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Fock has claimed that his "harmonic" coordinate systems in
curved space flattening out toward spatial infinity are uniquely
determined but for an arbitrary inhomogeneous Lorentz transfor-
mation. If this is so, introduction of Pock s harmonic coordinate
conditions would provide a natural way of introducing a Lorentz
subgroup of the general coordinate transformation group of Ein-
stein's gravitational theory, and of defining a Minkowski metric
besides the curved-space metric. This would open the way to close
relations between Einstein's gravitational theory on the one hand,
and Lorentz-covariant quantum Geld theory on the other hand.
A general proof of the correctness of Fock's claim, for universes

satisfying his boundary conditions, has never been given rigorously.
Here we extend an earlier proof of this uniqueness for the Schwarz-
schild Geld around a single gravitational singularity, to the case
of the static and spherically symmetric Geld generated in some
coordinate system by an extended static and spherical distribution
of energy and of stresses. The uniqueness (but for the zero point
of time and for a spatial rotation) of the harmonic coordinate
system, in which this Geld is spherical and at rest around the spatial
origin, is here guaranteed by the condition that there must be a
one-to-one correspondence between the points x, y, s, t of the
harmonic coordinate system and the points in physical space.

1. FOCK'S HARMONIC CONDITIONS

ATELY, there has been an increased interest in
~ - ~ Fock's claim that his "harmonic" coordinate
systems form a Lorentz manifold. ' One reason for this is
that the existence of a unique Minkowski tensor in
curved space would greatly simplify the unification of
Einstein s gravitational theory with Lorentz-covariant
quantum 6eld theory. '

Fock's conditions for what he calls a harmonic co-
ordinate system are, besides the validity of the De
Donder coordinate condition

a number of boundary conditions imposed upon the
6eld as well as on the coordinate systems singled out
to describe the field. Crudely speaking, ' these conditions
amount to the following:

(A) Space shall flatten out sufficiently toward spatial
infinity so that there exist world coordinate systems
in which, at large distances r, the metric g„„or A&"

approximates the Minkowski metric y„, to within a
difference of the order of 1/r:

(8) Harmonic coordinate systems shall be such that
Kqs. (2) are actually satisfied in them.

(C) If the O(1/r) terms in (2) include gravitational
waves, then incomieg waves shall be absent from them. ' 4

* Supported by the National Science Foundation.
f Now at Lawrence Radiation Laboratory, University of

California, Livermore, California.
' V. Fock, The Tlzeory of Space Time aszd Gravitation (Pergamon

Press, New York, $959), pp. 342—352.' J. C. Garrison, Ph.D. thesis, Purdue University, 1961 (un-
published), available as part of a National Science Foundation
report on "The Interaction Picture in Gravitational Theory and
Some Related Topics" (Purdue University, September 1961).

3 For details, see reference 1.
4 In a flat space with iViinkowskian metric, the "radiation condi-

tion" (C) requires little explanation. Since Fock has "proved"his
conjecture so far only in the approximation in which the metric
appearing in Eq. (7) is Minicowslrian as in Eq. (12), we here shall

2. TRANSFORMATIONS TO AND BETWEEN
HARMONIC COORDINATE SYSTEMS

Suppose that an arbitrary coordinate system x'&' is

given, ' and that we want to transform to a harmonic
coordinate system x . The new 0 & is expressed in terms
of the old g&" by

where

g~e= f '(itx~/r)x&') (itx~/rfx') 07"

J=det(&x /clx&'). (4)

We must satisfy the De Donder condition,

0= JA e
tt
——A" s (r)x /8x&')+I&" (8'x /f)x "ctx'), (5)

as well as a number of boundary conditions. Therefore,
we must solve Eq. (5), and then select the solutions
which will satisfy the boundary conditions.

not venture any guess about the way in which this condition
should be interpreted in a nonfat space, and we shall hold it as
Fock's claim that some interpretation is possible that makes his
"theorem" valid.

5 We shall always use the word "harmonic" in Fock's sense,
denoting the validity not only of Eq. (1), but also of conditions
(a)-(I').

6 From here on, we shall abbreviate x'&' as x&', etc.

(D) The metric field shall everywhere in physical
space be finite and differentiable.

(E) The metrical determinant g shall not vanish, and

gpp shall have the correct sign to make the time direc-
tion timelike.

(F ) One set of values of the coordinates in a harmonic
coordinate system shall never determine more than
one single point in space-time, and, conversely, there
shall not be more than one set of harmonic coordinate
values corresponding to a single point in space-time.

To this seemingly trivial condition (F), so far, little
attention has been given. As we shall show below for a
number of special cases, it is a great help in keeping
the harmonic' coordinate system unique except for
possible inhomogeneous Lorentz transformations.
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If the x&' coordinates were already harmonic them-
selves, then g&",s =0, and Eq. (5) simpliles to

transforms the metrical tensor g~ ~ into g p in such a
way that

gr" (8'x"/r)x7'r)x') =0 (6)
(10)

for the "harmonic" transformation from one harmonic
coordinate system x&' to a new harmonic coordinate
system x .

3. DO HARMONIC COORDINATE TRANSFORMATIONS
FORM A GROUPS

Let Zi, Z~, , Z„, - ~ be harmonic coordinate
systems. If the transformations Zi —+ Z2, -, Z~ —+ Z~,

, Z —+ Z„, are to form a group, we must de6ne
these transforrnations in such a form that also the "pro-
duct" of the transformations Zl„. —+ Z~ and 2„„~2„ is
defined, even if Z~/Z . For this purpose, it is usual'
to give the transformations as relations between the
old and the new coordinates without reference to the
coordinate system on which they are to be applied, so
that the product of x =I"(x") and x"=T (x''r) is
the transformations (Tt) given by x»= T(t'(rx")).

Let us see what conclusions we can draw, if the ha, r-

monic coordinate transformations T m ould form a group.
If T transforms every' (primed) harmonic coordina, te
system into another (unprimed) harmonic one, then
Eq. (6) requires that

gi' ' (r)'T"/Bx" Bx' ) =0,

where g&'~' represents the metric in the arbitrary initial
harmonic coordinate system on which T is applied.
Since the g&" are quite different from one harmonic
coordinate system to the next, the condition (7) can
be satished for arbitrary initial harmonic coordinate
systems only if

(r)'T~/r)x&'r)x') =0,

that is, if the transformations T are linear transforma-
tions:

x =T.(x'&')=A x&'+B

with constant A~~ and B". The transformation (9)

' See V. Fock, reference I, p. 34'I, Eq. (93.09). We here follow
Pock in not investigating the more general group theoretical
question whether it is possible to define a harmonic transformation
group in which the transformation functions, x = T (x'), are
functions of the g'„„(x') field in space-time. The reason for this is
that primarily we are interested merely in attempts at formulating
"harmonic" coordinate conditions that allow only inhomogeneous
Lorentz transformations. The latter certainly can be written in a
form (x =A~&, x"'+8 with A"), y"'&'A&„=y &) that does not
consider the transformation functions to be functionals of some
metric field. Therefore, we are not interested in the question, in
case the harmonic coordinate transformations defined by us do
not form the inhomogeneous Lorentz group, whether one could
perhaps find a set of g„,-field dependent transformations between
harmonic coordinate systems that would form some other group.' If T would transform not all but just some particular harmonic
coordinate systems into other harmonic coordinate systems, one
could not tell whether such a transformation T should be regarded
a harmonic transformation or not, and it would be impossible to
define unambiguously "the group of all harmonic transformatio»s
and of nothing else."

Since the condition (2) is to be satisfied by g~ s. as
well as by g ti, it follows from (10) that

4. THE BASIC IDEA UNDERLYING FOCK'S CLAIM

Consider the transformation 1 of the preceding
section, from some given harmonic coordinate system
to an arbitrary one. Then, 1is to satisfy Pock's bound-
ary conditions in addition to the differential equation
(/).

The latter equation shows similarity to its Bat-space
equivalent,

~'T»= y&" (r)'T~/—r)x&'r)x') =0 (12)

In the right-hand member of this equation, no delta
functions can be allowed. "Therefore, the solutions of
Eq. (12) can all be written as the sum of a linear trans-
formation (9) and a superposition of waves that run
across space, coming in on one side, and going out on
the other side. (There will be no waves originating from
interior points. ) Since, however, condition (C) prevents
the waves from coming in," they cannot go out either,
and the only solution left is the linear transformation
(9), which had to be an inhomogeneous Lorentz trans-

P. G. Bergmann, Phys. Rev. 124, 274 (1961)."Such singularities in the right-hand member of (12)would lead
to singularities in (BT~/sx&') = lsx /Bg&'), which would transform
the metrical tensor into an expression that would no longer satisfy
I'ock's condition, (D), of being everywhere finite.

"Condition (C) prevents gravitational waves from coming in.
This forbids incoming waves in the T for the following reason.
Suppose T ~ contained a term representing such a wave. Then,
there would be a similar wave in the transformation coeAicient
A „=—BT /Bx&', and consequently also in the transformed metric
g„, obtained by tensor transformation from the initial metric
g„p which was practically Minkowskian in the approximation
considered in Eq. (12). The wave thus caused in g„, violates
condition (C).

By this condition, the linear transformations (9) are
con6ned to inhomogeneous Lorentz transformations.
We thus have proved that, if the harmonic coordinate
transformations form a grouP, they must form the in
homogeneous Lorentz grouP

Fock' claims that the set of boundary conditions
(A)—(F) confines harmonic coordinate systems to a
manifold of coordinate systems which all are related to
each other by inhomogeneous Lorentz transformations
only. If he is right, then the harmonic coordinate trans-
formations between systems satisfying his conditions
do form the inhomogeneous Lorentz group. But, if one
can find one exception to Foci'. s claim )and if it is im-
possible to amend Fock's conditions (A)—(F) in some
way to exclude this exception], then the harmonic
transforms, tions do not form (and ca,nnot be redefined
so as to form) any group at all. '
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formation on account of the consequence (10) of condi-
tion (A).

This argument does not rigorously prove Fock's
claim, because the difference between the differential
equations (7) and (12) has not been taken into account.
Even apart from waves, we have to verify that the
original equation (7), like its simplification (12), does
not allow static solutions different from (9) in absence
of singularities in its right-hand member, when Fock s
conditions are imposed.

5. HARMONIC COORDINATES IN THE FIELD OF A
NONACCELERATED SPHERICAL SOURCE

In a given matter field, we define the "sources" of
gravity as the tensor

tern x', y', s' to polar coordinates by
z'= r' sing' cosy', y'=r' sin8' sing', s'=r' cosg', (15)

where it is possible that r' is restricted to values r'&ro'
or r') re' for satisfying condition (E). We shall assume
that the initial coordinate system was one in which the
sources were static and spherical around the origin.
Then, after the transformation (15), the source com-
ponents 5, i, 5, „, and Se s =S„„/sin'8' will depend
merely on r'.

We now want to transform to a harmonic coordinate
system x,y,s, t, in which the sources are still static and
spherical around the origin. So, if this time we introduce
polar coordinates by

x=r sing cosp, y=r sing sing, s=r cosg, (16)

so that Einstein's equations take the simple form

(14)

then we want 5„,5,„, and Ssi ——5«/sin'8 to be functions
()f r only.

The coordinate transformation which maintains this
spherical symmetry and keeps the field static, and which
does not alter the angles at r= ~, is

We want to consider here the special case of sources
which by a Lorentz transformation can be transformed
into a static and spherically symmetric 5„„field. We
want to show that the harmonic coordinate system in
which this field is static and spherical around the origin
is uniquely" determined, without ambiguity in the
radial coordinate to be used.

There is then automatically a corresponding unique-
ness (but for an inhomogeneous Lorentz transforma-
tion) in the systems in which the sources are moving
with an arbitrary constant velocity. This is seen as
follows.

Let Z" and Z"' be two harmonic coordinate systems
at rest with respect to each other, and in which all
sources would have the same constant velocity. Suppose
the spatial transformation from Z"' to Z" were not an
inhomogeneous Lorentz transformation (that is, not
just a translation and rotation of the axes). In that case,
there must exist a corresponding lack of uniqueness in
the harmonic coordinate systems in which the sources
are at rest. This is immediately seen by considering the
Lorentz transformations from Z'" and Z" to coordinate
systems Z' and Z in which the sources are at rest. The
transformation from Z' to Z cannot be a Lorentz
transformation, because it is the product of the three
transformations 2'~Z"', Z"' —+ Z", and 2"~ Z, of
which two are Lorentz transformations, but the one in
the middle was not.

Therefore, it is not necessary to investigate separately
the case in which the nonaccelerated sources are moving
together at a fixed velocity, and we shall consider here
merely the static case.

For that case, let us transform from some initially
given (and possibly not yet. harmonic) coordinate sys-

'~ Except for the trivial possibilities of a shift of the zero point
of time, or of a spatial rotation of the coordinate axes around the
origin.

t=at'+b, r=r(r'). q&=y', g=g'. (17)

We could, of course, obtain a more general solution by
allowing a rotation of the coordinate axes (which at
r= ~ would change the angles to the axes), but this
possibility is so trivial that we shall not further discuss
it. By choosing already t' in such a way as to make

gi i =xi i +0 (1/r), we can make a= 1, so that we might
as well replace t=at'+fi by t= t', as the possibility of a
shift of the zero point of time again is too trivial to
discuss.

Therefore, we introduce our harmonic coordinate
system by merely introducing a new radial coordinate
r=r(r'). The question of the uniqueness (except for
trivial transformations that belong to the inhomogene-
ous Lorentz group anyhow) thus reduces to the question
of the uniqueness of the harmonic radial coordinate r(r').

For our nonharmonic initial choice of radial coordi-
nate r', we shall from here on choose the SchwarzschiM
radial coordinate p, which is defined as (I/2ir) )& the cir-
cumference of a circle around the origin. The square of
the invariant line element is then

ds'= U'dp +p'(d8'+sin'8 dip') w'c'dt' (l8)—
The dependence of U and of m on p depends on the
spherical distribution of sources 5„„.We shall not specify
it here, but we shall assume that U and w are neither
zero nor infinite for any allowable value of p.

We now seek transformations from the ScharzschiM
coordinate system p, &, p to a harmonic coordinate sys-
tem x,y, z by means of Eqs. (16)—(17).This transforma-
tion has been discussed before. "It was found that the
functions u, z, and z in the new expression

dg2 —(Udp/dr)2dr' +ps (dgs+s jn28 d+2) i02csdts
(19)=Bsdrl+ 5&(dgs+ sin& g d ps) —w&c&d P

"F.J. Belinfsnte, Phys. Rev. 98, 793 (1955).
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would have to satisfy the condition"

d (zt
—'v'to)/dr = 2rlio (20)

for ensuring the validity of Eq. (1) in the xyct system.
With u= Udp/dr and with a= p, this gives, after rnulti-
plication by dr/dp, the condition

harmonic coordinates x, y, s, in violation of condition
(P) 16

Therefore, the only possibility left for a harmonic
coordinate system x, y, s in which the Schwarzschild
exterior field is static and spherically symmetric around
the origin, is given by Eqs. (16), (17), and (22) with

d m dr-
p

dp U dp
(21)

Cg ——0 and C2——I, (23)

or is obtained from this by a trivial spatial rotation, or
shift of the zero point of time.

imposed upon the function r(p). The problem of unique-
ness for the harmonic coordinate system in the static
and spherically symmetric case now reduces to the
uniqueness of the solution of Eq. (21) for r = r(p) on
account of the conditions imposed. We shall investigate
this uniqueness first for some specific cases for which
the functions U(p) ancl u~(p) are known, and then more
in general.

6. EXTERIOR SCHWARZSCHILD FIELD

For Schwa. rzschild's exterior solution t that is, the
static and spherically symmetric solution of Eq. (14)
for 5„„=0j,it: has been found that Fq. (21) is solved
by'"'

r =Ci(1+L (p—trt)/2toz jlnL(p —2nz)/p]} +C2(p —ttz). (22)

Since p for r ~ ~ asymptotically measures radial dis-
tances correctly where space flattens out, we must
have C6 ——1 in Eq. (22) because of condition (8).

In the past, " we rejected the term with the factor
C~ because it would make r become —~ for p ~ 2m.
LSince in this case —gw

——w'=1 —2ztz/p, values p&2m
are not allowed by condition (E), but p —+ 2m+0 is
possible. f

However, this objection against the term with C&

is superfluous, as we have a much stronger objection
against this term on account o[ our condition (F). For,
if C~ were positive, r would become negative already
for values of p larger than 2m, and one could find for p
pairs of values p~ and p~ such that p~& p2&2m and that
re —ri, if rt r(pt) and r6 —r(p2)——. Then, for——e, =m —H, —
and pa=ir+6ot, the two different points in physical
space with Schwarzschild coordinates p~, 0~, p; and
p2, II2, y2 would by (16) have the same set of harmonic
coordinates x, y, s, in violation of condition (P)."6

If, on the other hand, C~ were negative, then there
would exist a point with p=p, at which r(p) would
reach a minimum value. We then could find pairs of
values, p~& p and p2(p, such that ri ——r~. This time,
the diferent points p~, 0~, q ~ and p2, 8~, p2 with ej ——02

and q~
——q ~ would be represented by the same sets of

"Reference 13, Eq. (22).
'"' Compare Eqs. (30) and (34) of reference 13.
' The fact that we can invent functions r(p} that become nega-

tive below some point p =p„, or that have a minimum at some point
p= p, ls not a physical reason that would allow us to exclude
points with p &p„or with p &pm from physical space.

7. FIELD OF AN ELECTROSTATIC POINT CHARGE

io'= 1/U'=1 2m/p+—rP/p' (24)

where ttz=GM/c' and where tt'=Ge'/c4. We now must
distinguish two cases, depending on the charge-to-mass
ratio 6/M.

Small Charge e &MQG

A Swiss-cheese hole is lef t if g' &nz', that is, if e' &GM'.
The "radius" of the hole is now given by

where
pe=m+5, (25)

(26)

The general solution from (21) for the De Donder radial
coordinate is now found to be

p
—m p —nz —6

r=C1 1+ ln +Ca(p —ttz), (27)
p —m+8

where C~=1 and C~=O for the same reasons as before,
if r is to be the harmonic radial coordinate for which the
conditions (8) and (F) are valid. This simplifies (27) to

as in absence of charge. Since we must require

"See, for instance, H. Acyl, Space-I'i me-Matter (Dover
Publications, New York, 1950), bottom of pp. 252 and 256 to-
gether with top of p. 26I; or W. Pauli, Theory of Relatieity (Perga
mon Press, New York, 1958), p. I'l1, E&q. (435), in which z is
smaller by a factor Sm than it is in Eq. (409) on p. 163.

The case considered in the previous section was
special because of the occurrence of a "Swiss cheese"
hole (world tube) in space, " that is, a region p &2ttz (or
r &nz) which was considered unphysical because

~ —F66
——w'=1 —(2m/p) would become negative in it.

In reality, such holes may never occur, since the pres-
ence of the material sources 5„„in the gravitational
equations (14) has a tendency to fill up these holes.

For instance, if the S„„field is due to the energy and
stress tensor of an electrostatic 6eld with potential
V= 6/p, then the solution of Einstein's and Maxwell's
equations can be expressed in SchwarzschiM coordinates
with the square of the invariant line element given by
Eq. (18) with"
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p&ps =m+8, the harmonic radius r this time is re- we find, instead of (2/),
stricted by

r&S(&0). (29) p 8$
r=C& ].— arc tan~ +Cz(p —m), (40)

For ending the metric in the harmonic coordinate system, we
use Eqs. (19) and (24) and obtain

ds'= U dr'+(r+m)'(dg'+sin 8 d&p') —w'c' dt ' --(30)
where, on account of (24) with (26),

(r2 —P)m'=1 /U2= 1 ——
p p' (r+m)' (31)

Thence,

r+m '
ds2= (dx2+dy2+dz2)

r
1 1+ —— (xdx+ydy+zdz)z

r2 —62 r2

(r2 g2)
z'dt' (3,2).

(r+w)2

This gives for the metric in the harmonic xyzt system

gk3 1+. ~kl+ 9 2 2 P

m flS
Z„=— 1+- 1—;(—g ~= 1+-r- r2 ' r

(33)

('+=)'
$2

1 ——
f2

g2 &k&l
gkl gkl

r"

where the meaning of the asterisk following the arc tan
symbol is the following.

In principle, one could use in (40) any branch of the
arc tan function. These branches diGer by constant
(positive or negative) multiples of zr from the conven-
tional branch, that is, the one bounded between —zr/2

and +~/2. We notice at once that use of a different
branch merely alters the value of C& by a multiple of
7rCt/A.

Therefore, for p&m we can without loss of generality
pick the conventional branch of the arc tan function
[between 0 and a/2 for positive (p —m) in Eq. (40)j.
Then, condition (8) will provide as in the previous
case that C2=1.

The derivative of Eq. (40) is

dr p
—tn—=C~ ——arc tan~

dp (p
—m)'+t1'-' A p m—+C.. (41)

For a, solution of Eq. (21), that is, in our case, of

These g&" (not the ones computed in polar coordinates) satisfy
Eq. (1). We can use them to illustrate the use of Eq. {6).Trans-
formations from the above harmonic xy"t system to a new co-
ordinate system x'y's'~' that, too, satisfies the De Donder condition
(1), will have to satisfy the differential equations (6) with the
xy.t and x'y'z't' interchanged. By (33), this is

~2 a2 (1+~~i//r)4 a2-
V2 ———,— 'x '=0. (34)r' ar' L'1 —t'z/r'g c'at'

For keeping a static and spherically symmetric solution, we
want to solve (34), in accordance with Eqs. (15)—(17), by

x'=x'=—ct, xk'= f(r)xk. (35)

Then, Eq. (34) yields

[f"+(2/r) f'][1—(o'/r') ]+(2/r) f'= 0. (36)

dr—
l [(p—m)'+ZP] —= 2r,

dp~ dp
(42)

it is necessary that dr/dp is continuous and differenti-
able for all positive values of p, including the point
p =m. At this point, the conventional branch of
arc tan[A/(p —m)$ has a discontinuity. To enforce
continuity of dr/dp at this point, we have to go over
from the conventional branch (which becomes negative
for p&sn) to the branch which lies a distance w higher.
Therefore, we define

Solving this equation for f(r), and then putting r'= f(r)r, we
obtain

arc tan*x=are tanx+ zr for x&0,
are tanx for x&0,

(43)

rr'= CI 1+—ln '+C2r.
26 r+5 (37)

This agrees with the right-hand member of (27) with (28) substi-
tuted Condition. s (8) and (F) then yield again Cs=1 and C&=0,
if x'y's9' is to be a harmonic system. This gives

1 r7

showing the uniqueness of this system.

(38)

Large Charge e&MQG

The situation is completely, changed for g'-') m-", that
is, if e') GM', as it. is for all charged elementary
particles. In this case, —g00=—-xf- never becomes zero, and

p can take all possible values down to p=0. Putting in
tlais case

where arc tan represents the conventional branch
between —zr/2 and +sr/2, so that 0&are tan*x&w.
This definition does not alter our convention for p) m,
which led to C~——1.

As before, we shall use condition (F) for fixing the
value of C~, but this time we shall use the second half
of this condition. We notice that for p=0 there is only
one single point in physical space, independent of the
values of 0 or q . Therefore, we must have r =0 at p= 0,
for otherwise Eqs. (16) would lead to an entire sphere
of points x, y, s all corresponding to the one point at
p=. 0, in violation of the second half of condition (I').
I'or p:=- 0, Kq. (40) with (43) now gives

6=—+ (rf'-' —m'-'):, (39) 0= r(0) =- Ct(1+ (m/6) [7r arc tan(A/m)g} —Cz—m. (44)
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8. ARBITRARY EXTENDED STATIC
SPHERICAL SOURCE

&Ve consider here the field generated by arbitrary
static, spherically symmetric sources S„,. Ke only will

assume that the sources prevent the occurrence of a
"Swiss-cheese hole" in space-time, so that the Schwarz-
schild radial coordinate occurring in the expression (18)
for ds' can take all positive values down to p=0.

The fields U and w in (18) are solutions of Einstein's
gravitational equations (14), which in Schwarzschild
coordinates take the explicit form'

U2
——~DO=

RID
(46-0)

p U' U' m' d——5„+—Spp —— + = (ln Uw),
2 iv' U m dp

(46-1)

U' U' 5„„ w' U' 1 d pw)—(I+&ss) =—1+—— + =—ln —
~.

p p sin'tI w U p dp U 3
(46-2)

%e assume that the left-hand members are free of
singularities for p&0. Therefore, ln(Uw), ln(pw/U),
and ln(p'w'/U) will be finite for finite nonvanishing p,
so that V, w, and m' will be neither zero nor infinite. By
Eqs. (46-1) and (46-2), also U'/U will stay finite for
finite nonvanishing p. If, therefore, we rewrite Eq.
(21) as

then
(p'w/ U) d'r/d p'+Fdr/dp 2Uwr =0—(47)

F= (2pw/U)+(p'w'/U) (p'w U'/U') (48—)

will stay finite for finite nonvanishing p. Consequently,

"See Eqs. (27) and (34) of reference 13.

Thence, with Cz ——1, Eq. (40) becomes

6 —(p —m) arc tan*LA/(p —m) j
p m+

zr+ (6/m) —arc tan(6/m)

L& (p —m) j. (45)

(Notice that we use arc tan" in the nuinera, tor, but
arc tan in the denominator. )

The complication of this formula makes it hard to
express p explicitly in terms of r, and, therefore, to give
explicit expressions for ztz, v'. and w' in Eq. (19) in
terms of r, or for the A"" of the harmonic coordinate
system in terms of the coordinates x, y, s. In any case,
the expression (45) is unique, which is all we wanted to
show here.

That the expression (45) is indeed a positive, mono-
tonic increasing function of p, so that it cannot take
twice the same value for diAerent points p, is proved in

the next section.

r(p) =Cifi(p)+Csf (p).
Therefore, the condition (F) tells us that

0= Cifr(0)+Csfz(0).

(50)

Here, fi(0) and fs(0) cannot both vanish, because
Eq. (47) must have solutions (50) which do not vanish
at p=O. Therefore, Eq. (51) determines the ratio Ci/C. ,

and we obtain

with
r=Cf(p),

f(p) = fr(o)f ('p) —fs(0)ft(p).

(52)

(53)

%e shall now show that r is a monotonic function of
p. Because of the condition (8),

dr/dp —+ 1 for p —+ ~,

so that we must reject the solution C&——C& ——0 that would
be characterized by' the initial conditions r(0) = (dr/dp)&
=0 at p=0. So, (dr/dp)p/0.

Now, consider the value of dr/dp from p=0 on up.
If dr/dp at first is positive, we find for small positive

p positive values of r. Then, (49) tells us that the only
local extremum of r possible is a local minimum. " In
other words, if r starts to rise, it cannot reach a maximum

for finite p.
Similarly, if dr/dp had been negative to start with,

r wouM have become negative, and would have been
forced to keep decreasing for increasing p, because in
this case (49) would have made any minimum of r(p)
impossible.

In either case, r is a monotonic function of p, and
therefore will not twice take the same value for ditrerent
values of p. Points with dr/dp=0 will by (49) with

r(0) =0 never occur.
We now use the constant C left in (52) for satisfying

the condition (54):

I=(«/dp)-=~f ( ).
Thence,

ft(0)fz( )—fs(0)fi( )r=—
fi(o)f '(")—fz(0)fi'(~)

This determi rI,es the $zarmoei c radial coordi mate r
zvuquely. It is easily verified that this result is not al-

"Maxima oI r at sharp peaks oi the r(p) curve with dr/dpAO
are impossible, because dr jdp must be continuous for being dif-
ferentiable as in Eq. (21).

Eq. (4/) permits, for finite nonvanishing p,

dr/dp=0 for d'r/dp'= (2U'/p')r only. (49)

As we assume that there is a single physical point
with p= 0, the second half of condition (F) tells us again,
as in the large-charge case, that the harmonic radial
coordinate r has to vanish at p=0.

The general solution of the linear homogeneous
second-order differential equation (47) will be of the
form
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tered, if the special solutions f~(p) and f2(p) of Eq. (21)
are replaced by any two independent linear combina-
tions of them.

In practice, we may expect that for large values of p
the solutions will asymptotically become rather similar
to the solutions found in Eq. (22) in the ahsence of
sources 5„„that reach as far as a Coulomb field does,
or to the solutions found in Eqs. (27) or (40), if a
Coulomb field is included in the source. In the case
without Swiss-cheese holes in space, the particular form
of the actual solutions of Eq. (21) or (47) did not have
to be used for proving the uniqueness of the harmonic
radial coordinate.

In the case, however, of a field with excluded positive
values of p, we cannot use Eq. (51), as p= 0 is forbidden,
and we would have to investigate whether there is only
one ratio C~)C2 in (50), for which r(p) will stay positive
for all allowed values of p. This case is in reality a rather
hypothetical one, and therefore we have not considered
it any further than in the extreme case treated in Sec. 6,

which is often used as a model for the field around a sun
of which the radius is negligible.

9. CONCLUSION

The examples discussed by us in Secs. 5—8 show the
importance of the condition (F) that coordinate trans-
formations shall be one-to-one correspondences between
the old and the new coordinates. Without this condition,
Fock's claim would be violated already in the static
spherically symmetric case.

WAh the condition (F) imposed, we have not been
able to find a case violating Pock's claim. This increases
our hope that Fock's claim may be correct, as we would
like to believe, because of the help which Fock's
theorem would provide in establishing a relation be-
tween Einstein's gravitational field theory and I orentz-
covariant quantum field theory. '-

However, so far a rigorous proof of Fock's theorem or
conjecture is still lacking, so that further investigations
about its validity or invalidity remain desirable.
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