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Quasi-Classical Theory of the Spinning Electron*
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We derive a modified Hamilton-Jacobi theory for a classical spinning dipole and show that this classical
theory can be put in a form almost identical with the Pauli spin theory. We quantize this theory by requiring
that a classical spinor "wave function" be continuous and single-valued, and that it satisfy the usual energy
eigenvalue equation. In this manner we deduce the correct energy levels for a hydrogen atom in an external
magnetic field. We derive the integral kernel for the Pauli equation from this classical model and discuss the
properties of our spinor solutions under canonical transformation. We exhibit the charge-conjugate solution
to the classical spin equation.

I. INTRODUCTION

HIS article is the third in a series' having a two-
fold aim. In the first place we wish to show that

classical mechanics, when formulated properly, may be
used to exhibit most of the qualitative features of non-
relativistic quantum theory; and secondly, that this
classical theory is useful in finding eigenvalues and
eigenfunctions which approximate, in the sense of the
WKB approximation, the eigenvalues and eigen-
functions found in the Schrodinger or Pauli theories.

In the initial article of this series we discussed the
early work of Van Vleck who first showed how the wave
functions of the WKB approximation to the Schrodinger
theory could be determined from the solutions of the
classical Hamilton-Jacobi theory.

in the present article we find that the same tech-
niques are applicable to the problem of the spinning
electron.

We assume a classical magnetic dipole as our model
for the spinning electron, and show that a generalized
Hamilton-Jacobi theory of the classical equations of
motion of the dipole may be written in a form analogous
to the Pauli spin equation.

When we demand that our classical spinor "wave
function" satisfy an eigenvalue equation, and that it
be continuous and single-valued, we find for the
hydrogen atom in a uniform magnetic field tha, t the
quasi-classical theory makes the same predictions for
the energy and angular momentum eigenvalues as does
the usual Pauli theory.

We also formulate a quasi-classical "sum over. paths"
transformation theory which corresponds to the one
that Feynman' developed for the Pauli theory. How-
ever, unlike Feynman's kernel, our kernel is derived
from a specific classical spin theory, in the same way
that the kernel is derived for the Schrodinger equation.

We show that our classical spin theory is invariant
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under canonical transformations and derive the trans-
formation law for the spinor solutions to the classical
Pauli equation. Finally we exhibit the charge-conjugate
solution to our classical spin equa. tion.

II, CLASSICAL THEORY OF THE SPINNING DIPOLE

As a preliminary to our discussion of the quasi-
classical theory of the spinning electron we shall first
describe the nonrelativistic equations of motion of a
classical spinning electron, a magnetic dipole of negative
charge.

The equations of motion of the dipole in the labora-
tory frame of reference are

ds/dt =—(e/tic) s &(B,

where s is the spin angular momentum of the dipole,
B the external magnetic field, and ti the mass of the
electron.

In this classical description we ignore for the moment
the translational motion of the charge. We shall dis-
regard other intrinsic characteristics of the electron
such as size and internal forces of cohesion. We assume
only that the electron, as a point particle, has associated
with it a direction given by the spin vector, s, which
can precess in a magnetic field, but whose absolute
value remains fixed.

Kramers' has shown that the above equations may
be placed in Hamiltonian form. Since ~s~ is constant
there are only two degrees of freedom in the problem.
These may be defined as the canonical variables,

$=s„—a&= —tan-'(s. /s„).

The spin coordinate co is the azimuthal angle of the spin
orientation as measured from the y axis in the laboratory
frame of reference. The canonically conjugate mo-
mentum variable $ is the component of the spin vector
in the s direction. Equations (1) are equivalent to the
Hamilton equations

d ( re)/dt = BH,n/r)—], d (/dt = BH„/8 ( &v), (3)— —

3H. A. Kramers, Qguntgm iVechunjcs (North-Holland Pub-
lishing Company, Amsterdam, 1957), p. 233.
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with the appropriate spin Hamiltonian,

e
H,„=—L(s'—P)&(B,sin~+B„corn)+$B,] . (4)

pC

The equations of motion may be extended to include
the fact that s is a constant of the motion by introducing
a cyclic variable conjugate to s, the angle z.4 p is one
of the Euler angles used in the description of rigid body
motions: It is the azimuthal angle in the frame of
reference of the dipole. The equations of motion for
these new variables are

ds/dt = 8',p/—8x =0, dx/dt= 8H,p/8s. (5)

The equation for dg/dt in (5) provides no additional
information; y has been introduced to complete our
equations of motion and to permit us to formulate the
theory of the spinning electron so that its Lagrangian
vanishes. By definition the spin Lagrangian is

d( —a)) dx 8H,p
L,p H,p+——$ —+s—= H,p+$-

Ct Ck
"

as

BII,p
+s =0. (6)

The last result is a consequence of Eqs. (3) and (5) and
the fact that H,~ is a linear homogeneous function of s
and $. The appearance of a vanishing Lagrangian in the
classical theory in no way restricts the solutions of
Eq. (1).

However, since the classical action integral is at the
heart of the WEB approximation to the Schrodinger
equation, the above calculation shows that in the WEB
approximation one must adopt new methods for quan-
tizing the magnetic dipole. In the following paragraphs
we shall indicate a possible quantization procedure; in
fact one that is really implicit in the usual Pauli theory.

We now indicate how the equations of motion (1)
may be rewritten in terms of a two-component spinor.
We note that the vector s may be written as

s= /twas,
where

( cos(8'/2) expL-,'Z(x+a&)] )
ki sin(8'/2) e pLx-,'i (x—(u)])

The components of the vector e are given by the
Pauli spin matrices, and the new variable 8' is defined
as s cos8 = g. f is a spinor written in invariant form as
a function of the Euler angles. '

4 M. Schoenberg of the University of Sao Paulo, Brazil, intro-
duced this coordinate in his competitive thesis, Principios da
Mecanica, published in 1944 in Sao Paulo.

~ For a similar representation of a spinor in terms of Euler
angles, see H. Goldstein, Classical lVeclzarcics (Addison-Wesley
Press, Inc. , Reading, Massachusetts, 1959), p. fi6. Our repre-
sentation becomes identical with his if his angles f and @ are
replaced by our angles p and co, and his body and laboratory
frames are interchanged,

'I'he Lagrangian in terms of the spinor is

e 1 df dPt
L,r ———f mit'. B——f

2jmc 2i dt dt

Both L,„and 8j'L,~dt vanish by virtue of Eqs. (3).
The equations of motion may be deduced in character-
istic spinor form by varying P and Pt as independent
variables. In terms of the spinor f, the equations of
motion, (1), a,re

—= —(ze/2pc)$ eiP.
dt

ilia/dI =F!,pP, (12)

where E„ is the quantized energy of the dipole. For a
con~tant magnetic field along the s axis we find
E,p= &eIIB/2pc, while from Eq. (4) we have the
classical spin energy as E„=eBs,/Iic. Thus we see that
the requirement (12) leads to the quantization of the
spin in the s direction, '

s.—=$= wA/2. (13)

At first sight, the requirement (12) might be viewed
as a novel method of quantization, quite distinct from
the usual techniques of quantizing the angular mo-
mentum in quantum mechanics. Actually our method
of quantization is almost identical with the usu ~1

quantization procedure; for instead of focusing atten-
tion on the properties of the angular momentum
operators, we have made use of the solutions Lsuch as

of Eq. (8)] to the angular momentum operator

6 In our discussion we have shown how to quantize a classical
theory of the spinning dipole by introducing a two-component
spinor into the theory. It is clear, however, that a higher com-
ponent spinor could equally well have been introduced in place
of the two-component spinor. This would have led to modi6cations
in the form of the classical theory, and would have changed the'
spin eigenvalues in the quantized theory. We cannot pursue this
question any further in the preserit paper.

One can easily prove that these equations are
identical with Eq. (1). For the proof multiply (10) by
ate, take the complex conjugate equation, and add the
two equations. The resulting equation is (1).

If we multiply (10) by i', we find that

zMf/dI = (eI'z/21j, c)8 mP.

The constant 5 is Planck's constant (divided by 2zr),
but the motion of the dipole has in no way been quan-
tized, for we couM have multiplied the spinor by any
arbitrary constant. We have introduced 5 so that these
classical equations appear in a form long familiar in
quantum mechanics.

However, we shall "quantize" this classical theory
if only to indicate the argument which we shall follow
when we quantize the quasi-classical Pauli equation.

We require that the spinor f satisfy the eigenvalue
equation,
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equations. This is always possible when one describes
the classical spin motion of the dipole; for if the
translational motion can be ignored, the spin equations
of the quantum theory and the classical theory are
identical. Only the requirement (12), or an equivalent
eigenvalue equation, distinguishes the classical theory
from the quantum theory of the dipole.

equations,
H= 2@v' ~+H,p,

take the spatial gradient of (17), and find

BH,p
VH=y(Vv) v —eVQ+ —(VB) s+- Vf

pC B$

(17)

III. MODIFIED HAMILTON-JACOBI THEORY

Ke now consider the full motion of the classical dipole
as described by the following equations:

dv f' v ) e
p—= —

e~ E+—XB
~

——(VB) s,
dh 5 c J pc

BII,p+ V(u. (18)

The last two terms arise from the fact that the variables
$ and s& are field functions. We add (18) to (16a) and
after some manipulation find that

ds e—= ——sXB.
dt pc

8 p e ~ )B~
(14b) —

I I v A—-kV—~ I+VI —~+H I

a)k c ) &at )

Bg/8k+v V$= BH,y/Boo,

Bar/Bt+v V(o= —BH,p/8$,

——(VB) s, (16a)
p,c

(16b)

(16c)

where H„= (e/pc)s B.
Ke introduce the Hamiltonian of our system of

' In our future discussion we shall disregard the cyclic variable
z as defined by Eq. (5). It was introduced in the classical dipole
theory chiefly to indicate that the classical action of this theory
vanished. As this variable plays no role in our future discussions
we shall suppress it, but it may be readily introduced at any point
with very little change in formalism.

If the applied magnetic 6eld is constant, or purely
time-dependent, the translational motion of the electron
is independent of its state of rotation. However, we are
interested in the general problem when both B and E
are arbitrary, prescribed 6elds, functions of the space
and mme coordinates, and limited only by the require-
ment that the particle motions they produce should be
consistent with the nonrelativistic character of our
equations.

The classical Pauli equation is simply the Hamilton-
Jacobi theory of the coupled set of equations, (14), in
the configuration space of the translational motion.

The most direct method for 6nding this Hamilton-
Jacobi theory is to consider the variables v and s as
continuous field functions of the space and time co-
ordinates. Thus by dn/dt we mean

dn/dt=8n/Bt+(v V)n, (15)

where 0. is any function of q and t.
We now treat Kqs. (14) as field equations, introduce

the electromagnetic potentials A and P in the usual
manner, and rewrite the spin equations in their ca-
nonical form, Eq. (3).i' Equations (14) then appear as

Bpv eBA e
+V(pv) v=- +eV&+ tv (VA) —-(V'A). vj

dt c Bt c

+ (v V)
(

pv —-A —(Vcr
[

—V( pv —-A —pV~
)

v= 0.
c ) 5 c )

These equations may be satisfied as follows:

V (BS/Bt+ (8&v/W+H) =0,
and

pv —(e/c)A —Pico= VS,

(20)

(21)

where S is a scalar function of position that corresponds
to Hamilton's characteristic function (the classical
action) in an ordinary dynamical theory.

The first equation, (20), is satisfied if we choose S so
that

BS/Bt+ $8co/Bt+H =0. (22)

This choice of S is always possible and the demonstra-
tion follows the analogous proof in the usual Hamilton-
Jacobi theory. '

The second equation, (21), is a generalization of the
de6nition of momentum. We may rewrite this equation
in the more familiar form,

p= pv —(e/c)A= VS+(V(o. (23)

In the absence of coupling between translation and
rotation we have the usual theorem that the momentum
6eld may always be represented as the gradient of a
scalar function (the classical action). When the particle
possesses intrinsic angular momentum, we see that, in
general, the momentum 6eld can no longer be repre-
sented as curl-free as it is in classical dynamics. Indeed
the momentum 6eld is rotational, since

VXP= V&X V~. (24)

The decomposition of the momentum 6eld given in

See in this connection P. G. Bergmann, Basic Theories of
.Physics, Mechanics and Electrodynamk s (Prentice-Hall, Inc. ,
Englewood Cliffs, New Jersey, 1949), p. 45.
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(23) was first effected by Clebsch". in his t,reatment of
vorticity in Quid mechanics. However, unlike the
Clebsch decomposition, which describes rotational Qow

in a real Quid, the presence of "vorticity" in our theory
depends on the coupling between spin and translational
motion of the electron. Once the motions are decoupled
(constant or time-dependent fields), the momentum
field becomes irrotational again.

The motion of a spinning dipole is completely deter-
mined when solutions are known of the following three
equations:

We differentiate Eq. (25a) with respect to these
three constants e,;, and after some manipulation find
that

a(as a(v 1 a tas a(o
t

at &an; an; ta aq" &an; an;)

BS a(o e t ag d(o BH,s)
X +& +~' ~+ —+

aqua aql c J anj dt ap

BG) BHsp ——
i

=0. (26)
anj BM re jas a~ 1 t—+~—+—

~

VS+PV~+-A ey+H—.,=O,
at at, 2ji k C

(25a)

a a
t
as aa& 1 a a as a(o)

Bcv 1 ( aH„—+-ver
(

vs+(voi+-A ~= —— '. (25c) at Bqr &an, 'an ji aqua aq& an; an, i
at p, c & a(

The last two terms vanish wh en we make use of the

( e
t

BH,s last two equations of (25). We now differentiate Eq.—+-V$
~

Vs+/Vs&+-A ~=, (25b) (26) with respect to the spatial coordinates q' and find
at j k c i a~

Solutions of Eqs. (25) are equivalent in the Hamilton-
Jacobi sense to the ordinary differential equations, (14).
These three equations replace the single Hamilton-
Jacobi equation of classical mechanics. The two addi-
tional equations arise from the internal degrees of
freedom and the fact that me h ave constructed an
ensemble in the configuration spa.cc of the translational
motion.

IV EQUATION OF CONTINUITY FOR PARTICLES

/as ace c 1 a BS a(a
X~ +$ +-&" +—— +$..,)

a BS ace e
X — +g

- - +-~ s
~

=O.
aqj aqs aqua c j

If we define the matrix g, s as

a (as aco t+(
aq& &an, an)

' (28)

Since these equations, (25), describe an ensemble in
which the number of particles remains the same, our
Hamilton-Jacobi equations must define a law of con-
tinuity. Ke shall now derive this law.

It is not diKcult to show that, for the motion of a
single particle, the three functions S, &a; and $ appearing
in the partial differential equations, (25), admit solu-
tions which depend on five constants of the motion. A
simple analysis (carried out in Sec. VIII) based on the
Hamilton-Jacobi theory in the configuration space of
the coordinates q and ~, proves that this is the general
situation. We shall single out three of these five con-

stantss

of the motion and ignore the other two in the
calculations to follow. For arbitrary external fields it
is dificult to say which of the three constants might
be preferred, but for the case we treat, we find that
the only sensible constants are those associated with
the translational degrees of freedom. A necessary
requirement in the choice of these constants is that the
determinant

a (as BQJ

+6-
aq kans ani t

y . .ykj —a,k y. yis (29)

If we now multiply Eq. (27) by the inverse p", and
sum over i and j, we Gnd that

where

B44j a/i j
+PA s + =0

Bt Bgq Bgg,

1 as as) e
+$ +-&a ~.

j' aq' aq" c

(30)

If the determinant ()$;;~~=D is introduced, we observe
that Eq. (30) becomes

BD 8
-+ (Ds")= 0.

8t Bq'
(31)

then there always exists an inverse to this matrix for a
mell-defined mechanical problem and a propitious
choice of the constants n;. Call this inverse qV". It
satisfies the equation

not vanish. Equation (31) is a law of continuity in the configuration

Clebsch's theor d d I I amb, Hydr d
- space of the translational motion. This la w is not inde-

(Caiobridge University Press, New York, 1953), p. 248. Pendent of Eqs. (25): Its aPPearance reflects the fact
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that the Hamilton-Jacobi theory is an ensemble theory
which is structured so that the ensemble population
remains fixed.

V. CLASSICAL PAULI THEORY

In order to show that Eq. (34) is equivalent to the
four equations, (25) and (31), we rewrite the
Lagrangian, (27), in terms of the variables S, pp, t,
and D. The Lagrangian density becomes

+—s.B . (35)
pc

Variation of j'Zdktq with respect to the four inde-
pendent variables leads to the correct four equations,
(25) and (32).

Before proceeding to the quantization of this theory
we should like to brieRy comment on the fact that we
have introduced Planck's constant 5 into the classical
theory by giving the s component of the spin angular
momentum the maximum value h/2. It is a curiosity
of this classical theory that the coupling between the
spin and translational motion permits a "classical"
measurement of A.

One might for example determine IE by means of a
Stern-Gerlach experiment. The lateral spread of a beam
of silver atoms in an inhomogeneous magnetic field

may be used to measure the magnetic moment of the
electron, es,/pc, and this measurement would establish
the value of s, . Of course, on the basis of classical theory,
it would remain an unexplained mystery why only two
lines appeared on the photographic plate and not a
continuous smear of atoms. However great this mystery,
the experiment would still determine A, if the other
constants e, p, and c were known.

cos (8'/2) exp (ip)/2)
Re's

(ieie(8'/2) exp( e' j2))— (32)

where R=D'* and cosg'= $/(h/2) (we assume that the
s component of the spin angular momentum has a
maximum value h/2). S and &p are defined through
Eqs. (25).

Our task is to find that equation satisfied by the
spinor which is equivalent to the four equations, (25)
and (31). We may accomplish this most simply by
deriving the equation for f from a variational principle,
and then showing that the variation of the four variables
S, $, (d, and D in the same action integral leads to our
four equations.

As Lagrangian density fox our system of equations
we choose

ih BP Bgt 1 ( e—
~

—e2'ITePe+-APe)
2 Bt Bt 2@k C

BS 8(a 1 ( e
The four equations in (25) and (31) contain the four

variables S, $, (p, and D. We shall now show that these Bt Bt 2)(2( c
four equations may be written in a form similar to the
Pauli equation.

We introduce the two-component complex quantity
(a spinor with respect to the spin variables),

e ) eh
~ ikV' — e t — te

c I 2)c

The variation of the independent variable Pt results
in an equation similar in form to the Pauli equation,

8$ 1( e et'
ih—=—

~

—ihV'+ —A f egg+ e Bf-
at 2@k c ac

VQ~): V(~~)
dq. (34)

Our classical equation, (34), di6ers from the Pauli
equation only because of the presence of the final term.

It is of interest that the Pauli spin energy operator,
(eh/2I2c)» B, in Eq. (34), ha.s the correct value for the
magnetic moment of the electron. This value appears
because of the representation of the spinor in Eq. (32),
and the definition of the s component of the spin angular
momentum as $=-', h cos8'.

i hap/8t= H,pg =EQ. (36)

To illustrate the method of quantization we treat
the case of the hydrogen atom in a uniform magnetic
field B oriented along the s axis. The equations of motion
for the dipole, (3), may be integrated immediately to
yield

&
=const, (p = —(e/pc) 8t+(dp. (37)

We shall omit the phase angle coo as it plays no role
in our considerations.

Since the spin and translational motion are com-
pletely independent of each other for a constant rn.ag-
netic field, the function S satisfies the usual classical
Hamilton-Jacobi equation so that there exist solutions

VI. QUANTIZATION OF THE CLASSICAL
PAULI EQUATION

We may qua, ntize the above presented classical
theory by requiring that the classical wave function P
given by Eq. (32), be a continuous and single-valued
function of position. For stationary states we also
demand that f be an eigenfunction of the energy
operator, i.e., that P satisfy an equation of the form,
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of the form

S=—Eol+ pdq (3g)

H,p is defined by the right hand side of Eq. (34).
There are two possible solutions to (40),

E~=Eo+(ek/2yc)B,
E =Eo (ek/2pc)B—

(41)

If we compare the two possible values of the quan-
tized spin energy with the classical spin energy,
E,p=(e(/pc)B, we find that the requirement (39) has
led to the quantization of the z component of the spin
angular momentum, s,=—P= ~h/2.

The quantized energy Eo of the translational motion
is found by requiring that the wave function f be con-
tinuous and single-valued. Since the spin and center-of-
mass motion are decoupled in the example considered,
the results of paper I may be applied. It is easy to show

by the methods of the WXB approximation that the
energy of translation Eo, for moderate magnetic fields,
has the usual quantum theory values,

Eo= —(pe/25'm')+(meA/2pc)B

The total energy is then

Eo is the energy of a spinless charge in a magnetic held.
We now require that the wave function f satisfy the

eigenvalue equation,

i58$/Bt=EP=H, pg,

where the total energy E is the eigenvalue,

E=Eo+(Ae/2pc)Bo, . (40)

Eo is the energy of translation and r, is the Pauli spin
matrix,

that solutions to classical problems generate solutions
of the Schrodinger equation. "We should now like to
show that the same principle holds in the Pauli spin
theory.

We seek the kernel K which transforms a Pauli state
function from time to to time t,

f(q, t) = K(q, t; qo, to)f(qo, Io)dqo.

The kernel K must be a 2 by 2 matrix since P is a
spinor. When t=to, K should reduce to the delta
function, I 5(q—qo).

We first introduce another spinor P,

i sin(8'/2) exp(m/2)
p —gceslo

coe(p'/2) exp( —i/2))
(45)

which is the charge conjugate spinor with respect to
the spin variables 0' and co. This spinor describes a
dipole whose spin orientation is opposite to the spin
orientation given by P, i.e., PteP= —Pt~.

We now assume that the spin magnitude is small,
so that, in a erst approximation to the true motion,
we may neglect the 6nal term in the force law, (14a).
Under these circumstances both f and P satisfy the
same equation, (34). Since the translational motion is
decoupled from the spin motion, 5 represents the
classical action of a particle without spin and satisfies
the usual Hamilton-Jacobi equation,

8$/8t+(1/2p)('7$ (%)A)'—ey=0—

To construct the kernel K we seek solutions of this
equation of the form $=$(q', I; qo', to), where qo' gives
the position of the particle at the time t~. The proba-
bility amplitude R equals the square root of the Van
Vleck determinant,

pe4 ek
E~= — + B(ma1).

2A R 2pc

cos(8/2) exp(iru/2)

i sin(8'/2) exp( —ice/2)

e is the total quantum number and nz the magnetic
quantum number.

The two basic solutions from which the WEB
solutions to this particular problem are constructed are:

(46)
i sin(8'/2) exp(i~/2)

cos(8'/2) exp( ice/2)—R exp(iS/h+ia/2))
+

0 These spinors satisfy the same equation
43

42
The spinor parts of the wave functions P and g are &p

and g,

0

p exp(iS/ii e/2))—
VII. CLASSICAL KERNELS

dq/dt= —(ie/2pc)B e p,

d p/dt= —(ie/2pc)B ep. .

From the work of Pauli" we know that the proba-

sum over p~th~ fo~~~lat~o~ of nonrelati- ~ P~u~i, ~~~~~I ~ ~'s~ ~~ ~ IA~~~
'0 See I, Sec. III B.

vistic quantum mechanics one makes use of the fact Zurich, f957), 2nd ed. , p. 139.
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Ki ——

0) 0
(48)

with

bility amplitude, R, is a function of the time alone,
when we consider in6nitesimal displacements of the
particle.

If we examine the solutions P and P for infinitesimal
time intervals when the translational and spin motion
are decoupled, we find that both solutions satisfy the
Pauli equation, a linear differential equation. The
following matrices are also solutions of the Pauli
equation:

with

dq/dt= ax/ap, dy/dt= —ax/ail,
eke/dt —= BX/B&, d&/dt =BX/Bcd, (52)

We are interested in the transformation law for the
spinor wave function it. It proves somewhat awkward
to find this transformation law from the quasi-classical
theory presented in Secs. III—V. In those sections we
made use of the reduced configuration space of the
variables q', while for our present purposes it proves
more convenient to introduce the expanded configu-
ration space of the coordinate variables q' and ~.

In terms of these variables the canonical theory takes
its usual form. Hamilton's equations are

The sum K=Ki+K2 ——OR exp(iS/t'4) also satisfies the
Pauli equation. The spin matrix 4,

1( eq' e
X=—

I p—-A
/

—e4+-
2t& c ) tic

Xf(s' —P)&(B,cosco+B„since)+$8.$. (53)

~ ~ ~

~ ~

~ ~ ~ ~

~

~

~ ~

~

~

~

~

cos(8'/2) exp(iu/2) i sin(8'/2) exp(ice/2) )
Calculation shows that Hamilton's equations, (52),

i sin(8'/2) exP( i~ /—2) cos(8'/2) exP( —ice/2)) are identical with the equations of motion, (14). The
corresponding Hamilton-Jacobi equation is

obeys the ordinary di6erential equation

de/dt = —(ie/2tic)B ee. (5o)

as/Bt+X =0, (54)

where p= Bs/B41 and $= BS/B—co

A complete integral of this equation is of the form,
For short time intervals we And that the solutions

for 5, R, and + are as follows: S= S( 4', t,n„), (55)

where the n„are four constants of integration. Four
other constants may be found by differentiating S with
respect to the o.„,

P„=BS/Bn„. (56)

E= (t—to)/t4-&,

@=e 0(1—ie/2tic)B. 4r(t —tp),

——
(41

—
410) A(e), (51)
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where %0 is a constant matrix.
We now construct the kernel K= CE exp(iS/h)

from the solutions in Eq. (51). The proof that this is
the sought-for integral kernel of the Pauli equation
has been given by Feynman, "who first discovered it
by an cd hoc procedure.

Choose one of these equations for the four constants,
say P4 ——BS/Bn4, and solve it for the variable re. co then
becomes a function of q', n„, p4, and t. The spin coordi-
nate is now a function of the space-time variables and
five constants of the motion. From the equation

Bs/B&o—, $ may also be found as a function of these
same variables.

%e now assume that S depends implicitly on these
same space-time variables through co, so that

dS/dt =BS/Bt+ (BS/B(o) (B(o/Bt) = BS/Bt (B(u/Bt, —

VIII. CLASSICAL TRANSFORMATION THEORY

In Secs. III and IV we showed how the coupled set
of equations of motion, (14), could be rewritten as a
set of modi6ed Hamilton-Jacobi equations. In Sec. V
we proved that these modified equations could be
replaced by a single partial differential equation for a
spinor. However, our entire analysis has been restricted
by a special choice of coordinate system. We now wish
to show that the theory is invariant under canonical
transformations.

"See reference 2.

ol
BS/Bt= ds/dt+ pa(o/Bt (57)

Similarly, differentiation with respect to the spatial
variables q' yields

BS/Bq'= dS/dq'+ ]B(a/Bq' (58)

We now insert co as a function of its variables in S,
so that S becomes an explicit function of the space-time
variables,

$(q)ted% (qqt)Q p)P4) q& p) S(qqtq& p)P4) '
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After we have made this substitution we 6nd ration space of the variables Q',

and

dS/dt= BS/Bt= BS/Bt )—Bio/Bt,

dS/diI= BS/Brl= BS/Bq —&Bcv/Bil. (61)

BD' B ( BII'—+ !
D' =0,

Bt BQ" k BPi
(66)

In terms of the quantities S, (, and co, which are
functions of the space-time variables, v e find that the
Hamilton-Jacobi equation, (54), becomes

BS Bco 1 ( e
+$—+—

! V'S+tV'ii/+ —A eitp+II,—i, 0. (62, )——
Bt Bt 2/ii ( C

y = BS/Bil= B5/BtL P= BS'/BQ= —BS/Bo,
5= —BS/B~= —BP/B~, "=—BS'/BQ=B5/BQ,

BC=X'+BE/Bt,
(64)

where the transformed variables Q, Q, P, correspond
to the original variables I7, id, p, &.

The transformed spinor f' may be found by intro-
ducing the new constant P4' ——BS'/Bni, and then finding
0, , and S' as functions of the space-time variables.
The density D'= R",

B BS BQ)
+="„.(. (65)

satis6es a continuity equation in the reduced con6gu-

Equation (62) is the same relation (14a) we found by
another method in Sec. III. The Eqs. (14b) and (14c)
also follow from the corresponding two relations in
Hamilton's equations, (52).

Thus, the modified Hamilton-Jacobi theory is
equivalent to the usual Hamiltonian theory in an
expanded con6guration space. The transformation lav s
of the modihed theory are easily found once we know
the laws of transformation of the Hamiltonian theory
of Eqs. (52)—(54). Under canonical transformation,
the Hamilton-Jacobi function S is transformed into S'

by means of the generating function F,

S( iI(o, t, n)= S(Q, Qt, n) +a(/t, Q,a),Q, t). (63)

The transformation equations are

with P;=BS. '/BQ'+ "BQ/BQ'
The transformed spinor P' is

cos(O/2) exp(iQ/2)
g~eie'//i

!
i sin(O~/2) exp( iQ—/2) i

(67)

satisfies the quasi-classical equation, (34). The classical
function f.....

//i sin(8'/2) exp(ice/2) )—ge—is/A!

icos(8'/2) exp( —i~/2)//
(68)

satisfies the same equation if e is replaced by —e. f,.,
is the charge-conjugate solution. The solution if/, , is
not to be confused with the solution P of Eq. (45). The
latter is the charge-conjugate solution for the spin
variables alone.

X. CONCLUSION

In this paper we have shown how one might construct
a classical Hamilton-Jacobi theory of a spinning dipole
so that this theory is the %KB approximation to the
Pauli equation. It thus appears that for many problems
of interest in nonrelativistic quantum theory, purely
classical methods are adequate to obtain the asymptotic
solutions of the Schrodinger or Pauli wave equations.
In a future paper we shall deal with the Dirac equation
by similar methods.

with (It/2) coso=
The transformed Hamiltonian operator corresponding

to the Hamiltonian operator of Eq. (34) may be found
by requiring that the equations resulting from this
operator acting on it/' lead to the four transformed
equations for R', S', 0, and

IX. CHARGE CONJUGATE SOLUTIONS

The spinor P,

cos(8'/2) exp(i&a/2)
geis/A!

4 sin(ii'/2) exp( —i /2))


