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Quasi-Classical Transformation Theory*
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The quasi-classical theory is the theory of the M/KB approximation as defined by Van Vleck. This approxi-
mate wave theory is invariant under canonical transformations. Ke derive the transformation laws for wave
functions and operators in this theory. The connection problem of the ordinary configuration space is
discussed from the point of view of Van Vleck. The usual method of %KB quantization is then contrasted
with another method of quantization in a classical configuration space of creation and destruction operators.
In this new configuration space we find that, for some problems, the quasi-classical solutions are exact
solutions of the Schrodinger equation. Finally, we show that the canonical transformations of the quasi-
classica] theory may be put into one-to-one correspondence with a group of approximate unitary trans-
form ations.

I. INTRODUCTION

'N the preceding article in this journal, ' the author has
~ shown how purely classical methods, devised

originally by Van Vleck, ' could be used to simulate
many of the formal aspects of the quantum theory.

At the same time these methods could be used to
construct WKH solutions to the Schrodinger equation. '
It is known that these are "symptotic solutions of the
wave equation, and are valid approximations to the
true solutions in regions of space some distance from
the classical turning points.

In the WKH approximation method, as applied to
the Schrodinger equation, the assumption is made that
the wave function may be written a,s a power series in 5,

+= exp[i (S iM'+ —)/57.

As is well known, the first term in the expansion, 5, is a
solution of the classical Hamilton-Jacobi equation,

clS/Bf+ jj=0,
with Il the classical Hamiltonian as a, function of
arbitrary canonical variables. Already in this first
approximation the solutions of the wave theory are
linked to the classical motion of particles. Van Vleck'
showed that the second term in the expansion could
also be given a classical meaning. If one writes
exp5'= D', one can show' ' that D satis6es an equation
of continuity in the classical configuration space,

BD 8 BIZ
+ Q D— =0. (2)

at r- ass ri(riS/rlqI, )

A D which always satisfies (2) is the Van Vied
determinant,

gi~&k,
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where the qi are the particle coordinates, and the ni,
the classical constants of the motion appearing in the
solution S. c is an arbitrary normalization constant.
The quantity D exists if S is a, solution of Eq. (I). It is
assumed that the q's and 0, 's span the entire phase space
available to the classical system so that D nowhere
vanishes.

Thus, a,ccording to Van Vleck, an approximate
solution of the Schrodinger equation, valid through the
first power in fi, may always be written as

D-'.e~8/s= geis/s

It is significant that Van Vleck's formulation of the
WKB approximation hoMs for arbitrary canonical
systems and is not restricted to its usual representation
in space-time. 4 This general theory of the %KB
approximation we call the quasi-classica, l theory, for
although the methods used in the construction of the
asymptotic solutions are exclusively classical, we are in
main motivated by the desire to use these solutions
within the framework of the wave theory.

In this note we shall discuss the transformation theory
of the quasi-classical wave functions, (4), and of the
operators which act on them. The transformation theory
is of some interest because it permits us to find novel
classical quantities which are in close analogy with
similar ones in the quantum theory. In particular, we
shall show that within the framework of the classical
theory it is possible to introduce creation and destruc-
tion operators without in any way implying quanti-
zation of the theory. The configuration space in which
these creation and destruction operators are defined
is very diferent from the configuration space of the
usual WKH theory, where the wave functions cannot
be written as single continuous functions over the
entire space. ' In this new space of the creation operators
the wave functions are continuous. As a consequence
new boundary conditions must be imposed on the
quasi-classical wave functions in order to quantize the

4 See, for example, L. I. Schifi, Quantivn 3fecharlics (McGraw-
Hill Book Company, New York, 1955), 2nd ed. , Sec. 28, for the
usual theory.

~ See reference 4, Sec. 28.
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classical constants of the motion, for the quantization
of the old WEB theory rests squarely on the existence
of different solutions in different regions of the con-
figuration space. These new boundary conditions turn
out to be identical with the boundary conditions
imposed in the creation and destruction operator
representation of the quantum theory. In fact, for a set
of dynamical problems, the quasi-classical theory
becomes . identical with the quantum theory, and
classical techniques may be used to find exact solutions
of the Schrodinger equation.

II. CANONICAL TRANSFORMATION THEORY

It is of interest to discover how the quasi-classical
wave functions of Eq. (4), and the operators associated
with these solutions, transform under the group of
canonical transformations.

The canonical transformations are defined by the
generating function F(q;,Qp), where the q.; are the
original coordinates and the Qp the transformed
coordinates. The Hamilton-Jacobi function transforms
as

S(Q,,ni) =S(q;,n), )—F (q;,Qo).

8(P',q.) =S(n, ,q,) F—(n „P„).,

aS/an; =aF/an, ,

aS/ap, = aF/ap—,.

The constants n, describe the initial experimental
arrangement and the constants p, the new one. The
transformation function U which generates the change
in the experimental situation is

Bc1 '

U=i -- X
I c9q

apo
G
—iP/Pi

An interesting example of a canonical transformation
is provided by that change which carries the canonical
variables at time to into those at time t. In terms of the
configuration space coordinates q and their values qo
at the initial instant to, the transformation is generated
by the generating function Ii, where

the description of the same physical situation, but
holds equally well for new experimental arrangements.
For if we reverse the roles of coordinates and constants
in the classical action S, the canonical transformation
is contained in the relations

The original and transformed actions, 5 and 8, are
functions of the same constants of the motion, so that
the transformation simply provides a new description
of the identical experimental situation.

%e know from the theory of canonical transforma-
tions and the Hamilton-Jacobi theory that the following
relations are valid:

p, =aS/aq, = aF/aq, ,

p, =aS/aQ, = aF/aQ;—

S(q„&,n, )=S(qo„),'o,n;) —F(q;, )'; qo„4)

Since P' satisfies the relations

p, = aF/a(), ,
—

Po'= aF/aqo,

F must be the negative of the classical action,

(12)

8'5

Bg', t9C1 Ic

O'S

a'F
I

aQ)
X

aq~aQ)
(7)

aqiaQj

The p, are the old momenta and the P, the correspond-

ing new momenta. Equations (6) imply the following

relations among determinants:

$(q;,t; qp, ,tp) =

The transformation law, (8), with F= j;,'Ld(, is thus-
the canonical analog of the unitary transformation law
of the quantum theory,

4(q, f) = E(q,k; qp', fp)4(qp; fp)dVp (13)
'0

where the kernel, or transformation matrix, is'
In two different representations the wave functions

are )P= R exp (iS/h) and )P= R exp (iS/h), with R.
=lla'S/aq, an II' and Ei', =

ll 'a8/aQ; anl)l'. Equations (5)
and (7) then give us the transformation law for the
wave functions,

t,

J. co t,) l exp()/ii Id()=-
tp

aQ~
e
—i F&/fi

Bg',.

)p= l )p, U i=X
fan. )

To complete the quasi-classical transformation theory
we need the transformation law of operators. Before

(8) we can find this law we must first ascerta, in how
quantum operators behave when the wave solutions go

U is a function and not an operator, since the q, and
the Q), are classical variables. This transformation law

for the wave functions is not only valid for changes in

' The kernel E forms the basis of an integral equation represen-
tation of the quantum theory due to R. P. Feynman, Revs.
3Iodern Phys. 20, 267 (1948).
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over to their asymptotic form, P=R exp(iS/Ii) .If
we retain terms that go as the first power in 5, we find
that the quantum operator acting on a true wave
solution, G„@(q,, i—h8/Bq, )%, becomes G,~R exp(iS//i),
where G,p is

85 ik BR BG
G,p

——G g;,
Bqi R Bq; 8(BS/Bq~)

ifi O'G
(14)

2 Bq,B(BS/Bq;)

The G appearing on the right of Eq. (14) is a classical
function of the canonical coordinates. The terms on the
right are to be understood as follows: The first term
arises whenever the operator iI'/8—/Bq, acts on the
phase of the wave function, and the second term when
this operator acts on the amplitude. The final term is
due to the ordering of factors in G,~@. The coefficient —,

'
appears in this term because we deal with quantum
operators which have completely symmetrized factor
sequences. In fact, for these asymptotic operators, the
associative law, H,~G,~= (HG)„, will fail for products
of operators, B',~G,~, unless these products are sym-
metrized to ', (HG+GH). -'

The asymptotic form for the symmetrized quantum
operators which act on the wave functions
=R exp(iS/Ii) is thus given by Kq. (14). The trans-
formation theory of these operators is very simple,
because under the quasi-classical transformation the
wave functions always retain their form. To find the
transformed quasi-classical operator, G,~R exp(i8/Ii),
we note that the new operator, in terms of the new
variables Q, , must be of the form,

88) if' BR BG
G.,=G Q;,

BQ,) R BQ; B(88/BQ;)

ik 8'6
(15)

2 8Q,B(BS/BQ;)

From Kq. (15) we see that the law of transformation
for quasi-classical operators depends on the trans-
formation properties of the classical function, G, and
the classical action, S.

III. WEB WAVE FUNCTIONS AND OPERATORS IN
ORDINARY CONFIGURATION SPACE

We are interested in the precise definition of WEB
wave functions over the entire configuration space,
since this knowledge is critical if we are to derive
quantized values for the classical constants of the
motion. In this section we retrace the well-trod ground
of the usual WEB theory, but by techniques which
conform more to the spirit of our Sec. II. These tech-
niques permit us to emphasize the important role of the

7 See reference 2, pp. 182-183.

classical boundaries in the WEB quantization pro-
cedure. At the same time our methods provide contrast
with those of the following section where we discuss
"WEB" quantization in the configuration space of
classical creation operators.

We now examine the quasi-classical Schrodinger
equation in ordinary configuration space. It is not
difficult to show by use of Eq. (14), that the quasi-
classical Hamiltonian operator for a particle in an elec-
tromagnetic field is

1 k2 V'R
H.p ( i&———Ve'A—)'+ep+'

2m 2' R
(16)

The approximate Schrodinger equation is then

i7i8$/Bt =H,piP (17)

—R ei8+//i P —R ebs—/A

We follow the careful arguments of T.. I. Schiff, reference 4,
and the authors quoted there.

The quasi-classical solutions are in the form
=R exp(iS/h), where R is the square root of the Uan
Vleck determinant and S is a solution of the classical
Hamilton-Jacobi equation.

We are particularly interested in bound-state
operators and wave functions. For bound-state problems
the Hamiltonian operator, Eq. (16), and the quasi-
classical wave functions are singular at the classical
turning points, since R is infinite there. These singularities
in R are well known in classical theory and they appear
at points in configuration space where the classical
momentum vanishes. In the classical theory these
singularities are of no import, but in a wave theory,
where the wave functions must be bounded and
continuous, these singularities are inadmissible. And
since it is the wave theory that really interests us, we
must define bounded WEB functions at these points.
In addition we must choose the solutions of Eq. (17)
in the classical and nonclassical regions of space so that
they will join continuously to the solutions chosen at
the classical turning points.

The research experience of the last 35 years in the
analysis of WEB solutions provides us with a prescrip-
tion for defining and joining the WEB functions in the
various parts of the configuration space. ' We assume
that the classical problem has been reduced to quadra-
tures by separation of variables. This means that we
can write the canonical momentum as p+

——~p(q, n),
where e is a classical constant of motion. The ambiguity
in sign arises because of the two diferent directions
the momentum can assume. In the Hamilton-Jacobi
theory p+ BS+/Bq, a——nd so the two actions, S~, can
both be used in forming independent solutions of Eq.
(17). These two solutions can then be added to secure
another solution. The two independent solutions are
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If we substitute for R and S we find

and

where k+ ——p+/5 and c is a normalization constant. We
have written the phase of the wave function as a
definite integral. The lower limit of integration, a~, is

chosen as the classical turning point which is farthest
to the left. The classical region is to the right of this

point and the convention is to choose the limits of
integration so that the action is always increasing as q

increases. In the neighborhood of the point a~, and in

the classical region, we choose as our WEB solution

P„=~~ (P++P ). If we put in the values for P+ and P
we find

8p+=c ~in /4 cos+1+ k+dg —— . (21)

A simila, r argument gives us the form of . the wave

function in the neighborhood of the other classical

turning point, a2, to the right of a~. If we adhere to our
convention for increasing phase, we find in the classical

region near the point a2,

~p+
tp„. =c ~i7r/4 cog

BA
k+dq —— .

4
(22)

where ~= —ik.
Similarly to the left of the turning point a&, the WEB

solution is of the form

(24)

At the classical turning points we choose the solutions

of the true Schrodinger equation. ' It is known that
these solutions can be joined continuously to the WKB
solutions of Eqs. (21)—(24), provided that the constant
c" is chosen properly. In those problems where the
constant n is the total energy, one finds that c"=c'/2,
c"'=c/2

The requirement that the wave function be con-

tinuous in the dassical region a,t some arbitrary point

' In actuality the quasi-classical solutions cannot be matched
to the exact Schrodinger solutions at the classical turning points.
They are rather matched to other asymptotic solutions of
Schrodinger's equation found by expanding X~;—V in a power
series and then solving the modified Schrodinger equation in the
neighborhood of the turning points.

In the nonclassical region to the right of e~ we find

that the momentum becomes imaginary, and in this

region we choose the solution that is exponentially

daQ1ped)

(23)

q, i.e.,f., =f.. . immediately yields the WEB quantum
condition, gpdq=(e+ —,')h, when c= (—1)"c'.

In many problems the WKB solutions yield the
exact eigenvalues of the original Schrodinger theory.
This is remarkable when we consider that the quasi-
classical equation, (17), and the boundary conditions
associated with that equation, differ significantly from
the Schrodinger equation and the boundary require-
ments on solutions in that theory. As for the solutions
themselves, the Schrodinger wave functions are con-
tinuous and bounded, while the WKB wave functions
a,re singular at isolated points and have to be defined
in di6erent ways in the classical and nonclassical
regions.

In view of the above, the question might be asked
as to why we have to restrict the WKB approximation
to ordinary configuration space. After all, we have at
our disposal the group of canonical transformations and
a different quasi-classical solution associated with each
transformation. Amongst these transformations there
must surely be many for which the WEB solutions
are continuous and bounded everywhere. And if the
eigenvalues of the WKB and Schrodinger theories agree
in some representation, why cannot there be a trans-
formed quasi-classical equation which is identical
with a similarly transformed Schrodinger equation&

IV. CLASSICAL CREATION AND
DESTRUCTION OPERATORS

In the following we shall show that there are quasi-
classical solutions which are bounded and continuous
everywhere, and these solutions satisfy equations
identical with a transformed Schrodinger equation.
'Ihe classical representation in which these properties
are exhibited is of interest in itself because it provides
us with a classical theory of creation and destruction
operators.

As we have already stated, if we seek continuous
WK.B wave functions, then the usual configuration
space is indeed badly chosen. In classical mechanics, a
configuration space with more desirable characteristics
is the periodic space of the so-called angle variabIes. If
we carry out a canonical transformation to action-angle
variables, or simple functions of these variables, we
shall find quasi-classical wave functions which are
continuous everywhere.

To illustrate our method we shall first carry out this
transformation for the one-dimensional harmonic
oscillator. ' For the oscillator it is well known that the
energy E is related to the action variable J

J=2' E/GO. (25)

~ is the angular frequency of the oscillator and the
action variable J is a momentum variable conjugate
to the angle variable m.

"In I we carried out a similar transformation, except that the
method employed in that paper was tailor-made for the oscillator.
The transformations of this note have a wide range of applicability
and are not restricted to the oscillator problem.
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We now carry out the following canonical trans-
formation to the new variables Q and P:

g = (J/2~5) Ie'"~,
P= i—(Jh/27r)&e "~~ (26)

D=— e'IS/ rIEtQI= i/t—og, (29)

and the quasi-classical wave function is

0= Lf'(~+1)3 'Q', (30)

where Z= (E/&to) ——,'. The F function is a normalization
constant.

The creation and destruction operators of the theory
are brought into evidence by the following relations:

CV (Z) = (~+1)'4 (~+I),

II'(Z) =~V(~—1). (31)

The quasi-classical equation is

(E—hto/2) P = ls&ogrl&/rig, (32)

which is an exact equation of quantum mechanics with

Q and cI/BQ particular representations of the creation
and destruction operators. The theory which we have
presented is classical throughout since the energy E
can assume continuous values.

How is this %KB theory to be quantized' We may
if we wish use the arguments of the usual quantum
theory. " The critical requirements in that theory are
that the energy be positive and that

(E'~E')&0,
(E'i rirI i

E')&0. (33)

q ane g are the creation and destruction operators,
respectively. The corresponding conditions that have
to be satisfied in our representation are

/*/de& 0,

Q*Q — -/dud& 0.
o

(35)

If we also require that the quasi-dassical wave functions
be eigenstates of the Hamilton operator in Eq. (32),
we find by the usual methods that Z = rs, and
E= (e+-,')Ate.

"P. A. M. Dirac, The Prince p/es of Quentlm Mechanics (Oxford
University Press, New York, 1958l, 4th ed. , Sec. 32.

Under this transformation Eq. (25) becomes

E=iQPcu, (27)

and the Hamilton-Jacobi equation corresponding to
, (27) is

E=ig ((3S/BQ) te (28)

The solution of this equation is S= —s(E/co) lng. The
density D is

The methods that we have employed in the WEB
quantization of the oscillator may be extended to
arbitrary bound state classical problems. Assume that
we have solved a given bound state problem in the form

J,;=J,;(ns), (36)

J,=sre'( 2p/E) I—Js Jp— — (39)

We assume that we have found the values of Jg and Jq
by the usual techniques of the WEB theory,
J&= (I'+-', )Is and Jq ——mh, ts or by the alternative
method we are now prescribing. Equation (39) becomes

J,=~e'( —2p/E)'* —(I'+m+-', )h.

Introduce the new canonical variables,

Q,= (J„/2vrk)Ie" ""

P,= —i(J,A/2~)Ie *' ~"

and we find that the quasi-classical solutions correspond-
ing to Eqs. (40) and (41) are

=cg"',

with n'i's= (—Ise'/2E)I —(I'+m+1)II, and c is an
arbitrary constant. The energy levels of the hydro-
gen atom are as expected, E„=—pe'/2n'5', with
m=e'+l'+m+1.

There is however one caution which must be observed
in deriving eigenvalues from the quasi-classical creation
and destruction operator formalism. If the same method
is applied to rotations, one finds that the eigenvalues
derived from our scheme do not agree with the correct
eigenvalues derived from the Schrodinger or 'gfKH
theories. This pecularity a,rises because in librational
motion there is a characteristic change of phase when
the particle is reQected from the classical turning point, "

'~ In the %KB approximation Jfl=(l'+-, )h and J~=mh, as
shown in I or in L. Landau and E. Lifshitz, Quantum 3Iechanics
(Pergamon Press, Ltd. , New York, 1958), Sec. 49.

"See the work of I. H. Keller, Ann. Phys. 4, 180 (1958).

where the J, are the independent action variables and
the nI, are an equal number of constants of the motion
of the mechanical problem. Then the creation operators
may be introduced by the canonical transformations,

Q, = (J,/2m. fi) 'e's~" ' (no summation (37)

P,= i(J—Is/2n)&e"-' convention)

The Hamilton-Jacobi equations corresponding to the
Eqs. (36), and written in terms of the variables Q; and
I';, take the form

27rig;rIS/rIQ, =J,(us)
(no summation convention). (38)

The solutions of (38) may be used to form quasi-classical
wave functions, and in terms of these wave functions
Q, and rI/rIQ, act as creation' and destruction operators.

An example is provided by the radial equation of the
Kepler problem,
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In Eq. (53) we have again expanded the phase of the
integrand in a power series about the point Q. In our
approximation we may replace the function E appearing
in 6 by the operator —ihB/BQ', and we finally have

cl

X= 6,—ih- b — ' 'd '
aQ'i

We see that the approximate unitary transformations
generated by Ii in Eq. (50) transform quantum mechani-
cal operators into quantum mechanical operators, but
only in the limit as h vanishes. On the other hand, the
canonical transformations of the quasi-classical theory
are a superior approximation to the original wave
theory than the approximate unitary transformations,
since the quasi-classical operators of Eq. (14) do depend
on k. There is a one-to-one correspondence between the
two transformations, since the same function of the
canonical variables, F, generates both transformations.


