

ultrasonic attenuation calculations is not e but o'

=$1—R] 'cr/crp, where the tensor R has componentsP

(II.6)

The component of the effective conductivity tensor

that corresponds to o-» is

L3cor/(q/) ](L1 gpss Jp (V—corM)] icorL1 gp+ Jp (1V+M/cor)]}'
a» =

(cor+Jp'M')+i(1 —gp+ Jp'Ã)
(II.7)

Further discussion of the mathematical approximations used to derive (II.3) and their range of validity is given in Appendix A.
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The approximations that were made in obtaining (II.7)
are valid in the range v, &v&or/2 when oor))1. The
physical basis for the approximations is that orbits
that are drifting along the magnetic Geld with a ve-
locity that has a component in the direction of prop-
agation equal to m, are exactly in phase with the sound
wave and therefore dominate the attenuation when
car))1. The critical angle v, marks the angle of tilt at
which the carriers drifting along the magnetic Geld with
the maximum velocity (i.e., e&) are in phase with the
sound wave, so that only for v) v, can we have orbits
that will be in exact phase with the sound wave.

III. FREE-ELECTRON GAS

Expressions for the attenuation of sound in a free-
electron gas with a smeared-out positive background
have been derived in the literature. s The attenuation.
coeKcient or power density dissipated per unit energy
Aux ls

TAmz II. Magnitude Of d COSv=x Sing* COSv at extrema Of SII.

Maxima

0 (1.29)a
3.84
7.02

Minima

2.41
5.52
8.65

a For the free-electron case, the first maximum occurs at this value;
all the other extrema occur at the same values of d cosr for the various
models considered.

than the plasma frequency the longitudinal currents
must vanish because the electric fields set up by any
relative charge separation will be very great. However,
the electric fields set up by the relative transverse cur-
rents are weaker by a factor of (v,/c)' and therefore the
screening of the transverse currents breaks for micro-
wave frequencies.

%hen screening breaks down (i.e., ~
8,; j ) ) o; ( ) for

the transverse currents, the longitudinal component of
S becomes

a= (mop/Mm, ) (S;;/l), (III.1) S|g——Re(1/ ops') —1. (III.3)

where m is the electron mass, M is the atomic mass of
the metal represented by the model, l is the mean free
path and S;; is a diagonal component of the tensor
given by

s= Re{t 1+87 L4r'+87 —'/|+87}—I. (III.2)

The tensor 8 has only diagonal components B~~—— iy, —
J333 833 iP, where r= op/4o„'o and P=&(c/o, )'. Be-
cause frequencies even up to the microwave range are
small compared to the plasma frequency ~„,p is always
a small quantity. On the other hand, in the microwave
range of ultrasonic frequencies P will become of order
or greater than unity. Physically, for frequencies smaller

When there is no breakdown in screening, the expression
for S~~ contains combinations of the other components
of the conductivity tensor. Detailed calculations have
shown, however, that for X)2 the other components
of the conductivity tensor give a negligible contribution
and Soq again has the form (III.3). This can be seen
very clearly in the case when the magnetic Geld and
direction of propagation are perpendicular to each other
from Fig. 3 in Cohen, Harrison, and Harrison. In this
figure, the field dependent part of S~~ is plotted vs X
for both P&1 and P) 1. The curves for both cases co-
incide when X&2. Putting the expression for 0-~~ into
(III.3), we get

—(qi)'
Su+1=

3L1+(oor)'7

Jp'M (pod+ Jo'M) +$1 go+JooN)[Jo—'N gp7—
(1—gp+ Jp'N)'+ Jp4M3

(III.4)

The relative attenuation 3(S +u1)t 1+( ro)o'7/(qi)' is
plotted versus X= gov/4o, in Fig. 1. The oscillations in
the attenuation are much stronger than in the case of
the purely transverse Geld. There are maxima in S~~
where the square of the Bessel function Jo has its
maxima. Also there are minima in S~~ where the Bessel
function Jo has its zero." The values of X cosv sin8*
where S~~ has its maxima and minima are given in
Table II.

IV. TWO-SPHERICAL-BAND MODEL

A two-spherical-band model of a semimetal has been
studied by Harrison' for the calculation of ultrasonic
attenuation in bismuth. In calculating the attenuation
he made the assumption of equal masses and relaxation
times for the holes and the electrons for the sake of
simplicity. Ke have rederived his expressions, where

"Further discussion of the behavior of S11 at the values ofI cosv sin9* near where Jo has its zeroes is given in Appendix B.
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j=j.+j.= r s+qq.
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(V,+Vo) 1 1 4oo—I ———.0

(V.—Vo)
+A. s+ qq.

2eZM

(1 1 mu
(Iv 2)

(Te 73 eT-

necessary, without making this assumption. Ke Gnd
that both the total current and the difference between
the electron and hole currents respond to the sums and
differences of the parameters of the two bands. The
total current and the difference between the electron
and hole currents are
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E.=E,' qV. —u/(u,

Eg= Eg qvg' —u/cu,
(IV.3)

where r=o.o'e, '+o.o'ei, ' is the sum of the electron and
hole conductivities and A. =o-o'e, '—o-0"eh' is their dif-
ference. V, and Yi, are the electron and hole deforma-
tion potential tensors. In the presence of the sound
wave, the energies of the electron and hole bands become,
according to Harrison"

where E,' and E~' are the energies of the band edges
when there is no sound wave. The electric 6eld is de-
rivable from the currents by Maxwell's equations:

—1 0 0
8= F j F= 0 e(v,/c)' 0 (4iri%(u), (IV.4)

0 0 e (n,/c)'

where e is the dielectric constant of the material. The
energy dissipated has been previously calculated for the
two band model" and is

Q=-', Re u*.
(V,—Vg)

2eZQ)
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&e &h

Substituting (IV.1), (IV.2), and (IV.4) into (IV.S) and introducing the matrix P= F, we find for the energy
dissipated

(V,—Vg)
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In the case where the deformation forces are strong, i.e.,

qlVg, vp
——))1

2PM p' Se
we obtain for Q

1
Q=-1t ml «I' —g-

ee &h

where

(IV.7)

~e&h=I+— Re{(V.—Vg) qq P LP—r]—'r qq (V,—Vg)+(V, +Vg) qq {r+A. LP—r]—'A)
4 1Ve~maP(r, +ri,)

qq (V,+Vi)+(V,—V&) qq {A+P l
P—r]—'A+A. t P—r]—'r) qq (V,+V„)). (IV.7')

The restriction to strong deformation forces is easily satisfied in the semimetals where it has been estimated'
that the quantity(q/Vi;/2m'&') (vp/v, ) is 10'. For the attenuation of a longitudinally polarized sound wave we get

&e&h g'

Sii——1+ —Re{(Vn,+VDi)'LI'ii+Ai;LP —r] ',;&,i]+(Vn,—Vng)'Piil P—r] 'i;I', i
41Ve'm(r. +r~) vP

All the terms in the above expression which contain P~~
can be neglected when we are at sound frequencies be-

'8 M. J. Harrison (private communication).

low the plasma frequency; then we have screening, and
the longitudinal currents nearly vanish. Therefore as
long as the electron and hole deformation potentials are
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Pro. 1. The normalized attenuation

(Sn 1)/( (—m/m') P (Vn, +Un&)/2mvz, 'g'(ql)'l

as a function of X=qE. for a two-spherical-band model consisting
of electrons and holes. The plot is for an angle of tilt of v=0.02
and co7 = IO. The normalized attenuation

q(~ +I)/E(CI )'(v/v )3
for the case of minority and majority carriers when the ratio
vv2/vv&=10 follows the same plot for the same values of v and
~r. The oscillations in the region shown can be attributed to the
orbit drifting in phase with the sound wave.

not nearly 180' out of phase (i.e., Vn. A —VDJj) only
the terms containing the sum of the deformation poten-
tials remain. The second term in the expression con-
taining the sum of the deformation potentials has been
calculated explicitly and has been found to be negligible
except in the region of Harrison's high-field peak for
frequencies of interest (i.e., in the frequency region& 10
Mc/sec for Bi). Therefore, in the regions of geometric
resonance and also in the region of the high 6eld tilt
eRect we have

)O 1 I

2 IO t2

Fro. 2. The norma1ised attenuation 3(Sqq+1)L1+(car)og/(qI)s
is plotted versus X=gg for the model of. a free electron gas. The
angle of tilt in this case is v =0.02 and cur =10.The plot is correct
for all magnetic Gelds when the screening of the transverse cur-
rents breaks down and is correct for qR& 2 when screening does not
break down. In the region shown, the oscillations can be attrib-
uted to a single orbit.

m (VD,+Vns '
(5 —1) —

i
— (q/)'

—3(Jo'M(~r+Jo'M)+[1 go+JosXj[XJo' —go))

[Mr+Jo'M]'+ [1—go+ Jo',V]'
(IV.11)

where m* is the effective mass of the carriers and m is
the free electron mass. Substituting the expression ob-
tained for o.tr' (II.7) into (IV.10), we obtain for the
normalized attenuation

7 e&a g
5 =1+ —(Vn +Vng)' Rel'rg, (IV.9)

41Ve'm(r, +rs) v,s

and we can see that the contributions to the ultrasonic
absorption from the two bands are additive. Because
of this additivity, the contributions of each of the bands
to geometric resonance and to the tilt eRect are sepa-
rable. The assumptions of equal eRective masses and
relaxation times for the two bands are therefore not
unduly restrictive in interpreting results from experi-
mental data.

Ke now return to the assumptions of equal masses
and relaxation times to calculate S~~ for the case of
geometric resonance in tilted magnetic fields. As we
have just shown, for values of the deformation potential
and the frequency ranges of interest, these assumptions
are not restrictive. Ke then have

m Vn, +Vng ' vs
(Srt—1) — — (ql)'= Re(r)r', (IV.10)

m 27@8@ Ve

The normalized attenuation is plotted vs X in Fig. 1.
The oscillations of the attenuation with X are very
similar to those shown in Fig. 2 for the model of a free-
electron gas. The only diRerence between the two
figures besides a diRerence in scale occurs in the high
field limit. Therefore we can expect very similar results
for both models in the geometric resonance region ex-
cept for the orders of magnitude of the effect.

V. MAJORITY AND MINORITY CARRIERS

Ke now calculate the ultrasonic attenuation for a
model of majority and minority carriers with a positive
background to represent the positively charged ions.
The model is appropriate when we have a small section
of the Fermi surface which has a much smaller Fermi
velocity than the remainder of the Fermi surface. We
assume that we have two spherical pieces of Fermi sur-
face with Fermi velocities up~ and up~ and numbers of
carriers et and ns (e,=(1/37r')(mvv;/5)') such that
est+vs=eo, where eo is the number of positive ions
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smeared out in the background. To make the calcula-
tion simpler we assume that the effective masses and
relaxation times of the two kinds of carriers are equal.

The total current contains a contribution from the
positive background as well as from the two types of
carriers

in terms of the sound fieM u set up by the sound wave

Sl
@= —8+—~i'+~2'

So

1=1si+1s2++oeu. (V.1)
I ——e,' ——e2' . (V.6)

ÃO NO 8T

The electromagnetic field set up by the passage of the
sound wave can be calculated self-consistently from
Maxwell's equations. 1A'e can write the relation between
the electric field and the total current as

)=—OOB g, (V.2)

where 8 is the diagonal matrix de6ned in Sec. III with
components 8»—— iy—, 8»= 833=iP and Oo=ttoe'7/m
From the solution of Boltzmann's equations and (V.1)
we obtain

We can see that the conductivity tensors of the two
types of carriers come in only in the form (ei/ep)ei'
+(e2/1Ip)172 In. other words, their contribution comes
in the form of the effective conductivity tensor of a
group of carriers weighted by the fraction of the total
number of carriers in the group. Thus for the tensor S
which is directly related to the absorption we have

S=Re (1+8]
Slu @sue

)el 0 Ol&l y je2 0 02O2
er e7 3 (V.3)

8+—&i +—+2
ttO SO

ft+8] —I. (V.7)

0 Ol —Qlg g/ Pl~2 / OO2= f22e T/5$,2

((v, )—u), (V.4)

where the erst term inside the brackets is the energy
transferred from the sound wave to the two types of
carriers and the last two terms are the energy fed back
into the sound wave because of the drag exerted by the
two kinds of carriers on the positive background. These
drag forces arise because the average carrier velocity
(v.;) before collision in general differs from that after
collision. "Using (V.1) and (V.2) to simplify (V.4) we
have

Q= ——', Re{epeu* (t+8) 8). (V.5)

We can now use (V.1)—(V.3) to obtain the electric field

where el' and 02' are the effective conductivity tensors
for the two kinds of carriers. The energy dissipated per
unit volume in the case of the majority and minority
carriers is

For the ratio of the Fermi velocities of the minority
to the majority carriers we have assumed vFi/np2 0 1—— .
Therefore we have ni/no=10 ' and n2/eoQ1. If the
minority carriers are in the region of geometric reso-
nance, i.e. , Xi=gap/~, )1, then the majority carriers
are in the region between geometric resonance and
cyclotron resonance, i.e., X2 & 10, and their conductivity
tensor is not strongly dependent on magnetic 6eld.

To calculate the attenuation of longitudinally polar-
ized waves when either P) 1 or P(1 and Xi)2, we can
use (III.3) by replacing 0»'by (ni/@so)~ii' + (+'/&o)aiP'.
For the majority carriers we get 0'ip'= (3uvr/(pig)' by
using the limiting form of the expressions (II.1) for
large X.

Ke first treat the case where the magnetic field is
transverse to the direction of propagation. The con-
ductivity tensor for the minority carriers is

—3i~r (1—i~r) $1—go(Xi)]
0111/

(hali)' $1—is)r —gp(Xi)]

Using these expressions for the conductivity tensors of
the minority and majority carriers, we get for the at-
tenuation when the minority carriers are in the region
of geometric resonance

(~~~/»F i) (q4)'go(Xi) [1—go(Xi))5'ii+1=-—
go(X,)vF,/vp2 '-

1+ L1—go(Xi)]'+ (cur)' 1—
1+&F1/&/2

(V 9)

From (V.9) we can see that a small number of car-
riers in the geometric resonance region dominates the
attenuation despite the presence of a large number of
carriers which do not satisfy the geometric resonance

criterion. The expression (V.9) resembles the expression
for the attenuation of longitudinal waves in a free-
electron-gas models except for the factor v~~/vpi which
arises from the difference in the Fermi velocities of the
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two kinds of carriers. Therefore if we have small sec-
tions of the Fermi surface on geometric resonance, we
wiH be able to observe the oscillations due to these
sections although the remainder of the Fermi surface
is not in the geometric resonance region. Ke can now
proceed to the calculation of the attenuation for geo-

metric resonances in tilted magnetic fields. The con-

ductivity component. for the majority carriers is again
orts'= —3iarr(q/s)'. We can use (11.7) for the appro-

priate component of the conductivity tensor for the

minority carriers. The attenuation then becomes

(evs/3$vr) (glr) LJp M(cur+ Jp M)+ (1 gp+ Jo lV) (Jp E go)7
~11+1

L1+(t v&/vvs) 7'(L1—gp+ Jp'(X —a&r vv&M/svs) 7'+ ((vr)')
(V.10)

where we have dropped terms that are of order 1/(~t)'.
The part of the attenuation that depends upon the
magnetic field and the angle of tilt is similar to that of
the two-band model developed in Sec. IV. Therefore
we have the same general type of geometric resonance in
tilted magnetic fields as in the case of a semimetal ex-
cept for a scale factor. In the case of majority and
minority carriers in tilted fields, the minority carriers
dominate the attenuation as in the case of the non-
tilted field discussed earlier in this section. Therefore
we can use geometric resonances in tilted fields to map
out small sections of the Fermi surfaces as in the two
cases discussed previously despite the presence of the
remainder of the Fermi surface. This is important be-
cause, for many materials, only small portions of the
Fermi surface have a Fermi velocity small enough for
the tilt effect to occur at measurably large angles.

VI. DISCUSSION

A. Models with Spherical Energy Bands

In our calculations in Secs. III—V we have found
geometric resonances in tilted magnetic fields, the form
of which, apart from field and angular independent scale
factors, seems to be independent of the model used for
the calculation. The only qualitative difference between
the models used appears the high-6eld limit. More-
over, the oscillations which appear in the case of tilted
fields are much stronger than those which appear in
transverse 6elds. Mathematically, in the tilted field
case the oscillations arise from the Bessel functions
Jp(X cosv sin8*) which have zeros at certain values of
X. In the case of exactly transverse field the oscilla-
tions arose from the less rapidly varying gp(X) which
does not have any zeros and which is the square of the
Bessel function averaged over the whole Fermi surface.
Physically, in the tilted field case, we have one orbit
dominating the attenuation instead of an average over
all orbits which gives a heavy weight to extremal orbits
and which nearly washes out the amplitude of the
oscillations.

When the magnetic 6eld is tilted from the direction
perpendicular to the direction of propagation, there are
no orbits drifting along the magnetic field in exact
phase with the sound wave until we reach the critical
angle v„given by sinv, =e,/nv. At this angle, carriers
drifting along the magnetic field, which are at the tip

d cosv—eA, , (VI.1)

where d= (cpv/eH) sine* is the cyclotron diameter in
real space and pv sin8* is the dimension of the Fermi
surface transverse to both the magnetic 6eld and the
direction of propagation. The situation is shown in Fig.
3. It is the projection of the cyclotron diameter in real
space in the direction of propagation that must be
equal to an integral number of wavelengths. The drift
velocity of the orbit along the magnetic field can also
be obtained since the component of the drift velocity
along the direction of propagation must be equal to the
velocity of sound for the orbit to dominate the attenua-

FiG, 3. When the mag-
netic Geld is tilted at an
angle s in the direction
of the sound wave, the
orbit gives rise to a
maximum in the at-
tenuation when the com-
ponent of the orbit di-
anmter in the direction
of propagation is equal
to an integral number of
wavelengths.

dcos v=n X

cpF sin g
cH

of the Fermi surface, have a component of drift ve-
locity in the direction of propagation equal to the veloc-
ity of sound. These carriers therefore drift in exact
phase with the sound wave, and they dominate the
attenuation. As we increase the angle of tilt beyond
the critical angle, other orbits drift in phase with the
sound wave, and they dominate the attenuation. By
varying the angle of tilt, we can therefore bring orbits
from all over the Fermi surface into phase with the
sound wave and make them dominate the attenuation.
Vje can then, by varying the strength of the magnetic
6eM, get geometric resonances from each orbit that
dominates the attenuation separately.

The condition for a maximum in the oscillations when
the magnetic fieM is tilted at an angle v is
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FIG. 4. Theorbit which
dominates the attenua-
tion is shown to drift
along the magnetic field
with a velocity

v, /sinv.

tenuation, we calculate the mean free path for the
sound wave for the values of the parameters occurring
in (IV.11) which are characteristic of bismuth. Accord-
ing to Harrison, " the relation between the mean free
path I and Sgg is

I.= (pv, r /2X m) (1/Sgg),

where p is the density of the semimetal and 1V is the
number of carriers. In bismuth, X=5.5&(10'7 and, with
a r of 10 " sec, we have X=10'/Sn. It has been esti-
mated that in bismuth V~=10 ev and re~~'=0. 35 ev,
so that at the peaks of the oscillations in Fig. 2 the mea, n
free path for the sound wave is L, =10 ' cm. Thus, al-
though the value of the attenuation is very high, the
oscillations would be discernible.

tion. Therefore at an angle of tilt v, the orbit dominat-
ing the attenuation has a drift velocity of

(VI.2)

The relationship between the angle of tilt and the drift
velocity is shown in Fig. 4. Therefore the linear dimen-
sions of the Fermi surface and the drift velocities can
be determined everywhere if cur))1 and the angle of
tilt occurs at measurably large angles.

The condition cur))1 arises because for an orbit to
dominate the absorption, it must drift in phase with the
sound wave for many periods before the carriers travers-
ing the orbit are scattered to other orbits. If this con-
dition is not well satisfied, then we obtain comparable
or greater contributions from orbits other than the one
we are interested in and we a,re no longer able to deter-
mine the dimensions and drift velocity of a single orbit.
How this condition arises can be seen by calculating the
gain of velocity between collisions of an electron moving
in an electric field. The electrons which are Inoving in
phase with the sound wave see a constant electric
field and therefore their change in velocity is Av„„,~
= (er/m)8. The carriers which are not in phase with
the sound wave see a periodic 6eld and their change in
velocity is Av...= (er/m)8 ReL1/(1+i~r)j. The ratio
of the velocity gained by an electron not in phase with
the sound wave to the velocity gain of the carriers in
phase is Av„„,t/d, vv„=1/L1+(cur)'j. Thus for cur(&1,
the velocity ga, ined is the same for both types of carriers
while for ~v)&1, the carriers in phase receive a much
greater gain in velocity than the carriers that are out of
phase. The requirement that the angle of tilt occur at
measurably large angles arises because the solid angle
of the Fermi surface mapped out is a very rapid func-
tion of angle of tilt, for angles just beyond v, . Therefore
if this requirement is not satisfied, only a small solid
angle of the Fermi surface around its extremal dimen-
sions would be mapped out and no new information
would be gained.

',Vo obtain aii estimate on the magnitude of the at-

B. Extension to General Fermi Surfaces

The discussion up to this point has been based on
our detailed calculations for various models using spheri-
cal energy bands. Most of the physical arguments which
we have used in discussing the results of our calcula-
tions for spherical energy bands, however, can be taken
over aln1ost unchanged for the case of a general Fermi
surface. Therefore we might expect that our general
results concerning geometric resonances in tilted mag-
netic 6eMs will also hoM in the case of general Fermi
surfaces. The conditions for observing such effects
would still be that cv7-)&1 and that the critical angle of
tilt occur at a measurably large angle.

The condition ~r))1 would require microwave sound
waves and materials of ultra-high purities except per-
haps for the semimetals and tin, zinc, and gallium
among others. The requirement that the angle of tilt
occur at measurably large angles is satisfied if there are
sections of the Fermi surface with a small Fermi
velocity such as occurs in the semimetals and in cer-
tain portions of the Fermi surfaces of tin, zinc, mag-
nesium, gallium, etc.

In materials where the conditions for observing the
combined geometric resonance-tilt effect phenomena are
satis6ed, it should prove a very important tool in de-
termining the electronic band structure. In materials
in which the condition ~7-)&1 is only marginally satisfied,
we can still identify the first few oscillations with the
orbit drifting in exact phase with the sound wave, as
the discussion in Appendices A and 8 shows. The re-
ma, ining oscillations would be harder to interpret ex-
perimentally, as in the region beyond the first few
oscillations, orbits other than the one drifting in phase
contribute significantly to the attenuation.

We note, in passing, that the strong oscillations ob-
served by Morse in the noble metals for the "dog' s
bone" orbit" are more reminiscent of the geometric
resonances occurring in tilted 6eMs than of those pre-

"R. W. Morse, in The Fermi Surface, edited by W. A. Harrison
and M. B. Webb (John Wiley 8z Sons, Inc., New York, t960),
pp. 214—2$.
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dieted by Cohen, Harrison, and Harrison in the free-
electron model for transverse Geld. In the case of the
"dog's bone" orbits, all the orbits contributing to the
attenuation have very nearly the same diameter in
momentum space. Therefore we would have, as in the
case of tilted Gelds, one orbit or type of orbit dominat-
ing the attenuation instead of an average over all the
orbits. These would result in the oscillations being much
stronger than predicted by the free-electron model. Ke
have already shown in Sec. V that those orbits on the
Fermi surface that are in the geometric resonance re-
gion will dominate the attenuation even in the case of
transverse magnetic GeMs.

It should be mentioned that the same results as we
have derived by a quantitative treatment follow from
an application of Pippard's ineffectiveness concept. ""
The electrons which are effective in determining the
attenuation are those that see essentially a constant
field between collisions. The condition for this to be the
case is that (cp —qv, sinv)r«1, where n, is the velocity
in the direction of the magnetic Geld. In the case of a
spherical Fermi surface, a section of thickness Av,
= 7r(qp. sinv) around the velocity v,*=a,/sinv is effective
in contributing to the attenuation and the results using
the ineffectiveness concept and a Drude-Lorentz treat-
ment for these carriers agree with the results of our
quantitative calculations within a numerical factor.

The physical arguments that we have used above can
be applied to nonspherical Fermi surfaces. They allow
us, therefore, to take over most of our results, quali-
tatively unchanged, to the case when we have a general
Fermi surface.

The strong resonance oscillations observed by Galkin
and Korolyuk in tin'" arise from the same sort of
phenomena as discussed in this paper. In their case,
they are observing geometric resonances on an open
orbit which is in exact phase with the sound wave.
While for closed orbits the conditions for the orbit to be
in exact phase with the sound wave requires tilted
magnetic fields, for open orbits these conditions can be
satisfied in transverse magnetic fields.
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APPENDIX A

The evaluation of the rapidly varying part of the
integrand discussed in Sec. II and the validity of the

' T. Holstein, Phys. Rev. 113,479 (1959).
"A. B.Pippard, Proc. Roy. Soc. (London) A224, 273 (1954).
"A. A. Galkin, E. A. Kaner, and A. P. Korolyuk, JKTP 39,

1517 (1960) Ltranslation: Soviet Phys. 12, 1055 (1961)];A. A.
Galkin, E. A. Kaner, and A. P. Korolyuk, Doklady Akad. Nauk
SSSR 134, 74 (1960) Ltranslation: Soviet Phys. -Doklady 5, 1002
(1961)3.

TABLE III. Values of the function G and H for cur = 1, 10, and 100
and angles of tilt from v=0.007 to 0.015.

0.007
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.015

coT= 10
G H

105.7 90.9 37.1 240.5
108.7 87.9 51.2 261
110 84.3 81.1 288.8
111 80.5 152 299.6
111.8 76.3 210 245.4
112.5 71.9 219 190.6
111.5 67.4 214 152.7
111.4 62.8 204 125.9
110 58.6 193 106

coy = 100
Q II

3.92 247.8
5.55 274.5

10.49 326.7
156.6 529.8
276.1 276.3
257.3 199.7
238.8 156.7
222.3 127.9
207.8 107.3

approximations made in treating it as rapidly varying
compared to the Bessel function warrant further dis-
cussion. The remainder of the integrand, after the slowly
varying part has been removed, is of the form

i 1+itpr$(riv/v, ) (sinv)x —1]
(A.1)

For large cur, there is a relation" that enables us to re-
place the integrand by

where I' stands for the principal part of the function.
Therefore when cur&)1, the approximation made in
treating the denominator of the integrals appearing in
(II.2) as rapidly varying is more readily justifiable for
the real part of the integral (A.1) than it is for the
imaginary part. For a better approximation with cur

not too large, we can evaluate the rapidly varying
integral (A.1) directly. The real and imaginary parts
of (A.1) are the functions G and H defined in (II.4).
The functions 6 and H are given for various values of
cur and v in Table III.

It may also be noted that the approximations made
in deriving (II.3) are least valid where the Bessel func-
tion Jp(X cosv sing) has its zeros. To evaluate the
approximations made, in this region, we expand
Jps(X cosv sing) around the angle 8*:

Jp'(X cosv sing)

=Jp'(X cosv sing*)+X cosv(sin8 —sing* )

dJp'(X cosv sing* )
X +—',X' cos'v(sing —sing* )'

d(X cosv sing* )
d Jp (X cosv sing* )

(A.3)
d(X cosv sin8*)'

'3 P. M. Morse and H. Feshbach, Methods of Theoretica/ I'hysics
(McGraw-Hill Book Company, New York, 1953), Vol. I, p. 473.

lim =I'"""(sv/t, ) (sinv)x —1 i/rpr —(tv/r, ) (sinv)x —1

+in 5((wv/t, ) (sinv)x 1), —(A.2)
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where we have used the familiar Bessel function
identities" 2J,'= J„~—J. and J „=(—1)"J„. Substi-
tuting the expansion (A.3) for Jo'(X cost sin8) in the
integral in (II.2) we get an expansion in terms of the
derivatives of Jo'(X cosv sin8) evaluated at 8". The
coefficient of the eth derivative in this expansion has
been calculated to be of order (cotv/~, r) . Therefore
the condition for the approximations made in deriving
(II.3) to be valid is that cote(~,7. We can rewrite this
condition in terms of the parameters ql and X:

X cote &q/. (A.S)

The square of the Bessel function is an even function
of sin8 so that when J02(X cosv sin8*) =0 we have

Jo'(X cosv sin8) =—'X' cos v(sin8 —sin8")'

XJP(X cosy sin8*), (A.4)

This condition arises because for values of X which
violate this condition the Bessel function is not a slowly
varying function of 0 compared to the denominator of
the integral and the approximation breaks down. For
cur=10 and v=0.01, the condition for the validity of
the approximation is that X&10 so that only the erst
few oscillations can be easily interpreted as corning
from a given orbit. We can see from (A.S) that we can
increase the value of X for which the approximations
made are valid by increasing ql.

APPENDIX 8

In Appendix A we noted that when Jo(X cosv sin8*)
has its zeros, the approximations used in deriving were
not valid and that we must use expression (A.3) instead.
Introducing (A.4) into the expression for in (II.3) we

find that

3M7. 1 cot~ v 1 cot'v ( M—
1—go+—— JP(1V (urM) ia—rr 1——go+ — Jg'~ X+-

(Vi)' — 2 (~.~)' 2 (M~T) k Q7T

011 =
1 cot'v — — 1 cot'v

cv7 j— A'cV +i 1—go+— JPX
2 (co,r)~

' 2 ((u, r)2

(B 1)

'4 Reference 23, Vol. II, p. 1322.

Account has been taken of the correction to (II.7) zeros, in calculating the relative attenuation shown in

contained in (B.1), when the Bessel function Jo has its Figs. 1 and 2. The effect of the correction is to decrease
the peak to valley ratio from what it would be from
(III.4) and (IV.11) without considering the correction.


