THE
PHYSICAL REVIEW

eAd journal of experimental and theoretical physics established by E. L. Nichols in 1893

Seconp Series, Vor. 125, No. 4

FEBRUARY 15, 1962

Attractive Two-Body Interactions in Partially Ionized Plasmas™

GirpA M. HaRRIs
Lawrence Radiation Laboratory, University of California, Livermore, California

(Received September 18, 1961 ; revised manuscript received October 24, 1961)

It has recently been shown that in a classical plasma a shielded Coulomb (Yukawa) potential describes
the effective two-particle interactions thorugh chains of intermediate particles. It therefore seemed reason-
able to use this potential to approximate two-particle quantum interactions in a sea of charged particles,
such as a hydrogen plasma. Consequently, an approximate solution of the Schridinger equation was
obtained for a hydrogen atom in a shielded Coulomb potential. With this potential, the number of H-atom
bound states is finite and the energy eigenvalues are a function of the density and temperature. A variational
calculation was performed using hydrogen-like single electron functions as a basis set and the effective
nuclear charge as a variational parameter. Bound-state energies were obtained for 45 states of hydrogen in
a grid of values for the screening constant. As the screening increases, the bound-state energy increases.
For each state there is a maximum shielding above which the state is free, i.e., for which £>0. According
to the present calculation, the energy of the ground state becomes zero at a screening of 1.15 atomic units.

Above this value then, no bound states can exist.

I. INTRODUCTION AND BACKGROUND

HE calculation of the thermodynamic properties

of many-body systems of charged particles, i.e.,
plasmas, has been given extensive study in recent years.
Starting from a rigorous statistical mechanical formula-
tion in terms of the canonical partition function, ex-
pressions for the thermodynamic functions of both
classical'? and quantum-mechanical® systems have been
developed using various expansion techniques. Despite
much progress, numerically useful results stemming
from these methods have been scant. Only the near-
classical (high temperature-low density) region and the
highly degenerate (low temperature-high density)
regions have been developed enough to give useful equa-
tions for one-component systems.}~® Hence, for the past
several years, it has been the interest of the author to
formulate a working model for the calculation of the
thermodynamic properties of multicomponent, partially
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ionized plasmas over a wide temperature-density
region.* In the molecular model which has been used,
the assumption is made that the total many-body
system is composed of a limited number of well-chosen,
few-particle subsystems which hopefully represent all
those present in significant amounts in the total system.
Electrons are then either free or bound to one or the
other of these subsystems. Interactions which involve
the free electrons are approximated by a classical
ring-sum (Debye) term with a cutoff which avoids the
short-range divergence. Energy eigenvalues in the
partition function for the bound electronic states are
obtained from solutions of the Schrédinger equation
for small systems. However, the energy eignevalues
of the isolated few-body systems are modified in the
plasma sea and become density and temperature de-
pendent. The success of the calculation in intermediate
areas of density and temperature depends to a large
extent on the model chosen to approximate these
plasma-modified, few-particle interactions. In a previous
model for hydrogen plasma,® the effect of the plasma
environment on two-, three-, and four-particle interac-
tions was approximated simply by a confinement effect.
The model of an atom or moelcule in a box of variable

4 G. M. Harris, J. Chem. Phys. 31, 1211 (1959).
5 G. M. Harris and J. G. Trulio, J. Nuclear Energy, Part C,
Plasma Physics 2, 224 (1961).
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size was used and perturbed eigenvalues calculated.
With this approximation, the equilibrium distribution
of species varied in a qualitatively correct and fairly
accurate manner.

It has now been demonstrated from a rigorous ex-
pansion of the partition function, at least for classical
charged particles, that the effect of the plasma sea on
localized two-particle interactions is to replace the
Coulomb potential by an effective screened Coulomb
potential .2 It seemed reasonable then, that this perturba-
tion of the quantized bound states of isolated two-
particle systems would be an improvement over the
“atom in a box’ model for plasmas in regions where
charged particles are the predominant background.
Accordingly, the bound-state energies of a ‘“hydrogen
atom” in a shielded Coulomb field were calculated for
the ground state and 44 excited states (through =9,
1=8) as a function of the classical Debye screening
which was used in the potential. The screening is a
repulsive perturbation displacing the isolated energy
levels upwards and eventually into the continuum, as
the Debye length becomes smaller. Then both the num-
ber of bound states and their energies are obtained as
functions of the density and temperature.

There have been several previous calculations of the
behavior of the hydrogen atom in a shielded Coulomb
potential. The two principal ones have dealt only with
“s” states and have had as a main interest an estimate
of the variation of the number of bound “s” states
with the screening. In a calculation made by Ecker and
Weizel,® this relationship was obtained by an approxi-
mate analytic solution of the modified radial equation
for the H atom in the limit of small shielding. The exact
radial equation cannot be solved analytically and no
attempt at a numerical solution was made. In an un-
published calculation of Margenau and Kelley,” this
relationship was obtained from a variational calculation
and a perturbation calculation, with slightly different
numerical coefficients each time and each different
from Ecker and Weizel. In the variational calculation
reported,” unperturbed H atom wave functions were
used as a basis set, with the nuclear charge as a param-
eter. One unperturbed function was used for each per-
turbed ‘“s” state, and energy integrals were approxi-
mately evaluated. No study of the convergence proper-
ties of the variational procedure was made.

In the present calculation, a variational procedure
was also used with hydrogen-like wave functions as a
basis set and the exponential nuclear charge as a varia-
tional parameter. The rate of convergence of the per-
turbed state energies was studied for the 1s, 2s, and 3s
states as a function of the number of basis set members
used. The effect on the convergence of the energy for
different kinds of Z variations was also studied. All

8 G. Ecker and W. Weizel, Ann. Physik 17, 126 (1956).

"D. Kelley and H. Margenau, Progress Report, October 1,
1956 (unpublished), as reviewed in H. Margenau and M. Lewis,
Revs. Modern Phys. 31, 569 (1959).
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integrals involved were solved exactly. When the proper-
ties of the variational calculation were ascertained for
the ground state and the 2s and 3s states, then the
perturbed energies of all the remaining 42 states studied
were determined by the cruder variation procedure of
using only one unperturbed state per new state. This
procedure is most reliable for the calculation of energies
which are not too near the continuum since only bound
states are used in the basis set. This means that it will
be more accurate for the less excited H atom states
and/or for small perturbations. The usual external
check on whether the energies and number of states
calculated are nearly correct cannot be made directly,
since there is no simple system which is known to obey
a Yukawa potential exactly. This check can be made
indirectly when this model is used as part of a revised
calculation of the thermodynamic properties of a hydro-
gen plasma. Then of course it will also be coupled with
the further assumption that this entire model is a good
approximation to the two-particle interactions in a
plasma.

In the next section are presented the details of this
calculation and in the last section results are presented
and evaluated.

II. CALCULATION

The Hamiltonian for an electron interacting with a
proton through a screened Coulomb potential is:

H=Hy+V(r),
where
HO: PZ/Zma V(?’) = _ZZZ(e—Kr)/r,

K =reciprocal of the Debye length,
K*=4r3 ; Niz2et/ VET,

and V;=number of species with charge z;.

Letting 8, a dimensionless screening parameter = K ay,
then §2=1.0086X 1072 p/kT, where p=density of free
electron, and k7 =temperature in electron volts. The
electronic wave function may be represented as a pro-
duct of angular and radial factors. Then, since the po-
tential is spherically symmetric, the angular parts of
the Schrédinger equation can be separated out and are
identical to those of the hydrogen atom. However, the
resulting radial equation cannot be solved analytically
and in this calculation an approximation to the eigen-
values and eigenfunctions is obtained from a variational
calculation. Unperturbed H-like electronic functions
were used as a basis set for the energy minimization.
Because of the orthonormality of the angular parts of
these functions, states with different angular momentum
do not mix. Then the new eigenfunctions are expressed
as linear combinations of H-atom states with the same
angular momentum but different principal quantum
numbers:

Yr= Z aknz@nz(f,ﬁ,%zknz),
n=1
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TaBLE I. Matrix elements used to solve 3X3 secular determinant.

Hyy=(Z:2€%/2a0)[1—8Z:1/ (5+22:)%]

Hyo=(Z%*/8a0)[1—2Z5(26°+Z:)/ (6+422)"]

Haz= (Z6/9a0)[h — 425 (16214216228 2435)/ (2Z5+38)°]

M <é€%)‘} 62[Z1Z2(421—Zz)— (4Z1—2Z2+43)]
(Z1422/2)  (3+Z1+22/2)

2

()]

o e 1<Z1Z3>il: (3Z2—4Z,Z;/3+22/9) (12Z2—8Z,Zs+4Z3/3) 242:6—8Z:5-+1282
B=——-\— 3 }

(l03 3

(Z1+25/3)8

(Z1+22/3+5)¢

(Z1+2%/3+6) J

H%:_e?_(i?é)*[ ] d(-0.7522‘*+1022223/3—522232/3+4233/27) (= 15ZP 12273 — 142,22/ 3442579~ 3Z25+122:2:5)
a0 (Z2/2+24/3)° (Z2/2+425/3)

(47:%/3+62:8— 4Z:9+126)
Su=1 - (Z2/24+Z,/3) :I
Sap=1
Sss=1
Si=1

S1e= (22:1Z:)8(Z1—Z2)/ (Z1+Z2/2)*
S13=8(2123/33(3Z22—4Z,Z3+2Z:2)/3(Z1+Z3/3)8
S2s=2(Z223/0)}(—9Z 344522223, — 40227 2+4Z3) /9 (Z2/2+Z3/3)8

where Y is a perturbed function with principal quantum
number #=£% and given angular momentum /; and
®,,; is an unperturbed with principal quantum nunber %
and the same angular momentum as the perturbed
state. When this form of the perturbed wave function
is put into the eigenvalue equation, the familiar secular
equation is obtained:

|Hij— EiSy| =0,
where

H;= /‘I),'*H@jdndrj,

Sij’: /‘I’,’*q’deide,

and ¢ labels the 7,/ quantum numbers of unperturbed
states. The solution of this matrix, using % basis set
functions, leads to a set of perturbed eigenvalues Fj
for % different linear combinations of these basis set
functions. As £ — o, the lowest value of % approaches
the ground state energy.

In practice, a small number of basis set functions were
used with the exponential nuclear charge factor in each
of them as an energy minimization parameter. This
parameter was chosen hopefully to give rapid conver-
gence of the energy to the correct value. First-, second-,
and third-order matrices were solved for the ground-
state energy and again for the energies of the 25 and 3s

states. Calculations were made using only one effective
Z as a variational parameter and also using the Z in
each function as a separate variation parameter.
Finally; a first-order perturbation calculation was made
using Z=1.

Basis functions with equal values of the nuclear
screening constant Z are orthogonal, but those with dif-
ferent values of Z are not. To do both types of variations,
analytic expressions for all the matrix elements H;; and
Si; needed were obtained and are given in Table I
These expressions were used in a 709 code which
diagonalized the matrices for each point in a predeter-
mined grid of values of the Debye shielding parameter
8. At each value of §, the optimum energy was obtained
by an iterative search for an energy minimum with
respect to all Z variables. The search for a minimum
energy with respect to one Z variation took an average
of 10 iterations per point, while a two-Z search took
about 60 and three-Z search about 150 iterations.
Independent calculations minimizing the 1s, 25, and 3s
energies were made. Appendix I gives the details of
the calculation of the H;; matrix elements used.

The 42 remaining excited states, beyond the 2s and
3s states, were represented by a single unperturbed
variational function. In this approximation then,3

H 1,01(201,0) = Eni(Z 11,0).

8 The energy is written in the form 7/ F,, the fraction of bound-
state energy remaining for a given value of § (£ is —0.5 atomic
unit for 1s). This fraction is positive until the energy crosses zero
and the state becomes unbound, :
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TasLE II. Ground-state energies in different approximations.

E/E,
B a b ¢ d e

0 1 1 1 1 1
0.05 0.90363 0.90363 0.90363  0.90363
0.15 0.73086 0.73089 0.73089  0.73092
0.25  0.58024 0.58149 0.58168 0.58171  0.58183
0.30 0.51465 0.51498 0.51504  0.51527
0.40 0.39515 0.39604 0.39618  0.39675
0.50 0.2802 0.29301 0.29490 0.29516  0.29623
0.60 0.20671 0.21018 0.21060  0.21266
0.70 0.13500 0.14088 0.14145  0.14366
0.75 0.05780 0.10431 0.11182 0.11240
0.80 0.0202 0.07694 0.08639 0.08692  0.08940
0.828 0 0.0625
0.90 0.30194 0.04615 0.04634  0.04860
0.95 0.01428 0.03101 0.03103  0.03298
1.00 0 0.01880 0.01887  0.02045
1.05 —0.0104 0.0092 0.0097 0.01091
1.10 0.00194 0.00342  0.00423
1.15 —0.00304 —0.000418 0

s  0.828 1.00 1.13 1.14 1.15

8; 1.06 1.15 1.17 1.15

&g is a first-order perturbation calculation for Z=1; b is a first-order
variational calculation varying one Z; ¢ is a second-order variational
calculation varying one Z; d is a third-order variational calculation varying
one Z; ¢ is a third-order variational calculation varying three Z's. Eo = —0.5
atomic units (a.u.).

For this part of the calculation it was no longer practical
to calculate the matrix elements by hand and use them
as input for the matrix diagonalization computation.
Since a large number of excited states were computed,
a code was written to generate expressions for the di-
agonal elements needed. The method used to do this
is given in Appendix II. Using these expressions then,
each state energy was varied to a minimum with respect
to the nuclear charge paramteer Z using a direct search
procedure at each value of § selected.

III. RESULTS

A. Convergence Properties of the
Variational Procedure

1. Ground State Calculation

The energy of the 1s state as a function of the
screening parameter §, is given in Table II for five
calculations of differing approximation: a first-order
perturbation calculation with effective Z=1; a first-,
second-, and third-order varjational calculation using
only one Z for a variational parameter; and a third-
order calculation varying all three Z’s independently.
Because the true energies of this system are not known,
the error in these calculations cannot be directly stated.
However, results can be compared for relative reliability :

(a) Comparison of the two first-order calculations
indicates that a very significant energy lowering is ob-
tained by allowing the effective nuclear charge to vary
from the isolated atom value to a value which minimizes
the energy.

(b) The improved energy obtained by adding the
contribution of the 2s state to the 1s state becomes

GILDA M. HARRIS

significant (i.e., >0.5%) at a §=0.50 and rises to greater
than 1009, just before the state becomes free. The
energy difference is less than 109, for energies down to
109, of the unperturbed value

(c) The energy improvement by adding a third con-
figuration, the 3s state, to the ground state is less than
0.59%, over the range of & until the energy is reduced to
less than 0.01 of its original value. This percent change
is in general about a factor of 10-15 less than the dif-
ference between the first- and second-order calculations.
Thus convergence is rapid enough that no more than a
3X3 matrix need be solved for four-figure precision,
except for values of §2>0.95 and of E/E,<0.03.

(d) For a third-order matrix and larger, significantly
more energy lowering is obtained by varying the effec-
tive nuclear charge parameter in each wave function
than by increasing the number of configurations used
with only a one-Z variation. Then for matrices higher
than third order there should be more than one varia-
tional parameter.

(e) The higher the calculated bound-state energies,
the lower the calculated value of the shielding (8o) at
which the state becomes unbound. For example, the
value of 8y from the first-order variational calculation
of the ground-state energy is 159, lower than that ob-
tained for the 3X 3 calculation varying three parameters.
This latter, most accurate value of 8¢ is probably within
19, of being correct.

(f) When the bound-state energy becomes positive,
the form of the wave function changes to a free electron
function. In practice, in this calculation, for some value
of 8,>08¢ shortly after £ becomes zero, a real positive
Z which minimizes the energy can no longer be found.
The closer the coincidence of these two points, the better
the wave function is in this respect. As can be seen from
Table IT, these two points coincide for the most accurate
calculation and differ by 69, for the first-order varia-
tional calculation.

2. Excited States; 2s and 3s

Table ITI gives the energy of the 2s state as a function
of the screening parameter for the same five calculations
as were done for the ground state. Similar calculations

TasLE III. Energy of 2s state for various approximations.

LE/E®
5 a b ¢ d €

0 1 1 1 1 1
0.05 0.65350  0.655 0.65400 0.65412  0.65414
0.10 0.39330  0.40024 0.39764 0.39900  0.39942
0.15 0.21127 0.21680 0.21773
0.20 0.04176  0.10643 0.0817 0.0961  0.0965
0.25 —0.0786 0.00074 0.0253  0.0257
0.30 0.02148 —0.00082 —0.09665 0
0.40 0

8o 0.225 0.40 0.28 0.28 0.30

s Fo=—} a.u.
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TaBLE IV. Comparison of energies from ground-state and excited state minimization.®
Els E?a ESs

5 a b ¢ ) a b c 5 a b c
0.1 —0.4070 —0.4068 —0.3898 0.1 —0.04981 —0.04988 —0.04575 0.1 40.00138 +0.0005 —0.00193
0.15 —0.3655 —0.3649 —0.2651  0.15 —0.02698 —0.02710 0 0.15 +0.01431  40.01169 0
0.20 —0.3268 —0.3261 020 —0.01194 —0.01201
0.25 —0.2908 —0.2894 0.25 —0.00306 —0.003157

a g is the 3 X3 diagonalization minimizing 1s energy; b is the 3 X3 diagonalization minimizing 2s energy; ¢ is the 3 X3 diagonalization minimizing 3s

energy.

were made for the 3s state. The energy of the 2s and
3s states were found by minimizing each with respect
to the Z parameters in separate calculations rather than
taking the energy of the orthogonal partners of the
ground state as the excitation energy. Table IV com-
pares the energies obtained for the 1s, 25, and 3s states
when each of these energies was minimized in turn.
The improvement in the 2s state energy ranges from
only 0.14%, at a & of 0.1 to 39, at a 6=0.25, just before
it becomes unbound. There was no appreciable difference
in the value of 8y, which was 0.28 for both cases. The
energy of the 3s state was improved appreciably, when
it rather than the 1s state energy was minimized. The
value of §, was at the same time increased from <0.1
to 0.15.

From Table III, it is seen that of the two first-order
calculations, the variational one gives the lower energy
as it did for the ground state. However, here the 1X1
variational energy is lower than the 2X2 and 3X3
energy. This is because minimization of the energy of
an excited state using a single variation function
gives an energy which is neither an upper nor lower
limit of the true energy of the system. Only if a matrix
of order > 2 is diagonalized is the resulting energy value

L L L L L L
98

0.002 - &

7S
0.004|
0006
*E/Eq
0.008 |-

0.010—

0.012

0.014

0.016-—1L -

0] 004 008 O0l2 0l6 020 024 028

8=Kag

F16. 1. Energy of excited s states as a function
of screening #=2—9.

an upper limit of the true value. For the 2s state, not
much energy lowering is obtained in going from a second-
to a third-order calculational or from one 3X3 to the
other. Yet the 1)X1 energies are considerably lower than
any of these which are upper limits of the true energy.
Therefore it is very likely that, for the excited states,
energies calculated from a single variational function
are lower than the true value. Then, values of §, ob-
tained from the first-order calculations are too high,
and those from the others are too low. This places the
true value of § for the 2s state between 0.28 and 0.4
and for the 3s state between 0.15 and 0.28.

B. Excited States as Single Variational
Functions : Bound-State Energies
and Continuum Conditions

Table V gives the energies of the excited states
through principal quantum number 9. These results
were obtained by minimizing a single variational func-
tion per excited state. As the screening increases the

Y 1
8p

p.
O.l = -
6p/ 5p 4p

0.2+ —
3p

0.3 —

0.4 ; .
E/Ey | | .
05}~ .
0.6l -
*

Eo.:'I/an)

0.8H —

0.9 -

1.0 1 | | I I I
0] 002 004 006 008 O.l0 0.2

8=Kag

Q.4

FiG. 2. Energy of p states =2-—38.
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TaBLE VI. Maximum value of screening factor
for each bound state.

o

n\ s

1 1.15 P

2 040 0.210 d

3 0.295 0.110 0.090 f

4 0.220 0.080 0.050 0.050 g

5 0.177 0.060 0.040 0.035 0.030 h

6 0.145 0.052 0.034 0.027 0.023 0.021 i

7 0.126 0.046 0.029 0.021 0.018 0.017 0.0155 Jj

8 0.108 0.040 0.025 0.018 0.016 0.013 0.0125 0.0115 k
9 0.094 0.035 0.0145 0.012 0.012 0.011 0.0105 0.0100 0.0095

energy increases more and more slowly, approaching
zero asymptotically. This leveling off near zero energy
is more pronounced for states with higher principal
quantum number. Examples of the energy variation
are shown in Figs. 1 and 2 for the s and p states,
respectively.

In this approximation, states of different / and »
quantum numbers do not mix and do not cross. How-
ever, the “/ degeneracy” of the isolated hydrogen atom
is broken. This may be observed in Fig. 3 where the
energies of states with princpal quantum number 6
are plotted.

Judging from the results of the calculations for the
2s and 3s states, the energies of all excited states calcu-
lated here are most probably low. In addition, as was
expected from the inaccuracies mentioned in the ground-
state calculations, excited states with less than 1/100
of the energy of the ground state gave completely
unreliable results. Then, for a principal quantum
number >10, this approximation to the perturbed
states breaks down at essentially zero perturbation.

Table IV gives the value of the screening parameter

TR B | Lo 1o b o 1w 1o
6] 0.02'0.04 0.0610.08 0l0 0.2 0OI4 Ol6 0I8 02 04

0 -

§=Kag

F16. 4. Number of bound states as a function of screening.

for which each state energy is zero. From this data,
the variation in number of bound states with screening
length is plotted in Fig. 4. It appears that as the screen-
ing goes to zero, the number of bound states approaches
infinity asymptotically.

C. Comparison of Numerical Results

For the s states, comparison of the values of &
calculated here and from previous work can be made.
The approximate analytic calculation of Ecker and
Weizel® (EW) led to the relationship: g*?=2/6, where
g is the highest principal quantum number of an s
state which is still bound at a screening of 6. The per-
turbation calculation of Margenau and Kelly” (PMK)
led to the expression g*2=0.86 z/5; while their varia-
tional calculation (VMK) gave the result : g*2=0.804 2/8
Table VII gives the values of § calculated from these
formulas and from the present work. For the 1s, 2s,
and 3s states, the value of § obtained here from the
3X 3, 3-parameter calculations, must be the most ac-
curate. Ecker and Weizel’s calculation seems to give
an answer for the 1s state equivalent to the present

° first-order variational results. The two first-order per-
turbation calculations, PMK and the present one, are
0.05 — comparable and give a still worse value of §. For the
ground state, the worst value of §; is the VMK one. For
0.0 - - the excited states, values of §, from the present first-
order variational calculation are much higher than any
o5l _ of the others. The large discrepancy between the un-
published VMK results and the present ones is sur-
0.20- -
E/E TasLE VII. Comparison of 8, values for nine ‘s’ states.
0
o251 N State EWs PMK* PH* VMK* VHp VHp
1s 1 0.86 0.83 0.804 1.00 1.15
0.30— 1 2s 0.25 0.215 0.215 0.210 0.40 0.28
3s  0.111 0.095  0.095  0.089 0.295  0.15
4s 0.062 0.052 0.22
0.351~ n 5s  0.04 0.032 0.177
6s  0.0278 0.022 0.145
7s 0.0204 0.016 0.126
040~ ] 8  0.0156 0.0125  0.108
9s  0.01234 0.0099  0.094
0.45 | | 1 ! l
o 0ol 002 0.03 0.04 0.05 0.06 007 s EW =Ecker and Weizel calculation (reference 6); PMK =Margenau
$:=Ka and Kelley perturbation calculation (reference 7); PH =present perturba-
o tion calculation; VMK =Margenau and Kelley variational calculation

F1c. 3. Splitting of / degeneracy for #=6 states.

(reference 7); VHi=present single function variational calculation;
VH: =present (3 X3) variational calculation.
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Tasre VIII. Region of applicability of shielding for 45 bound states.

V (cc/mole) (NVe/ kT )min® (ET)min® (AT )max (Ne)mia® (Ve)max? 8 for No=19,¢
12000 1.592X 1071 1.75 6.0 25%, 959, 0.002
6000 7.962X102 1.5 12.5 8.5 98 0.003
3000 3.981X 1072 1.5 25 6.3 99 0.005
1200 1.592X 1072 1.5 60 425 100 0.007
600 7.962X 107 1.0 125 0.80 100 0.01

400 5.308X 103 1.0 185 0.53 100

120 1.592X 1073 1.0 625 0.16 100

60 7.962X 107 1.0 1250 0.080 100

30 3.981X 107 1.0 2500 0.040 100

12 1.592X 1074 1.0 6250 0.016 100

6 7.962%X1075 1.0 12500 0.008 100

3 3.981X 1075 1.5 25000 0.012 100

1.5 1.990X 10~ 2.0 0.008 100

8 (N¢/kT)min=(Ne/kT)8=0.009 =1.327 X10~5 V, since 2=6.101 N./VkT, where N.=fractional ionization, ¥V =volume/mole, and kT =temperature

in"electron volts.
T is the temperature in electron volts.
¢ (No)min =percent ionization when shielding is turned on.
d (Ne)max =percent ionization where shielding is turned off.
e 52(Ne=1%) =6.101 X1072/V.

prising, since presumably a very similar single-function
variational procedure was used. Since using a single
function can give energies that are either too high or too
low, it seems apparent that the present results give
values that are too high and previous ones give values
that are too low.

D. Use of a Shielded Coulomb Potential
in a Plasma

1. Region of Applicability

Having obtained the energy of isolated two-particle
bound states perturbed by a shielding of the Coulomb
potential, the question arises as to the density-tempera-
ture regions for which it is an apt model for two-particle
interactions in plasmas. In general, it should be appli-
cable for a partially ionized plasma where the number of
both bound and free particles is significant. However,
as the shielding approaches zero (the Debye length gets
large) this perturbation becomes less important while
the number of bound states that must be considered in
the calculation increases. Therefore this model should
be used with a cutoff value of §, a minimum significant
shielding. Perturbations of two-particle states at lower
values of the shielding could then be approximated by
neutral particle interactions, with care taken to insure
a smooth counting of states and energy variation when
considering both neutral and charged particle perturba-
tions of the bound states.

From the results of the present calculation using 45
states, the minimum value of 8 that could be used is
0.009 and the maximum value when the last state disap-
pears is 1.15. To translate this range of shielding to a
usable temperature-volume grid, use was made of the
percent ionization figures obtained from a previous
calculation.® For each of a series of volumes ranging
for hydrogen from a standard gas to a tenfold com-
pressed solid, minimum values of N./kT corresponding
to §=0.009 were translated to a useful temperature
range. These are given in Table VIII. The percent

lonization when the perturbation is turned on and off
is also given in the table. If it is reasonable to consider
the shielding perturbation to be significant for N ,> 19,
then it is estimated from the figures of Table VIII that
45 excited states could be used in a calculation of the
thermodynamic properties of a hydrogen plasma for
volumes <750 cc/mole and temperatures from room
temperature to the region of complete ionization.

2. Critique of the Energy Criterion for Bound States

Instead of an energy criterion for the definition of a
bound state, i.e., as one with £ <0, a size criterion could
possibly be used. That is, it might be decided that a state
is no longer bound if its average radius exceeds the
average internuclear separation at a given density and
temperature. An analysis was made of the present
results to see how these two criteria agree The
average radius of a hydrogen-like electronic state is:
{rn1)=ao 3n*—1(14+1)]/22.. From a calculation of the
average radii for each of the 45 states, it is concluded
that for values of § for which the state is still bound
there corresponds some specific volumes for which the
state would not fit. Therefore these two criteria do not
mesh and there is an appreciable density-temperature
region for each state when it is considered bound but
does not “fit” into the volume occupied on the average
solely by one proton. The error being made then is to
still consider the electron as bound exclusively to one
proton when it overlaps appreciably onto one or more
additional nuclei. At that point theree-, four-, and more-
particle bound states should really be considered.

For the model of the bound-state perturbation as
atoms in a box, there were also some states with £<0
which did not fit into the average specific volume of the
system. If the size criterion had been used, then the
bound states would have cut out at lower densities.
With the shielded Coulomb perturbation of the bound
states, the H-atom states stay gound even longer than
they do for the atom in a box, thus increasing the dis-
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parity between the size and energy criterion. However,
in some intermediate density-temperature regions
(roughly 1<T <5 ev, 12<V <120 cc/g) this more grad-
ual disappearance of bound states is just the correction
needed to improve the model. The atom in a box model,
because of the more rapid disappearance of states, gave
too high a volume derivative of the free energy and
therefore too high a pressure.

The present model, then, does show some promise
of giving reasonable thermodynamic properties in the
very difficult intermediate regions of density and tem-
perature for a partially ionized plasma.
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APPENDIX 1

The matrix elements for the Hamiltonian used in
the diagonalization and minimization routines were
calculated as follows:

H@,-=A[ / o ()T os(rrdr
0

+ / %*(r)V(r)w(r)err]:A<Ti]-+vz-j),
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where 4 =numerical factor from the angular integration,
T=Kkinetic energy operator, and V=potential energy.
To calculate T, use was made of the fact that the
@1’s are eigenfunctions of the equation:

(T—Z;e*/1) i(r) = (—Zi€*/ 2a0) ¢;(r).
Then

Ty=Ze* | (o*¢i/r)drdr;—Z;é?/ 200( / o ‘derier')'
0

0

The potential energy integral is of the form:
Vij=—¢? / oi* (e K /r)dr dx;.
0

The H-atom-like wave functions used were:
e1:= (1/4m)(Z1/a0) 2 exp(—Zw/av),
e2:=(1/4m)}(Z5/2a0)*(2— Zor/ a0) exp(—Zor/2a0),

Q35— %(471’)»%(Z3/3d()) %[6—4Z37'/ao+ (2Z31’/3do)2:l
Xexp(—Zyr/3a0).

When these functions were substituted into the expres-
sions for T';; and V;; all integrals obtained could be ex-
pressed in terms of gamma functions and were easily
evaluated.

APPENDIX II

The diagonal elements of the Hamiltonian used for the 1X1 calculation of the excited state energies were
generated by a recursion formula developed in the following way : Let

Hi=Hu=Tu+Va,

Tu=2Z. 21,

V= f R.*(r)V (r,0) Rppdr
0

nt1 i1 (n—I—1) (= D)M¥[ (n+1) 1122/ nao)[ 27 (27 +n8) HH+++2(20+k+-E 1)1

20(n+0) 3 (n—I—1—E) | (n—I— 1— ") (2 14+E) |+ 14+F) 1R 1F |

=—g 3
=0 k=0
—eZ o ql(—1)FF (g+s) la2HHE (s B4R

n2ay k=0 k’=0

(g—B) 1 (q—E)\(s+RB) s+ E) B

where s=2l+1, g=n—1—1, and x=2Z/2Z+ns. Let k+k =1, then

q!(g+s) ! (—=x)(s+12)!

— 62Zx21+2 q t 2g q
Va=———[2 2+ 2 X ]
n2ao t=0 k=0

e kg (= B) (g— 1= B) s+ B)  (s+1— k) 1k 1 (1— B) |
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Let
. g (g+9)!(s+2)! '
=) (=B (sHB) (s Hi—B) k11— B)
then
— 7X@ 4 2q q
Vp=—"—-[2 2+ 2 X [d(-x)"
n-Qg t=0 k=0 t=gq¢+1 K=t—q

A table of coefficients 4:x was generated by the following procedure: Using

(n+D)! Lo (=%
(= D121 E 22+ 1)

A= (g+s)lgls!=

a value of Ao is calculated and from it coefficients 4, generated, using
Avpr,0=Aw(g—1)/(t+1).
Then for each ¢, 4;x was determined using
Arg1=Aix(q—K) (s+i1=k) (1—=F)/ (g— t+k+ 1) (s+-+1) (k1+1),
up to t=g. Coefficients with ¢>¢ of the form A 1,1, 4442,2 Were generated from 44,0 by the following formula:
© A, gt gty =44, (bmt-) 29— 1) s+ 141)/ (sH1— g+ 1) ((—g+1),

with % advanced in steps from 0 to ¢. The potential energy integral U ; could then be calculated from the table of
A4, by summing over K, multiplying by (—«)° for each value of x and ¢, and finally summing over 4.



