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It has recently been shown that in a classical plasma a shielded Coulomb (Yukawa) potential describes
the effective two-particle interactions thorugh chains of intermediate particles. It therefore seemed reason-
able to use this potential to approximate two-particle quantum interactions in a sea of charged particles,
such as a hydrogen plasma. Consequently, an approximate solution of the Schrodinger equation was
obtained for a hydrogen atom in a shielded Coulomb potential. With this potential, the number of H-atom
bound states is 6nite and the energy eigenvalues are a function of the density and temperature. A variational
calculation was performed using hydrogen-like single electron functions as a basis set and the eGective
nuclear charge as a variational parameter. Bound-state energies were obtained for 45 states of hydrogen in
a grid of values for the screening constant. As the screening increases, the bound-state energy increases.
For each state there is a maximum shielding above which the state is free, i.e., for which E)0. According
to the present calculation, the energy of the ground state becomes zero at a screening of 1.15 atomic units.
Above this value then, no bound states can exist.

I. INTRODUCTION AND BACKGROUND ionized plasmas over a wide temperature-density
region. 4 ' In the molecular model which has been used,
the assumption is made that the total many-body
system is composed of a limited number of well-chosen,
few-particle subsystems which hopefully represent all
those present in significant amounts in the total system.
Electrons are then either free or bound to one or the
other of these subsystems. Interactions which involve
the free electrons are approximated by a classical
ring-sum (Debye) term with a cutoff which avoids the
short-range divergence. Energy eigenvalues in the
partition function for the bound electronic states are
obtained from solutions of the Schrodinger equation
for small systems. However, the energy eignevalues
of the isolated few-body systems are modified in the
plasma sea and become density and temperature de-
pendent. The success of the calculation in intermediate,
areas of density and temperature depends to a large
extent on the model chosen to approximate these
plasma-modified, few-particle interactions. In a previous
model for hydrogen plasma, ' the effect of the plasma
environment on two-, three-, and four-particle interac-
tions was approximated simply by a confinement effect.
The model of an atom or moelcule in a box of variable

'HE calculation of the thermodynamic properties
of many-body systems of charged particles, i.e.,

plasrnas, has been given extensive study in recent years.
Starting from a rigorous statistical mechanical formula-
tion in terms of the canonical partition function, ex-
pressions for the thermodynamic functions of both
classical' ' and quantum-mechanicaP systems have been
developed using various expansion techniques, Despite
much progress, numerically useful results stemming
from these methods have been scant. Only the near-
classical (high temperature —low density) region and the
highly degenerate (low temperature —high density)
regions have been developed enough to give useful equa-
tions for one-component systems. ' ' Hence, for the past
several years, it has been the interest of the author to
formulate a working model for the calculation of the
thermodynamic properties of multicomponent, partially
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size was used and perturbed eigenvalues calculated.
With this approximation, the equilibrium distribution
of species varied in a qualitatively correct and fairly
accurate manner.

It has now been demonstrated from a rigorous ex-
pansion of the partition function, at least for classical
charged particles, that the effect of the plasma sea on
localized two-particle interactions is to replace the
Coulomb potential by an effective screened Coulomb
potential. ' It seemed reasonable then, that this perturba-
tion of the quantized bound states of isolated two-
particle systems would be an improvement over the
"atom in a box" model for plasmas in regions where
charged particles are the predominant background.
Accordingly, the bound-state energies of a "hydrogen
atom" in a shielded Coulomb field were calculated for
the ground state and 44 excited states (through n = 9,
1=8) as a function of the classical Debye screening
which was used in the potential. The screening is a
repulsive perturbation displacing the isolated energy
levels upwards and eventually into the continuum, as
the Debye length becomes smaller. Then both the num-
ber of bound states and their energies are obtained as
functions of the density and temperature.

There have been several previous calculations of the
behavior of the hydrogen atom in a shielded Coulomb
potential. The two principal ones have dealt only with
"s"states and have had as a main interest an estimate
of the variation of the number of bound "s" states
with the screening, In a calculation made by Ecker and
Keizel, this relationship was obtained by an approxi-
mate analytic solution of the modified radial equation
for the H atom in the limit of small shielding. The exact
radial equation cannot be solved analytically and no
attempt at a numerical solution was made. In an un-
published calculation of Margenau and Kelley, 7 this
relationship was obtained from a variational calculation
and a perturbation calculation, with slightly different
numerical coefficients each time and each different
from Ecker and Weizel. In the variational calculation
reported, ' unperturbed H atom wave functions were
used as a basis set, with the nuclear charge as a param-
eter. One unperturbed function was used for each per-
turbed "s" state, and energy integrals were approxi-
mately evaluated. No study of the convergence proper-
ties of the variational procedure was made.

In the present calculation, a variational procedure
was also used with hydrogen-like wave functions as a
basis set and the exponential nuclear charge as a varia-
tional parameter. The rate of convergence of the per-
turbed state energies was studied for the 1.s, 2s, and 3s
states as a function of the number of basis set members
used. The effect on the convergence of the energy for
different kinds of Z variations was also studied. All

' G. Ecker and W. Weizel, Ann. Physik 17, 126 (1956).' D. Kelley and H. Margenau, Progress Report, October 1,
1956 (unpublished), as reviewed in H. Margenau and M. Lewis,
Revs. Modern Phys. 31, 569 (1959).

integrals involved were solved exactly. When the proper-
ties of the variational calculation were ascertained for
the ground state and the 2s and 3s states, then the
perturbed energies of all the remaining 42 states studied
were determined by the cruder variation procedure of
using only one unperturbed state per new state. This
procedure is most reliable for the calculation of energies
which are not too near the continuum since only bound
states are used in the basis set. This means that it will

be more accurate for the less excited H atom states
and/or for small perturbations. The usual external
check on whether the energies and number of states
calculated are nearly correct cannot be made directly,
since there is no simple system which is known to obey
a Yukawa potential exactly. This check can be made
indirectly when this model is used as part of a revised
calculation of the thermodynamic properties of a hydro-
gen plasma. Then of course it will also be coupled with
the further assumption that this entire model is a good
approximation to the two-particle interactions in a
plasma.

In the next section are presented the details of this
calculation and in the last section results are presented
and evaluated.

II. CALCULATION

The Hamiltonian for an electron interacting with a
proton through a screened Coulomb potential is:

H=Hp+V(r),
where

H =p'/2', V (r) = e'Z(e x—")/r—
IC= reciprocal of the Debye length,

1/2 =4~+, g,s,2'/VPg

and lV;=number of species with charge s;.
Letting 5, a dimensionless screening parameter =Eao,

then 2=1.0086X10 "p/kT, where p=density of free
electron, and kT=temperature in electron volts. The
electronic wave function may be represented as a pro-
duct of angular and radial factors. Then, since the po-
tential is spherically symmetric, the angular parts of
the Schrodinger equation can be separated out and are
identical to those of the hydrogen atom. However, the
resulting radial equation cannot be solved analytically
and in this calculation an approximation to the eigen-
values and eigenfunctions is obtained from a variational
calculation. Unperturbed H-like electronic functions
were used as a basis set for the energy minimization.
Because of the orthonormality of the angular parts of
these functions, states with different angular momentum
do not mix. Then the new eigenfunctions are expressed
as linear combinations of H-atom states with the same
angular momentum but different principal quantum
numbers:
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TABLE I. Matrix elements used to solve 3)&3 secular determinant.

II) ( = (ZP e'/2 ap) [1—8Zz/ (8+2Z&)')

IIqg ——(Z2'e2/8gp)[1 —2Z2(25~+Z22)/ (rt+Zg)4)

II3 q
——(Zpe'/9ao) [-',—4Z3 (16Z3'+216Z32P+ 2438')/(2Z3+ 38 }']

Z1Z2 ~ e Z1Z2 (4Z1—Z2) (4Z1—2Z2+48)
D12

ao (Zz+Z2/2) (8+Zi+Z2/2)

e' 1 Z,Z, & (3Zp —4Z,Z,/3+Z32/9) (12Zp —8ZgZ, +4Zp/3) 24ggb 8Z,8—+1282
H13=—— — 4Z1Z3- +

803 3 (Z,+Z,/3)5 (Zg+Z'/3+8)' (Zg+Z'/3+8)'

e' Z2gg) & (—0.75Z2'+10Z2'Z3/3 —5Z2Z)'/3+4Z83/27} (—1.5Z23+7Z22Z, —14Z2Z,2/3+4Z33/9 —3Z228+12Z2Z35}

3ao 6 j (Z2/2+Z, /3)' (Z2/2+Z /3)'

(4Z 'h/3+ 6ZgP —4Zg5'+ 12b')

(Z2/2+Zg/3)'
S11——1

S22=1

S33=1

S33——1

Syg ——(2Z)Zi)&(Zg —Zg}/(Zg+Z2/2)'

Sgg =8(Z(Z3/3)&(3Zp —4Z)Zg+Zg')/3 (Zy+Z3/3)'

Sms = 2 (ZgZ3/6)&( —9Zg'+45Z2'Z3 —40Z2Z3'+4Z3')/9(Z2/2+Z3/3)'

where Pq~ is a perturbed function with principal quantum
number e=k and given angular momentum 1; and
4 „~ is an unperturbed with principal quantum nunber n
and the same angular momentum as the perturbed
state. When this form of the perturbed wave function
is put into the eigenvalue equation, the familiar secular
equation is obtained:

where

O'. 4' d7;dT ',

and i labels the e, / quantum numbers of unperturbed
states. The solution of this matrix, using k basis set
functions, leads to a set of perturbed eigenvalues Ek
for k different linear combinations of these basis set
functions. As k —+ ~, the lowest value of L~;I, approaches
the ground state energy.

In practice, a small number of basis set functions were
used with the exponential nuclear charge factor in each
of them as an energy minimization parameter. This
parameter was chosen hopefully to give rapid conver-
gence of the energy to the correct value. First-, second-,
and third-order matrices were solved for the ground-
state energy and again for the energies of the 2s and 3s

states. Calculations were made using only one effective
Z as a variational parameter and also using the Z in
each function as a separate variation parameter.
Finally, a first-order perturbation calculation was made
using Z = 1.

Basis functions with equal values of the nuclear
screening constant Z are orthogonal, but those with dif-
ferent values of Z are not. To do both types of variations,
analytic expressions for all the matrix elements H;; and
5;; needed were obtained and are given in Table I.
These expressions were used in a 709 code which
diagonalized the matrices for each point in a predeter-
mined grid of values of the Debye shielding parameter
8. At each value of 5, the optimum energy was obtained
by an iterative search for an energy minimum with
respect to all Z variables. The search for a minimum
energy with respect to one Z variation took an average
of 10 iterations per point, while a two-Z search took
about 60 and three-Z search about 150 iterations.
Independent calculations minimizing the 1s, 2s, and 3s
energies were made. Appendix I gives the details of
the calculation of the H;; matrix elements used.

The 42 remaining excited states, beyond the 2s and
3s states, were represented by a single unperturbed
variational function. In this approximation then,

a., „,(s„„a)=A„,(Z„,,a).
8 The energy is written in the form F~/I~a, the fraction of bound-

state energy remaining for a given value of 8 (h;0 is —0.5 atomic
unit for 1s). This fraction is positive until the energy crosses zero
and the state becomes unbound.
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TABLE II. Ground-state energies in diA'erent approximations. '

gp

0
0.05
0.15
0.25 0.58024
0.30
0.40
0.50 0.2802
0.60
0.70
0.75 0.05780
0.80 0.0202
0828 0
0.90
0.95
1.00
1.05
1.10
1.15

Bp 0.828

0.90363
0.73086
0.58149
0.51465
0.39515
0.29301
0.20671
0.13500
0.10431
0.07694
0.0625
0.30194
0.01428

0—0.0104

1.00
1.06

1
0.90363
0.73089
0.58168
0.51498
0.39604
0.29490
0.21018
0.14088
0.11182
0.08639

0.046i5
0.03101
0.01880
0.0092
0.00194—0.00304

1.13
1.15

1
0.90363
0.73089
0.58171
0.51504
0.39618
0.29516
0.21060
0, 14145
0.11240
0.08692

0.04634
0.03103
0.01887
0.0097
0.00342—0.000418

1.14
1.17

0.90363
0.73092
0.58183
0.51527
0.39675
0.29623
0.21266
0.14366

0.08940

0.04860
0.03298
0.02045
0.01091
0.00423

0

1.15
1.15

For this part of the calculation it was no longer practical
to calculate the matrix elements by hand and use them
as input for the matrix diagonalization computation.
Since a large number of excited states were computed,
a code was written to generate expressions for the di-
agonal elements needed. The method used to do this
is given in Appendix II. Using these expressions then,
each state energy was varied to a minimum with respect
to the nuclear charge paramteer Z using a direct sea, rch
procedure at each value of 8 selected.

III. RESULTS

A. Convergence Properties of the
Variational Procedure

a a is a first-order perturbation calculation for Z =1; b is a first-order
variational calculation varying one Z; c is a second-order variational
calculation varying one Z; d is a third-order variational calculation varying
one Z; e is a third-order variational calculation varying three Z's. Po = —0.5
atomic units (a.u.).

signifKant (i.e., )0.5%) at a 8=0.50 and rises to greater
than 100% just before the state becomes free. The
energy difference is less than 10% for energies down to
10% of the unperturbed value

(c) The energy improvement by adding a third con-
figuration, the 3s state, to the ground state is less than
0.5% over the range of 8 until the energy is reduced to
less than 0.01 of its original value. This percent change
is in general about a factor of 10—15 less than the dif-
ference between the first- and second-order calculations.
Thus convergence is rapid enough that no more than a
3&(3 matrix need be solved for four-figure precision,
except for values of 5&0.95 and of E/Eo&0. 03.

(d) For a third-order matrix and larger, significantly
more energy lowering is obtained by varying the effec-
tive nuclear charge parameter in each wave function
than by increasing the number of configurations used
with only a one-Z variation. Then for matrices higher
than third order there should be more than one varia-
tional parameter.

(e) The higher the calculated bound-state energies,
the lower the calculated value of the shielding (80) at
which the state becomes unbound. For example, the
value of 80 from the first-order variational calculation
of the ground-state energy is 15% lower than that ob-
tained for the 3)&3 calculation varying three parameters.
This latter, most accurate value of bo is probably within
1% of being correct.

(f) When the bound-state energy becomes positive,
the form of the wave function changes to a free electron
function. In practice, in this calculation, for some value
of 8,&60 shortly after E becomes zero, a real positive
Z which minimizes the energy can no longer be found.
The closer the coincidence of these two points, the better
the wave function is in this respect. As can be seen from
Table II, these two points coincide for the most accurate
calculation and differ by 6% for the first-order varia-
tional calculation.

1. Ground State Calcnlatioe

The energy of the 1s state as a function of the
screening parameter 8, is given in Table II for five
calculations of differing approximation: a first-order
perturbation calculation with eGective Z=1; a first-,
second-, and third-order variational calculation using
only one Z for a variational parameter; and a third-
order calculation varying all three Z's independently.
Because the true energies of this system are not known,
the error in these calculations cannot be directly stated.
However, results can be compared for relative reliability:

(a) Comparison of the two 6rst-order calculations
indicates that a very significant energy lowering is ob-
tained by allowing the effective nuclear charge to vary
from the isolated atom value to a value which minimizes
the energy.

(b) The improved energy obtained by adding the
contribution of the 2s state to the 1s state becomes

TABLE III. Energy of 2s state for various approximations.

gi a

1 1
0.65350 0.655
0.39330 0.40024

0
0.05
0.10
0.15
0.20 0.04176 0.10643
0.25 —0.0786
0.30 0.02148
0.40 0

1 1 1
0.65400 0.65412 0.65414
0.39764 0.39900 0.39942
0.21127 0.21680 0.21773
0.0817 0.0961 0.0965
0.00074 0.0253 0.0257—0.00082 —0.09665 0

Bp 0.225 0.40 0.28 0.28 0.30

'~ +o = —.a a.u

Z. Excited Stakes; Zs and 3s

Table III gives the energy of the 2s state as a function
of the screening parameter for the same five calculations
as were done for the ground state. Similar calculations
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Yam, z VIII. Region of applicability of shielding for 45 bound states.

V (cc/mole)

12000
6000
3000
1200
600
400
120
60
30
12
6
3
1.5

(x./kr)
1.592X10 '
7.962X 10-2
3.981 X 10-'
1.592X10 '
7.962X10 '
5.308X10 3

1.592X10 3

7.962X10 4

3.981X10 4

1.592X10 4

?.962X10 '
3.981X10-5
1.990X10 '

(eT); b

1.75
1.5
1.5
1.5
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.5
2.0

(ur)

6.0
12.5
25
60

125
185
625

1250
2500
6250

12500
25000

($.); '

25
8.5
6.3
4.25
0.80
0.53
0.16
0.080
0.040
0.016
0.008
0.012
0.008

y.):
98
99

100
100
100
100
100
100
100
100
100
100

a for Z, =1%'
0.002
0.003
0.005
0.007
0,01

a (¹/AT)mfn=(¹/AT)8=0. 009 =1.327)&10 5 V, since V=6.101 1'/VAT, where N, =fractional ionization, V=volume/mole, and AT =temPerature
in', electron volts.

b AT is the temperature in electron volts.
(¹)mm —percent ionization when shielding is turned on.
(¹)max=percent ionization where shielding is turned off.

(Ne 1 %) 6o 101 &(10 /Ve

prising, since presumably a very similar single-function
variational procedure was used. Since using a single
function can give energies that are either too high or too
low, it seems apparent that the present results give
values that are too high and previous ones give values
that are too low.

D. Use of a Shielded Coulomb Potential
in a Plasma

1. Region of Applicability

Having obtained the energy of isolated two-particle
bound states perturbed by a shielding of the Coulomb
potential, the question arises as to the density-tempera-
ture regions for which it is an apt model for two-particle
interactions in plasmas. In general, it should be appli-
cable for a partially ionized plasma where the number of
both bound and free particles is significant. However,
as the shielding approaches zero (the Debye length gets
large) this perturbation becomes less important while
the number of bound states that must be considered in
the calculation increases. Therefore this model should
be used with a cutoff value of 8, a minimum significant
shielding. Perturbations of two-particle states at lower
values of the shielding could then be approximated by
neutral particle interactions, with care taken to insure
a smooth counting of states and energy variation when
considering both neutral and charged particle perturba-
tions of the bound states.

From the results of the present calculation using 45
states, the minimum value of 8 that could be used is
0.009 and the maximum value when the last state disap-
pears is 1.15. To translate this range of shielding to a
usable temperature-volume grid, use was made of the
percent ionization figures obtained from a previous
calculation. ' For each of a series of volumes ranging
for hydrogen from a standard gas to a tenfold com-
pressed solid, minimum values of N,/kT corresponding
to 6=0.009 were translated to a useful temperature
range. These are given in Table VIII. The percent

ionization when the perturbation is turned on and off
is also given in the table. If it is reasonable to consider
the shielding perturbation to be significant for 1V,& 1%,
then it is estimated from the figures of Table VIII that
45 excited states could be used in a calculation of the
thermodynamic properties of a hydrogen plasma for
volumes &750 cc/mole and temperatures from room
temperature to the region of complete ionization.

Z. Critique of the Energy Critenou for Bou& States

Instead of an energy criterion for the definition of a
bound state, i.e., as one with E(0, a size criterion could
possibly be used. That is, it might be decided that a state
is no longer bound if its average radius exceeds the
average internuclear separation at a given density and
temperature. An analysis was made of the present
results to see how these two criteria agree The
average radius of a hydrogen-like electronic state is:
(r„~)=ao(3e' —t(l+1))/2s„~. From a calculation of the
average radii for each of the 45 states, it is concluded
that for values of 8 for which the state is still bound
there corresponds some specific volumes for which the
state would not fit. Therefore these two criteria do not
mesh and there is an appreciable density-temperature
region for each state when it is considered bound but
does not "fit" into the volume occupied on the average
solely by one proton. The error being made then is to
still consider the electron as bound exclusively to one
proton when it overlaps appreciably onto one or more
additional nuclei. At that point theree-, four-, and more-
particle bound states should really be considered.

For the model of the bound-state perturbation as
atoms in a box, there were also some states with 8&0
which did not fit into the average specific volume of the
system. If the size criterion had been used, then the
bound states would have cut out at lower densities.
With the shielded Coulomb perturbation of the bound
states, the H-atom states stay gound even longer than
they do for the atom in a box, thus increasing the dis-
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parity between the size and energy criterion. However,
in some intermediate density-temperature regions
(roughly 1 &T &5 ev, 12 & V &120 cc/g) this more grad-
ual disappearance of bound states is just the correction
needed to improve the model. The atom in a box model,
because of the more rapid disappearance of states, gave
too high a volume derivative of the free energy and
therefore too high a pressure.

The present model, then, does show some promise
of giving reasonable thermodynamic properties in the
very dificult intermediate regions of density and tem-
perature for a partially ionized plasma.
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Then

(T Z,e—'/r) dt), (r) = (—Z,e'/2ap) p& (r).

T;; =Z;e' (e;*e;/r)dr;dr; —Z;e'/2e.
~

e;*e;dr;dr;).

The potential energy integral is of the form:

where 3=numerical factor from the angular integration,
T=kinetic energy operator, and U =potential energy.
To calculate T;;, use was made of the fact that the
p&'s are eigenfunctions of the equation:
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Trulio.

U;, = —e'

r)p), = (1/4m)'(Zq/ap) '2 exp (—Zxr/ap),APPENDIX I

q p, = p (4n)**(Zp/. 3ap) **$6 4Zpr/—ap+ (2Zpr/3ap) '$

Xexp( Zpt'/3gp).

The matrix elements for the Hamiltonian used in &&
= (1/47r) *( p/2ap) '(2 Zp~/ap) exp (—Zp~/2ap),

the diagonalization and minimization routines were
calculated as follows:

B„=A dP,*(r)Td//; (r) r'dr

+ '*( )V( ) ( ) 'd =e4(T +V')
0

tAThen these functions were substituted into the expres-
sions for T;; and V;; all integrals obtained could be ex-
pressed in terms of gamma functions and were easily
evaluated.

APPENDIX II

The diagonal elements of the Hamiltonian used for the 1 X 1 calculation of the excited state energies were
generated by a recursion formula developed in the following way: Let

H,;=H„i T„)+V„), ——

T„) ZP/2n', ——

R„) (r) V(r, b)R„(r'dr

e2
re—&

—). rr—&—). (nl 1)!(—1),"—+' —L(n +l)!1 (24Z/ n)gLp2 /Z(2Z +Bn)g" "++)e
+( l2+4+' k+)1!

2n (n+ l) !' (n —l—1—k) !(n —l—1—k') !(2l+ 1+k) !(2l+ 1+k') !k!k '!

—e'Z p p q!(—1)"+P' (q+s) !x"+' ++'( P+sk+k') !

n'ap ~=p ) ~ (q —k) !(q —k')!(s+k) !(s+k') !k!k'!

where s= 2l+ 1, q= n l 1, and x=—2Z—/2Z+ n8. Let k+k'= t, then

e2gg2 1+2 q!(q+s)!(—x) '(s+t)!
tz 2+ 2 2 j

n ap t=p /e=p t=p+1 p=d p(q k)!(q t —k) f(s+k) f(s+t k—) lk f(t—k)t—
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then

q!(q+s)!(s+t)!
AtA=

(q —k)!(q —t+k)!(s+k)!(s+t—k)!k!(t—k)!

~2gg(2/+2) q t 2q q

V z= LE 2+ 2 2 LA~ir( —~)'.
t=o k=p t=q+1 K=t—q

A table of coeS.cients Atz was generated by the following procedure: Using

(~+t) ' (i~' j')—
App ——(q+s)!q!s!= —=eP

(n t—1)!(2—t+1)! i=i 2j(2j+1)

a value of App is calculated and from it coe6icients Atp generated, using

A ~~i p= A ip(q —t)((t+ 1).

Then for each t, At~ was determined using

Ai, ir+i=Aiir(q K) (s+t —k) (t—k)(—(q
—t+k+1) (s+k+1) (0+1),

up to t= q. Coe%cients with t) q of the form Aq+&, &, A q+2 2 were generated from Aq p by the following formula:

A,+, , &. . +,&
=A, , &,=, ,& (2q —t) (s+ t+1)/(s+ t—q+1) (t—q+1),

with k advanced in steps from 0 to q. The potential energy integral U„~ could then be calculated from the table of
A, z by summing over Z', multiplying by (—x)P for each value of x and t, and finally summing over t.


