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We develop a niodified Hamiltonian-Jacobi theory of classical
mechanics following the early work of Van Vleck. This modified
Hamiltonian-facobi theory, or quasi-classical theory, permits us
to exhibit in classical mechanics many features that in the past
have been exclusively associated with quantum mechanics. We
deal with classical wave functions, classical operators, classical
"eigenvalue" equations, a classical "sum over paths" formulation
of classical mechanics, and with classical creation and destruction
operators. Fo]lowing Van Vleck, one can derive the WKB approxi-
mate solutions to the Schrodinger equation from the solutions
of the classical Hami tton-Iacobi equation. If we apply the
methods of Keller to the nonrelativistic and relativistic Kepler

problem, we derive eigenvalues from the requirement of single-
valuedness imposed on the WKB solutions. It turns out that the
energy eigenvalues are those given by the Schrodinger equation
and the Klein-Gordon equation, respectively. In the particular
case of the harmonic oscillator there exists a canonical trans-
formation which transforms the quasi-classical equation into an
exact equation of quantum mechanics. We conjecture that if the
WKB approximation and the Schrodinger equation predict the
same eigenvalues, then there always exists a canonical trans-
formation which transforms the quasi-classical equation into the
corresponding Schrodinger equation. Finally we derive the quasi-
classical equations in momentum space.

I. INTRODUCTION

HE O'KH approximation is a well-known pro-
cedure in quantum mechanics for passing from

the wave theory to classical mechanics. The ensembles
of particles described by the Schrodinger equation are
replaced in this approximation by ensembles of pa, rticles
constructed from the solutions of the chssical Hamilton-
Jacobi equation. These %KB solutions are asymptotic
solutions of the wave equation, except in the neighbor-
hood of the classical turning points where they become
infinit, e.

A more deeply founded version of the 9"KB approxi-
ma, tion was presented by Van Vleck' in 1928. Van
Vleck showed that, without direct reference to the
Schrodinger theory, the 'O'KB wave solutions could be
constructed from the solutions of the classica, l Ha, milton-
Jacobi equation. His solutions, tied as they are to the
Hamilton-Jacobi theory, transform in a, determinate
way under canonical transformation.

If no additional conditions are imposed on these
%KB solutions they approximate true wave functions
with large-valued quantum numbers in regions of
space distant from the classical turning points. "A'e may
gain an improved approximation to t.he Schrodinger
functions by demanding that the classical wave func-
tions satisfy additional requirements characteristic of a
wave theory. AVave funct. ions defined in ordinary
configuration space have to be bounded, continuous,
and single-valued. In bo«nd-sta t e problems these
requirements quantize the theory, as they lead to
discrete eigenvalues for the classical integrals of the
motion.

These quantized %KB solutions we call quasi-
classical solutions, and we shall hereafter refer to Van
Vleck's version of the %KB theory, together with the
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t On leave from Stevens Institute, Hoboken, New Jersey.
' J. H. Van Vleck, Proc. Natl. Acad. Sci. U. S. 14, 178 (1928).

requirements for quantization, as the quasi-classical
theory. '-'

The Van Vleck formalism also permits us to construct
exact solutions of the Schrodinger equation from the
solutions of the Hamilton-Jacobi theory. Classical wave
functions describing ensembles of particles originating
from a point source are such exact solutions. The
success of Feynman's "sum over paths" formulation
of the quantum theory is based on the existence of
these classical wave functions which satisfy the
Schrodinger equation. Given such a solution, all
equivalent solutions of the Schrodinger equation may
be found by unitary transformation.

In addition to the point-source solutions there exist
other %KB wave functions which are solutions of the
Schrodinger equation. Ke have found such a solution
in the case of the one-dimensional harmonic oscillator
in the configuration space of classical creation operators.

Van Vleck's formulation of the %KB theory also
provides us with a means of enriching our description of
classical mechanics so tha, t its mathematical form
corresponds more closely to that of quantum mechanics.
AVe shall show the existence of classical differential
operators, classical "eigenvalue" equations, a classical
"sum over paths" formalism, classical "creation
operators, " etc. The appearance in classical physics of
mathematical elements which in the past have been
associated exclusively with quantum mechanics does
not imply that we have reduced the quantum theory
to classical mechanics. In a wave theory the wave
functions must provide a meaningful description of
wave phenomena, . One must therefore require that
these functions be bounded, continuous, and single-
valued. These requirements lead to such typical
features of the quantum theory as quantized energy

2 Although in principle v e have made a distinction between the
classical and quantized solutions to the same equation, in practice
we shall use the terms classical and quasi-classical (the latter
implying quantized) interchangeably. No confusion can result
since all the solutions we- exhibit in this paper are derived from
classical mechanics, and it will be quite clear to the reader when
we pass over to the quantum theory.
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B O'S B BII O'S
+- =0.

Bt Bn'Bq" Bq" B(BS/Bq') Bq'Bn'
(4)

II. MODIFIED HAMILTON-JACOBI THEORY
We now introduce the matrix p&;=B'S/Bn'Bq' T. his

matrix must possess an inverse since we have assumed
that the determinant D= ((pt, ~j

nowhere vanishes. The
inverse matrix @'& is defined by the relations,

The Hamilton-Jacobi equation for a, classical system
of particles is

BS
BS/8&+H(q', t =, 0.

Bq~ 4 "4*i=4 "4t*=Bi'~

levels and barrier penetration. On the other hand, the and we find
basic principles of classical mechanics would be violated
if we adopted similar requirements for classical systems.

H is the Hamiltonian and the qt, (k = 1,2, ,X) are the
generalized coordinates of the dynamical system. The
dependent variable S is known as Hamilton's principal
function.

Since Eq. (1) is a partial differential ecluation of the
first order which does not depend explicitly on S, a
complete integral of the equation is of the form,

The rule for differentiating a determinant gives

dD=D&"dp"

1f we multiply Eq. (4) by p'i, and make use of Eq.
(4), we find that D satisfies the relation,

BD B BII
(3)

S=S(q',n', t)+c,

where the 0.~ and c are constants. In this paper we shall
assume that the additive constant c vanishes unless
otherwise noted. The constants n~ are chosen so that the
determinant (jB'S/Bq'Bn"j( nowhere vanishes. The 2X
variables, q' and n', then cover the 2'-dimensional
phase space available to the dynamical system.

Van Vleck' first showed that from a solution of the
Hamilton-Jacobi equation one could derive a conserved
density in configuration space This density is the Van
Vleck determinant, D,

%ith the two functions 5 and D we define a classical
complex "wave function, "4~,

4'c= R exp(iS/ti), (6)

where R= (Dg I)', and g is the determinant of the
metric g;& of the configuration space. 5 is an arbitrary
constant with the dimensions of angular momentum
and it is introduced to keep the phase of +~ dimension-
less. In a classical theory Fs need not be identified with
Planck's constant.

If the classical Harniltonian takes the form

D satisfies the equation

O'S

Bg'Bo.
(2) ——Ak g' V

then 4'z satisfies the Schrodinger-type equation

where

BD B
+ (D~i) —O

Bg'

BH

(3)

B%'c g B e; ) B ei
~7& +—A; ~(gag") ~7i +—A, )@~

Bt 2 Bq' C l Bq" C

~ ~

PPg & B BE.
+&+c+— g'g' +c (7)

2 E Bg' BQ~

B(BS/Bq')

Ke shall rederive this equation of continuity by gen-
eralizing a procedure due to Pauli. ' Pauli restricted his
derivation to a very small class of classical ensembles;
those which correspond to the so-called kernels of the
Schrodinger equation when that equation is written in
terms of cartesian coordinates. In our discussion we
deal with the most general Hamilton-Jacobi ensembles
in the spirit of Van Vleck's original work.

We differentiate the Hamilton-Jacobi equation twice,
o»ce with respect to the n', and then with respect to q~,

3 %V. Pauli, Feldqua&7tis7'ever 0g (Akad. Buchgenossenschaft,
Zurich, 1957), 2nd ed. , p. 139,

Equation (7) is a classical equation, a consequence
of the Hamilton-Jacobi equation. ' The constant ft

occurring in (7) does not appear in the Eqs. (1) and

(3), so that it is not a dynamical element in the original
classical theory.

In classical mechanics there are nonphysical solutions
to the Hamilton-Jacobi equation and its modified form,
Eq. (7). These solutions are defined in regions of the
configuration space where the classical momentum
becomes imaginary. Such solutions are to be ignored in
classical dynamics, but they must be included i» a
~eave theory where continuity requirements prevail.

' Since we are ult. ilrfat. ely iilterested in ~.tuant. izing E';q. (t ), u e
shall characterize it as the "quasi-classical" equation, even when
we deal with its classical properties. See reference 2,
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f(-,p)dp dp

The constants p; appearing in the integrand on the right
in Eq. (8) may be written in terms of q', a', and t. If
we make this replacement in Eq. (8), we find that
f(n, p) becomes F(n, q, t) and

8'5
f= F(n,q, t) dq dq dq (9)

Since the average defined in Eq. (9) depends only on
constants of the motion, its value should not change
in the course of time. If we differentiate (9) with respect
to time, and assume that surface integrals vanish, we
immediately verify that the average value of f remains
constant, provided the determinant D= )~8'S/BqBn)(—
satisfies the equation of continuity

(3)

3. Generalized Classical Ensembles

If we assume that our classical ensembles are to be
described by the solutions of Eq. (7), without direct
reference to the original solutions of the form %g
=R exp(iS/5), we can find more complex classical
ensembles than the uniform distributions described by
the Van Vleck determinant. H the classical action is
real then Eq. (7) defines a conservation law:

Bp/N+ 7' j=0, .

p ==4*4, j= (5/2i)(q *V+—V'0*4) —(e/c)A.

(10)

' We follow a proof due to Van Vleck, reference 1.

III. CLASSICAL ENSEMBLES IN
CONFIGURATION SPACE

A. Ensembles in the Hamilton-Jacobi Theory

The classical Hamilton-Jacobi equation describes
ensembles of particles. A particular ensemble is con-
structed as follows: Ke assume that Hamilton's
principal function S is a function of the E coordinates
q' and the Ã constants of the motion o.'. The constants
o.' are determined by some experimental arrangement
which 6xes these constants and no others. The particles
of the ensemble are then distributed uniformly over all
possible values of the remaining Ã constants of the
motion P,=OS/Bn'. The P; are the variables conjugate
to the n;. The existence of the density D satisfying Kq.
(3) reflects the conservation of particles in our ensemble.

Ke prove the above assertions as follows'. Assume
that we have an arbitrary constant of the motion, f,
which depends on the constants n' and p;. We now ask
for the average value of f assuming that the constants
P, have uniform distribution. This average is

If %'c=R exp(iS/7i), then Eq. (10) reduces to Eq. (3).
It turns out, however, that there are solutions of Eq.
(7) which are not in the original form%'o= R exp(iS/h)

One such solution arises in the classical one-
dimensional problem of a single particle con6ned in a
potential well. In this case the momentum assumes both
positive and negative values at a given point in space.
Since p= &dW/dq, where W is defined by S
= —Et&W(q), there are two classical actions which
may be used to form independent solutions of Eq. (7).
These solutions are easily seen to be

where R+=iR and W+ ———W . The sum of these
solutions is also a solution of (7),

%c———,'(+c++4'c )=R+e' "cos(W+/5 —ir/4). (12)

Since solutions of (7) satisfy the law of continuity,
(10),we find that the density of particles in our ensemble
1s

0 o*%'o=D cos'(W+/5 —m/4). (13)

This is a curious classical ensemble since the density
distribution arises from the superposition of classical
amplitudes. In the lVKB theory, the density in Eq. (13)
is preferred to the classical density D, a preference
which could never be justi6ed from purely classical
arguments.

Other interesting solutions to Eq. (7) have been
studied by Dirac, ' Feynman, ' and Pauli' in their
investigations of the so-called "sum over paths"
formulation of the quantum theory. They have found
solutions of the classical equation, (7), describing
ensembles in which all of the particles are located at
the point qo' at the time to. These wave functions are
constructed from the complete integrals of the
Hamilton-Jacobi equation for which the constants n'
are the initial coordinates qo'. Ke call these special
ensembles point source ensembles and specify them by
means of the letter E, i.e., 4'c(q, f; qp, fp) =E.The q' and
the qo' are assumed to be Cartesian coordinates.

If one calculates E for infinitesimal time intervals,
t —to= e, one finds, for a wide range of classical forces,
that E is a solution of the Schrodinger equation, as the
last term on the right of Eq. (7) vanishes. '

All solutions of the Schrodinger equation may now
be generated by the transformation

4(q, fp+p) = E(q, Lp+ p; qp, tp)4p(qp, fp)dqp, (14)

where +p(qp, tp) is an arbitrary function of its arguments.
Of course these solutions of the Schrodinger equation
satisfy the equation of continuity Eq. (10), although

6 P. A. M. Dirac, 1'he J rincip/es of Quantum Mechanics (Oxford
University Press, New York, 1958), 4th ed. , Sec. 32.

' R. P. FeynInan, Revs. Modern Phys. 20, 367 (1948).
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they rarely have the form O'=R exp(iS/h). An excep-
tion occurs when E is a solution of the Schrodinger
equation for 6nite time intervals and the arbitrary
function %p in (14) is chosen as Ep(qo, to, qp', tp p).—In
this case, (14) becomes

E(q, Ip+p; qp', tp p)—

and Z is again of the form 8 exp(iS/h). For ensembles
of particles described by Eq. (14'), the probability of
ending a system of particles at the point q' and the
time t, if it was known with certainty to be at the point
qp at the time tp, is the same in both classical and
quantum mechanics.

We may interpret the integral equation, (14), as a
sum over classical paths. ' We first construct an (v+1)-
dimensional configura, tion space with coordinates q'
and t. We assign amplitude values on a spatial hyper-
surface, Zp, at the time tp, by prescribing the function
+p(qp, Io). From each point of our hypersurface we draw
the classical paths for an ensemble of particles ema-
nating from that point. The ensemble is constructed by
assigning to the ensemble members all possible initia, l
momentum values consistent with the classical integrals
of the motion. Each trajectory leaving Zp strikes a
point on a neighboring spatial hypersurface, Z, a time
e away. The classical action for each trajectory con-
tributes to the integral in Eq. (14) and thus determines
the state vector at the time to+ p

This procedure may be continued an arbitrary
number of times until the time interval, t—tp, becomes
finite. There are many cases however where E is a
solution of the Schrodinger equation for finite time
intervals. The infinitesimal transformation law, (14),
then may be replaced by a finite law of transformation
with the classical action for finite paths appearing in
the kernel Eof (14).

'

Since the classical paths carry quantum states at the
time tp into the same states at the time to+ p, one
wonders whether nonclassical trajectories might not
perform the same function for the solutions of the
quasi-classical equation, (7). This is indeed the case,
as we shall now show.

The original Hamilton-Jacobi equation is

Jacobi equation,

where the final term acts as a quantum-mechanical
potential energy. We are interested in point source
solutions to Eq. (15), for infinitesimal time differences,
$—Ip. For Hamiltonians quadratic in the momenta,
these approximate solutions are

, (»—e)'S'= om —I (q) —I'aM(q)
f—Ip

1 e
+— $A(q, t—)+A(qo, I)j (q —qp), (16)

2

where V@M = (Iro/2m) (PD'/D&). We construct the
density D'= ((O'S'/BqBqo(( and form the kernel
E (q, fp+p; qp, fp). It is not dificult to show that 4'c,
given by

%c(q, tp+p)= E'(q, to+p,' qo, &o) Ii'oc(qo, tp)dqo, (17)

is a solution of the quasi-classics, l equation, (7),o

4'pz(qp, Ip) is an arbitrary function of its arguments.
In the classical "sum over paths" defined by Eq. (17),

iionClasSic, l trajectories carry a classical solution of
(7) from one time Io to another time Ip+ p

How are we to interpret these ensemble aspects of
the classical theory? In classical physics the appearance
of ensembles is related to the mathematical properties
of Hamiltonian systems. The existence of these families
of solutions in no way restricts the classical measure-
ment process, for we can always select from the ensemble
a single trajectory, and thus determine a particular
particle's simultaneous position and velocity. On the
other hand, in a wave theory such as quantum
mechanics, the signaling out of one trajectory from the
ensemble of trajectories is strictly forbidden. The
wave-like nature of rnatter rules out any complete
analysis of the motion of an individual member of the
ensemble as is permitted in the classical theory. A
parallel situation exists in ray optics, where diGraction
effects rule out complete knowledge of the ray trajec-
tories. In wave-like phenomena the ensemble is
irreducible.

BS/8$+H =0,

and the solution, 5, as a function of its arguments, is
S=S(q',n', t). Given these solutions we can always
construct the classical density, =Dt)8' /S8 Bq(jn.

Ke now seek a, solution of the modified Hamilton-

IV. QUANTUM ASPECTS OF CLASSICAL THEORY

In this section we should like to outline some formal
aspects of cia,ssical mechanics which closely parallel
developments in quantum mechanics.

Ke shall show the existence of a classical operator
formalism and develop a quasi-classics, 1 t/theory in

We amplify the arguments oj'. I)irac ancl I'eynman in rel'erences
pand 7,

The proof follows the argunients of Feynman for the
Schrodinger equation in reference 7,
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momentum space. We give an example of a canonical
transformation which transforms a quasi-classical
equation into an exact equation of quantum mechanics,
and at the same time find the classical analog of creation
and destruction operators.

A. Classical Operator Formalism

It is clear from our earlier discussion in Sec. III 8,
that if energy is conserved, the following eigenvalue
equation is always satisfied,

N8%'c/Bt =E4'c= H.p+c,

where H,~ is given by the right-hand side of Eq. (7).
Similarly if we have radial forces derivable from a

potential, the angular momentum in the s direction, 0.~,
appears in the eigenvalue equation,

iI'tao—c/84 =neec

The eigenvalue equation for the square of the total
angular momentum can also be found. The calculation
for the general case would take us too far afield so that
we shall content ourselves with the operator equation
when o.~ =0. V,"e find that the classical operator equation
for the square of the total angular momentum is

1
~

og'
+cot8—— +1 4'c=—%c. (20)

80' 80 4 sin'0 5,'

As one might expect, all the operators introduced
commute with one another.

In the classical theory no deep significance should be
attached to these operator equations since the operators
are unrestricted, and the eigenvalues can assume
arbitrary continuous values.

3. Quasi-Classical Theory in Momentum Space

The momentum space representation is important
in quantum mechanics, and for this reason we should
like to develop the corresponding representation in the
quasi-classical theory.

In classical mechanics one can always perform a
canonical transformation which interchanges the posi-
tion coordinates and their canonically conjugate
momenta. If q, and p, are the original phase space
coordinates then the corresponding transformed co-
ordinates are I', and Q, . —

Under this transformation, and for a Hamiltonian
quadratic in the momenta, the IIamilton-Jacobi
equation is

88 1 e; 8S) -' BS—+Q Q;——A, —
i

+U — =0. (21)
Bt ' 2ti; C BQl BQ

The Hamilton-Jacobi function 8 depends on the new
coordinates Q, (the old momenta p,), the 1V constants
n;, and the time t It is easy to sho.w that (21) defines

BD 8
+Z (DP') =o.

Bt i Bp;
(23)

The quasi-classical equation which is equivalent to
(21) and (22) is

8@c 1 ( e;
ih =g

~
Q' ——A; ac+Vie

at ' 2p;k C

ik 8 BV em

28' ' BQ; &(BS/BQ,) ti„C 8(BS/BQ, )

( e
X] Q.——A

[
R' 4„(24)c

where 4'c=B exp(iS/h) and R=D&. The difference
between the quasi-classical equation in momentum
space and the Schrodinger equation in momentum
space depends on the nature of the potential V and A,
although the general form of the two equations is
similar.

C. Classical Creation and Destruction Operators

We shall construct creation and destruction operators
in the quasi-classical theory of the harmonic oscillator.
Ke shall then rewrite the energy eigenvalue equation
of the harmonic oscillator so that it is identical with
the corresponding Schrodinger equation written in
terms of the same variables. We conjecture that for an
arbitrary problem it will always be possible to transform
the quasi-classical equation so that it becomes identical
with the corresponding Schrodinger equation, provided
that the quasi-classical theory predicts the same
eigenvalues as the quantum theory.

The Hamiltonian for the oscillator is

H=l(p'+ V),
and if we transform to the new coordinates

Q= —i(p+~v)/(2M)',
E= (p —zap)/(2a)) &,

-

the transformed Hamiltonian becomes K=iQI'cv

an equation of continuity in the new configuration
space, which is in reality the old momentum space.

The equation of continuity for the determinant
D= ll~'S/aQ, an'(( is

8D 8 8V+Q- D
' ~Q* -~(~S/~Q')

BA„( e„
I Q~——A~ =0. (22)

8(88/8Q;) ( C

If we now reintroduce the original coordinates in (22),
we find that D satisfies the law in momentum space
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The Hamilton-Jacobi equation corresponding to this
Hamiltonian is

a5/aI+i Qas/aQ= 0,

This equation may be reduced to quadratures by
assuming a solution of the form 5= —EI+W, (r)
+We(e)+ W4, (p). It is then easy to prove that

and a solution is 5= —Et—i (E/co) lnQ. If we introduce
the amplitude E= (8'5/BEBQ) & and construct the
quasi-classical wave function, 4o ——R exp(i5/5), we
find with appropriate normalization that

e.(Z) = -"'"Q'/LI (Z+1)j',

W, =+ (nP n—~'/sin'tI) Id0,

l4~„=& L2p, (E—V) ne'/—r' j4Ir

(27)

where Z= (E/Ace) ——,
' and I' is the gamma function.

It is readily seen that the following relations hold:

+c(Z) =Z'ec(Z —1),

Q+c(Z) = (Z+1)l+c(Z+1), (25)

and 4~ satisfies the transformed quasi-classical equation

(I'. ', n~)4c=—A~—QB@c/BQ. (26)

Equations (25) and (26) are identical with the
corresponding equations in quantum mechanics except
for the fact that in the classical theory Z is not neces-
sarily an integer and Q and 8/BQ are special represen-
tations of the abstract creation and destruction
operators q and g."

We must emphasize that the Eqs. (25) and (26)
are classical equations since they in no way restrict the
value of the energy. It is only when we insist that the
operators introduced have properly de6ned boundary
conditions that we find that Z=rl, where n is a positive
integer or zero, and the energy assumes the values
E = (e+-,')duo.

A. Nonrelativistic Hydrogen Atom

The Hamilton-Jacobi equation for a particle in a
spherically symmetrical potential is

V. APPLICATIONS OF THE QUASI-CLASSICAL THEORY

In this section we shall show that the requirement of
single-valuedness for the classical wave function yields
the same energy eigenvalues for the nonrelativistic
and the relativistic hydrogen atom as do the Schrodinger
equation and Klein-Gordon equation, respectively.

The theory applied to Coulomb scattering proves
that the quasi-classical wave functions and the solutions
of Schrodinger's equation are identical at great distances
from the scattering center.

The constants n~ and ng are, respectively, the s corn-
ponent of the angular momentum and the total angular
momentum of the moving charge.

The Van Vleck determinant is

O'W„8'-'8',

OrBA Bring Br8np

O'Wg 82Wg O'Wg

808I'' 8880.g 808ng

O-'W@ c'8"p 8'8'~

8$8E 8$8ng 8$8n~~

and when evaluated has the absolute value

ID I
=~~~/L2~(E —V) —~~'i~'3'L~~' —~~'/»n'II)' (2g)

Ke shall now discuss quantization of the theory.
For the hydrogen atom the solution +t.- is separable,

as (27) and (28) indicate. The radial and polar solutions
are of the form 8+ e px(iW~/I) IThese . solutions have
two signs associated with them because of the oscillatory
character of the motion. The particle motion is bounded
in the configuration space and in these two independent
directions the momentum passes through zero and then
changes sign on reversal of path.

In the %KB method, " quantization is achieved by
joining the classical solutions to exponentially damped
solutions in the nonclassical regions. Now the solutions
of the form R+ exp(iW~/5) cannot be joined to an
exponentially damped solution, but since the equations
are linear we can always take some linear combination
of ~ solutions and this new solution can be joined to
the wave functions in the nonclassical regions. Eigen-
values arise when one requires that the di6erent
classical wave functions defined for the diferent
classical turning points be continuous in the classical
regions.

However, in place of this quantization technique due
to Kramers, we shall instead adopt an equivalent
procedure due to Keller, " who showed that the same

' See reference 6, Sec. 34.

+V(r) =0. (13)
"H. A. Kramers, Z. Physik 39, 828 (1926), and L. I. Schiff,

Qzcantum Mechanics (McGraw-Hill Book Company, Inc. , New
York, 1955), 2nd ed. , Sec. 28."J.B. Keller, Ann. Phys. 4, 180 (1958).
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results could be obtained by simply requiring that the
quasi-classical wave function be single-valued when
one traverses an appropriate closed particle path in the
classical part of the conh. guration space.

For example, in our present example we may keep r
and 0 fixed and let g go through the angle 2m. The
single-valuedness requirement on 0'z leads to the
quantum condition n&=mh, where m is a positive or
negative integer, or zero.

One may similarly evaluate the change in 4't.-, M z,
in a complete cycle when we', keep"r and p fixed. The
change in 0'g then reduces to calculating the change
6$'y and the change in phase of the amplitude of 0'q.
In order to evaluate At/t/'y it is simpler to introduce a
new angle y which measures the angular change in the
actual plane of motion of the particle. The invariant
p; p;dq; becomes p„i+pgH+pqp=p„r'+p»j. From its
definition, p» is the total angular momentum uy.

XVe 6nd that

68'g = gd8= ~dy—

and since p» and p~ are constants of the motion,

AWp = 2»«(ag np)—

If we define n= n'+3+1, and substitute nti (——1+2)h, we
secure the correct energy eigenvalues of the non-
relativistic hydrogen atom,

E= —iie4/2 h"' n

B. Rutherford Scattering

Next we shall derive the Rutherford scattering
formula from our quasi-classical theory as an example
of a system that is not bound. " KVe shall model our
work after the usual quantum theory calculation in a
parabolic coordinate system.

Ke introduce the following coordinates:

*=(En)'cos4, y=(kn)'»n4, s=l(t n), —«=l($+~),
and the inverse relations

q=r s, $=r—+s, &=tan 'y/x.

In these coordinates the time-independent Hamilton-
Jacobi equation is

1 4j (BW ' 4g (BW)+
2p $+g(8$ $+g(Bg/

1 (BW '- 2ZZ'e'+, (29)
$q k BP — $+«j

We note in addition that 8'y changes sign when we
traverse half the particle orbit. This reversal of sign where we have assumed the repulsive potential energy

ZZ' 2/
introduces a phase change of —

m in the amplitude
during the cycle, " so that the total change in phase of Weseekasolutionof theform

the wave function, AfTq, is

Do g 2' (ng a——g)/h—
For the wave function to remain single-valued we must
choose Dog=2~/', where l' is an integer. We introduce
a new integer /=l'+no, note that nq=mh, and derive
the value of the total angular momentum

ue ——
(hm +l'+ ', ) =h(l+-,').-

This is the value of the angular momentum assumed
by Sommerfeld to Qt experiment, and derived in the
WEB limit of the usual quantum mechanics. "

The energy levels may be calculated by considering
a path integral along any radius with constant angles
e and p. We have to evaluate the change hW, in the
cycle, for the attractive Coulomb potential V= —e'/r.
The change is

d W„=—2~ng+ ~e'( —2p/E) &.

Again, there is a change in sign in 8'„as we pass
along the path, and this induces an additional change
in phase of —x. The total change in phase Ao-„must
equal 2xn', so that we 6nd

60.,= —2»my/h+»«pe (—2p/Eh2) &—m. =2»rn'.

'~ R. E. Langer, Phys. Rev. 51, 669 (1937).

and immediately find W~=aqg, where the constant n~

is the component of the angular momentum in the s
direction. Continued separation yields the equations

|'dW( ' 1
+ ~y' kuE(—+kZZ—'&'u = kP, —

( d$ 4$

(dW, ~' 1
l
+~o' 2PEn+2ZZ—'~'~=kP

5 dg ) 4»1

where ~p is a separation constant.
We now construct the classical amplitude R= (Dg

—
~) l.

The Van Vleck determinant is

8'8"g 8'8'„O'8' 828"]
D=

8$8E BgBP BABE 8$8P

g= II g'~ll = 2(&+~)/4 j'
In this problem we are interested only in the asymp-

"The Rutherford scattering cross section may be calculated
in many ways. The sole virtue that we claim for the present
derivation is that it exclusively uses the solutions of the classical
Hamilton-Jacobi theory in constructing the quasi-classical wave
function, and the derivation of the scattering law is analogous to
the usual derivation in quantum mechanics.
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totic solutions of the classical wave equation. As r
approaches infinity and 0 approaches x we have the
asymptotic solution for the incoming particle, and as r
approaches infinity and 0 approaches the scattering
angle 0 we have the asymptotic solution for the out-
going particle. In these limits both t and rl become
infinite and the amplitude reduces to

~=(kn) '(2I E) ' (31)

For the solution of our problem we need the asymp-
totic form of the phase. '0"e shall look for a characteristic
function 8' of the form

Il'= —(I E/2)'*(5+v)+F (5)+G(n) (32)

and assume that the component of the angular mo-
mentum in the s-direction vanishes. YVhen (32) is
substituted in Eqs. (30), we find

f dF '-dF ZZ'e'-Ii p—(2IiE)& + +—=0,
(d$ d$ 2$ 2$

~

~

dG ' dG ZZ'e'Ii p—(2pE)* + ——=0.
d'g 2g 2q

(33)

F+= (2I E)'5 k(ZZ'e'—I +p)(2uL)" »5,
F =k(ZZ'e-'u+P) '(2I E)'»5,
G+ = (2IJE)&rI

', (ZZ'e'p p) (2p—E—)& lnrI, —
G = i, (ZZ'e'pP) (2yE)& Inrl. .—

(34)

These quadratic equations, (33), are easily solved
and integrated in the asymptotic limit as $ and rl

become large. The final results are:

unit area. EVe accomplish this normalization by adding
constants to the solutions F and G.

With these changes the wave function (35) becomes

0;„=exp{iLks—e In(kiI)g}, (36)

with k = (2yE) &/5 and ri= ZZ'e2Ii/k(2yE)l. If we
normalize the outgoing wave function so that the total
number of outgoing particles is equal to the total
number of incoming particles, the outgoing wave
function becomes

4',„,= (n/irlk) exp(ifkr+ri ln(kiI)$). (37)

The asymptotic solutions, Eqs. (36) and (37), are
identical, modulo phase factors, with the asymptotic
solutions of the Schrodinger equation.

The scattering cross-section is defined as

This is the usual Rutherford scattering formula.

C. Relativistic Hydrogen Atom

The relativistic theory of the hydrogen atom is
carried through in exactly the same manner as the
nonrelativistic theory. Our first task is to find the
relativistic quasi-classical equation.

For a charged particle is a given electromagnetic
field the relativistic Hamilton-Jacobi equation is

f ps

«(O) =~.„,*e.„,r2=
i

(2k sin'(-'0) i
ZZ e

csc'(0/2). (38)
4 2F

as 85 e—+v
~

—I'c'+c' x g" —A;)
aI i c

'6&e are interested in only certa, in combinations of
the above solutions; those for which the incoming
wave is of the form e'~' and the outgoing wave is of
the form e'"". It is clear from our choice of 5' in Eq.
(32), that we must choose the solutions F++G for the
incoming wave and the solution F++G+ for the out-
going wave.

The solution for the incoming wave is then of the
form

85 e——Ap =0. 39
8g' c

i (ZZ'e'y, +P) inc
exp- (2pl') ls—

k
O'-'S

(SpE) & (40)
,Bq90.'

(ZZ'e'Ii —P) lnrl-

(g~E)'
(35) satisfies the conservation law

(2.m. )»

As in the nonre1ativistic theory, this equation defines
a quantity that is conserved in configuration space.
If we proceed exactly as in Sec. II we find that the
determinant,

This solution is not yet in the proper form since it
does not represent a plane wave nor is it normalized
properly The sepa.ration constant p, which has re-
mained unspecified in our calculations, must be chosen
so that the coefficient (bl) ' in the amplitude is
cancelled. This will occur if ZeZ"-+P=ik(2p )&E. In
addition, the incoming wave may be normalized so that
(2E/p)&=@ particles are fired each second through a

BD 1 8 (85 e
+ Q — g'"D~ —-A i ——0.

i i y, Bq — EBg c
(41)

However D does not satisfy our requirements of
Lorentz invariance. It must be replaced by the quantity,

1 85 e ) 85
1+ Q g" —-A,

i

—-Ag, (42)
p'c'*, i Bq; c i 8g' c
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which is simply

We now introduce the quasi-classical wave function

g~iS/A (43)

Equation (44) is just the Klein-Gordon equa, tion in

curvilinear coordinates with additional terms on the
right hand side.

We are now in a position to calculate the energy
levels of the relativistic hydrogen atom. The relativistic
Hamilton-Jacobi equation is

—p C-—

1 — BS)2 1 85 '-
=0 45

We reduce to quadratures by considering a solution
of the form 5= Igt+W, (y)+W—2(e)+Wq(g/g). Once
again, as in the nonrelativistic theory, we find that

where E= (Dg ')'*.

The wave function 4g satisfies the classical relativistic
wave equation,

|. 8 ' 1 8 e 8 e—gg—V gt:+—gg +-g* g'g' gg +-A )gt,
C2 Bf g~ 8g C Bg

52 1 8 8E
p2C2+ = g~g

2p Rg 2 tgg gg
I9 E

(44)
C2E 81,2

Quantization of angular momentum and energy
arise through the requirement of single-valuedness for
the quasi-classical wave function. The calculation
parallels that for the nonrelativistic theory so that we
need only quote the results: (a) The total angular
momentum, ne, has the values ntt= (t+-,'). (b) The z

component of the angular momentum, Q.q, has the
values nq=2ygtg (c). The total energy, E, has the values

E=tgc2 (1+y2/X2) —
&, (47)

where y = e2/fic and X = 22+2'+ L(t+2')2 —y2)&.

These are precisely the energy levels given by the
Klein-Gordon equation.

The correct Dirac energy levels were predicted by
Sommerfeld because he neglected the changes in phase
arising from the requirements of continuity for the
quasi-classical wave function at the boundaries of the
classical motion. It is hoped that the incorrect half-
integral quantum numbers appearing in Eq. (47) will

become the correct integral quantum numbers when
we include spin in our quasi-classical theory.

V. CONCLUSION

In this paper we have attempted to shov the richness
of classical mechanics in precisely those aspects which
have proved important in quantum mechanics.

In a future paper we shall apply the techniques
outlined here to boson fields. At the present time it
appears that one can similarly reconstruct classical field
theory so that it differs only slightly from quantum
field theory.

A more dificult problem is that of fermion fields, and
specifically the field of the spinning electron. In a paper
which follows the present one, the author has taken
his first step in this direction.

lV = & (ng n /sll—l 8)4N

j.
(P+e2/y)2 tg2c2 ne2/y2

c
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