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The Green's function method has been used to study the energy
bands of Cu for two quite different potentials. It is found that the
resulting E(k) for the two cases are very similar throughout the
Brillouin zone having the same ordering of the levels and com-
parable level separations in the conduction, low-lying excited,
and d-band regions. This implies that the calculated band struc-
ture is not as sensitive as had been previously contended. The
properties of the Fermi surfaces associated with the two theoretical
band structures are compared with the results of experimental
studies. It is found that the theoretical surfaces intersect the
hexagonal zone face in accord with experiment. The computed
radii of contact for the two cases are close to the measured values.
Furthermore, the bellies for the two cases are shown to deviate
appreciably from sphericity in agreement with the results of recent

magnetoacoustic eRect experiments. The origin of the distortions
is explained in terms of the interaction between the conduction
and d bands. The "masses" defined in terms of the cyclotron
resonances for various orbits on the Fermi surface, the low-
temperature electronic specific heat, and the dielectric constant
in the infrared region are determined for the calculated R(k). The
calculated masses are all somewhat lower (by about 10-30/&)
than the corresponding measured masses. It is believed that these
discrepancies reflect the contributions of the eRects neglected in
the individual-electron model. Finally, the sharp rise in the optical
absorption, which on the basis of the theoretical E(k) corresponds
to the onset of interband transitions between the d bands and the
Fermi level, is found to occur at an energy in good accord with
experiment.

I. INTRODUCTION

OR many years the electronic structure of metals
has been the subject of both experimental and

theoretical study. Our knowledge in this 6eld has grown
steadily, but in the last few years there has been a
particularly rapid increase. ' This has been primarily
the result of the availability of high-purity materials,
the development of new experimental techniques and
the refinement of earlier methods. The methods referred
to include the de Haas —van Alphen, ' cyclotron reso-
nance, ' magnetoacoustic, 4 high-field magnetoresistance, '
and anomalous skin e6ect measurements. ' From these
experiments a great deal of information about the
geometry of the Fermi surface and the velocity for
orbits on the surface can be obtained. 7

On the theoretical side there has been considerable
progress too. The formidable problems involving many-
electron eGects are being attacked with some success.
For example, the important problem of showing
theoretically that a "sharp" Fermi surface exists for
systems of strongly interacting electrons has been
carried out by Luttinger, s using perturbation theory
to all orders. Similarly he has also shown how the
theoretical results for some electronic properties are
modish. ed in the presence of interactions.

' See Proceedings of the Fermi Surface Conference, Coopers-
town, New York, August 22—24, 1960 /The Fermi Surface, editecl
by W. A. Harrison and M. S. Webb (John Wiley R Sons, Inc. ,
New York, 1960)j.' D. Shoenberg, reference 1, p. 74; Phil. Mag. 5, 105 (1960).' A. F. Kip, reference 1, p. 146.

4 R. W. Morse, reference 1, p. 214.
~ X. M. Lifshitz and V. G. Peschanskii, Soviet Phys. —JETE' 8,

875 (1959); N. E. Alekseevskii and Vu. P. Gaidukov, ibid. 10,
481 (1960); R. G. Chambers, reference 1, p. 100; J, R. Klauder
and J. E. Kunzler, J. Phys. Chem. Solids, 18, 256 (1961).

'See G. E. Smith, reference 1, p. 182, and references cited
there.' It must be recognized that the data obtained for metals with
more complex surfaces, particularly those having several sheets,
are generally so complicated that theoretical models are necessary
as a guide to their interpretation.' J. M. Luttinger, reference 1, p. 2.

However, the inclusion of electron-electron inter-
actions in a realistic theoretical investigation of a
specific metal still appears to be a very formidable
problem, and as a result the calculations are done at
present within the framework of the individual particle,
or band theory, model. In this area, there have been
several powerful methods developed for studying the
band structure of solids. The application of these
methods has progressed to the point where, at present,
the energy bands of a number of metals have been
calculated accurately for an extensive sampling of the
Brillouin zone. '

In terms of the experimental work the electronic
properties of copper have been more thoroughly in-
vestigated than those of any other metal. As a result its
electronic structure in the vicinity of the Fermi level
is better known than for any other metal. Each of the
experimental methods mentioned above has been
extensively applied to the study of copper and the
results have been found to 6t one consistent and
entirely reasonable picture of the Fermi surface. The
surface that has emerged from these measurements is
in a general way in accord with the model originally
proposed by Pippard. '0 This model, which is shown in
Fig. 1, consists of a central part (called the "belly" ),
which is roughly spherical like the free electron sphere,
and eight "necks" which protrude from the belly and
contact the hexagonal zone face of the Brillouin zone.
In addition a good deal is known about the velocity,
v(k) =5 'V~X(h), on the Fermi surface from the
cyclotron resonance experiments. "
I"; On the other hand, the theoretical situation for
copper has been much less satisfactory. While there

'See J. Callaway, Solid-State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1958),Vol. 7, p. 99,
which reviews the work up to 1958.

"A. B. Pippard, Phil. Trans. Roy. Soc. (London) A250, 325
(1957).

"A. F. Kip, D. N. Langenberg, and T. W. Moore, Phys. Rev.
124, 359 (1961).
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Fro. 1. A sketch of the Fermi surface of copper. The polyhedron
represents the Brillouin zone.

have been several energy band calculations for this
metal, " these have generally been restricted to only a
few symmetry points (i.e., special k s) in the Brillouin
zone. From this limited amount of information, most
of the important facts about the Fermi surface that are
of current interest, such as its shape and the effective
masses for orbits on the surface, cannot be obtained.
More serious, however, is that the results of previous
calculations often badly convicted with one another.
This state of affairs led, in fact, to the widely-held
belief that the calculated band structure of this and
other metals having high-lying d levels (e.g. , the other
noble metals and the transition metals) are very
sensitive to the details of the crystal potential employed.
If true, this would lead to the very unsatisfactory
conclusion that the results of such calculations could be
highly questionable from the physical point of view.

The investigation of this question is one of the
important motivations of this work. In order to study
the question of the sensitivity of the results to the
particular potential, we have made extensive calcu-
lations with two quite different but reasonable po-
tentials. " In one, which was originally determined by
Chodorow, " the potential is taken to be the same for
all orbital angular momenta, /, while in the other the
differences between the 6elds for diferent l are taken
into account.

For these energy band calculations, we have used the
Green's function method proposed by Kohn and
Rostoker, " and independently, but from a di6'erent

~ Reference 9, p. 193.
"Most of the results and conclusions discussed in this paper

were given in B. Segall and E. L. Kreiger, Bull, Am. Phys. Soc.
6, 10 (1961) and in B. Segall, ibid. 6, 231 (1961).The latter talk
has been written up as General Electric Research Laboratory Re-
port No. RL-2785G (unpublished). Also see B.Segall, Phys. Rev.
Letters 7, 154 (1961).

"M, Chodorow, Phys. Rev. 55, 675 (1939); Ph.D. thesis,
Massachusetts Institute of Technology, 1939 (unpublished). I.
wish to thank Dr. M. SaQ'ren for bringing this reference to my
attention.

"W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954l.

point of view, by Korringa. " The various aspects of
the method have recently been studied in detail" and
the method has been applied in extensive calculations
of the alkali metals" and aluminum, " The accuracy
and convenience of this method have been demon-
strated in these studies.

An important result of this work is that the E(k)
for the two potentials are very similar throughout the
zone so that the physical properties associated with the
bands would be nearly the same for the two. On the
basis of these results and a comparison with the earlier
work, we believe that the difhculties encountered in the
past were the result of inadequate solutions of the
periodic potential problem and not of small differences
in the force fields acting on the electrons as had been
believed. Thus, aside from effects not included in the
individual-particle framework, the results of a careful
band study of this metal can be accepted with a
reasonable amount of conMence.

The results of these calculations have also illustrated
the point that, while the location of the d bands as a
whole is somewhat affected by changes in the potential,
the relative positions of the d levels with respect to
each other are rather insensitive to the changes. The
role that these bands play in affecting the conduction
and low-lying bands is discussed.

The other principal reason for studying Cu is, of
course, the wealth of available information about it.
In this sense it is probably the best test for the band
theory of metals. From a comparison of the band
theoretical results with those determined empirically,
it would be possible to determine to what degree a
given aspect of the electronic structure is given cor-
rectly by band theory. This, of course, requires the use
of an accurate (ideally a self-consistent) potential.
While we cannot claim that the potentials employed
in this work are self-consistent, they appear to be quite
reasonable —particularly the second potential.

In Sec. IV we compare various electronic properties
of Cu derived from the calculated energy band struc-
tures with those determined empirically. %e And that
the shape of the Fermi surface is given rather well by
the band-theoretical results. Also, the onset of interband
optical transitions indicated by the theoretical E(k) is
in good accord with. observation. %e also consider the
cyclotron resonance for several important orbits on the
Fermi surface, the low-temperature electronic specific
heat, and the dielectric constant for frequencies lower
than those for the interband transitions. For each of
these properties, a mass parameter is customarily
introduced. The calculated values of these masses are
all somewhat smaller (by about 10-30'Po) than the
corresponding masses obtained from the experiments.
The significance of these discrepancies in regards the

'6 J. K.orringa, Physica D, 392 (1947)."F. S. Ham and B. Segall, Phys. Rev. 124, 1786 (1961).'" F. S. Ham (to be published'I.
' 3. Segall, Phys. Rev. 124, 1797 (1961).
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validity of the band-theoretical treatment of these
properties is discussed brieRy.
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II. THE POTENTIALS

As mentioned in the previous section, the calculations
have been carried out for two diGerent potentials. The
first was the one constructed by Chodorow over twenty
years ago."He, in eGect, computed it by determining
the "effective" field for the 3d Hartree-Fock function
for the free Cu+ ion. That is, he determined a 6eld
which when used in an ordinary Schrodinger equation
(i.e., without an exchange operator) for 1=2 yielded a
function which closely agreed with the 3d Hartree-Fock
function" for Cu+. To this he added the contribution
of a "metallic" s electron function which is the s
function for an average energy. The use of this V(r)
as the crystal potential involves, of course, invoking
the Wigner-Seitz approximation. In this approximation
it is assumed that all conduction electrons, except those
for the unit cell under consideration, are excluded from
the cell by the correlation and exchange interactions.

From the foregoing description, we can see that
Chodorow's potential most closely represents the fields
felt by a d electron. For this potential, as for most
others employed in band calculations, the same po-
tential is used for all angular momentum components
of the wave function. This is done since a more general
potential cannot be conveniently handled by most of
the methods used for studying energy bands. In general
the effective potential for the various / values differ,
principally because of the diferent exchange contri-
butions. In some cases, for example Al, Li, and Na,
these differences are not too important. For Cu,
however, we might expect some significant diGerences
since the exchange contribution for a d electron, which
is principally the exchange with the other nine d
electrons and the one conduction electron, is definitely
larger than the exchange interaction of one conduction
(s or p) electron with the ten d functions. There is also
a difference which results from the fact that the
Coulomb contribution of the former is for one conduc-
tion and nine d electrons while that for the latter is for
ten d electrons.

Chodorow was aware of the fact that the potential
might be inaccurate for /&2, but he was primarily
interested in the d bands for which the potential is
quite reasonable. Now, the conduction states nea, r
E=Zr are largely s and p in character, and we are
presently most interested in these states. Also, it is t.o
be noted that the Green's function method, the one
used for this work, can handle an /-dependent (i.e.,
operator) potential in a straightforward manner in
contrast to other approaches.

With this in mind, we have attempted to determine
a potential which more accurately reQects the di6'er-

2'D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A157, 490 (1936).
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Fra. 2. The "charge" 2Z&(r) = rU&(r) for the c—rystal potentials
used in the calculations. The V~(r) is the l-dependent potential
described in the text. The dashed curve is for Chodorow's
potential.

"D. S. Story (private communication).

ences in the fields experienced by the s, p, and d
electrons. To do this we used the core and d-electron
Hartree-Fock functions for neutral copper2' which were
renormalized in the equivalent (or Wigner-Seitz)
sphere. For the l = 2 potential, the Coulomb and
exchange contributions were computed for a "con-
figuration" which included in addition to the core and
d electrons a renormalized s function. The s function
was calculated for the "average" energy E(I'&)+sEr,
where the energy at the zone center E(I',) and the
Fermi energy Ep were estimated in advance. The
estimated values were later proved to be su%ciently
accurate for this purpose. The Coulomb and exchange
contributions for 3=0 and 1 were also computed in a
straightforward manner except that s and p functions
for the estimated Fermi energy were used in evaluating
the exchange integrals. This was done because we are
most concerned about these functions for E=Ep. The
potentials for t&2, for which less accuracy is required,
were taken to be equal to the l =0 term. As for the other
potential, the Wigner-Seitz approximation is used.

For comparison purposes, the functions 2Z~(r)
rVr(r), where V~(r) is —the Geld for angular mo-

mentum 1, are shown in Fig. 2. The corresponding
expression for Chodorow's potential is also shown
(dashed curve).

As indicated above, we believe that the second
potential is somewhat more realistic than Chodorow's.
Of course both potentials are approximate in a few
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TABLE I. The energies for points of high symmetry for copper. The unit of energy is the rydberg.

State

~1
I 25'

X1
X3
X2
X5
X4
X1
L1

L3
L2~
L]
E1
E1
Es
E4
E2
IC3
E1
W2
8'3
8'1
8'1
S'3

8"1

Chodorow's
E(k)

—1.041—0.649—0.59—0.76—0.748—0.546—0.525—0.22

—0.77—0.642—0.528—0.43

Present j& (lx),
Chodorow's

potential

—1.043—0.644—0.584—0.781
—0.745—0.541—0.526
—0.224
+0.169—0.778—0.648—0.539—0.422—0.081
—0.743-0.712—0.613—0.573—0.541—0.016
+0.074—0.726—0.673—0.585—0.526
+0.118
+0.258
+0.294

I (h),
present

potential

—0.836—0.505—0.433—0.666—0.630—0.383—0.366—0.029
+0.389—0.646—0.511—0.380—0.247
+0.189—0.620—0.587—0.463—0.419—0.384
+0.168
+0.254—0.607—0.537—0.438—0.365
+0.310
+0.395
+0.676

Z (k) —E(I'g),
Chodorow's

potential

0
0.399
0.459
0.262
0.298
0.502
0.517
0,819
1.212
0.265
0.395
0.504
0.621
0.962
0.300
0.331
0.430
0.470
0.502
1.027
1.117
0.317
0.370
0.458
0.517
1.161
1.301
1.337

z(k) —z(rg),
present

potential

0
0.331
0.403
0.170
0.206
0.453
0.470
0.807
1.225
0.190
0.325
0.456
0.589
1.025
0.216
0.249
0.373
0.417
0.452
1.004
1.090
0.229
0.299
0.398
0.471
1.146
1.231
1.512

respects. Neither is self-consistent for the solid. Also,
except for the crude correlation correction implicit in
the signer-Seitz approximation, the many-electron
aspects of the problem are neglected. The problem of
how to include these correlation effects in the study of
a real metal is, at present, one of the most important
and challenging in the theory of solids.

The 6nal approximation involved is the use of the
"muon-tin" potential form. A V(r) of this form is
spherically symmetric inside the sphere inscribed in the
polyhedral cell and is constant in the remainder of the
cell. The constant value of the potential is taken to be
equal to the average of the potential in the region of
the cell outside the sphere. The constant value for
Chodorow's potential is —0.937 ry and that for the
second potential is —0.900 ry. The use of the muffin-tin

I'"zG. 3. The Bril-
louin zone for the
face-centered cubic
structure with points
and lines of high
symmetry.

potential involves a relatively small error as we will
later show.

It is, of course, true that it is very diKcult to estimate
the magnitude of the errors associated with the 6rst
two of the three approximations discussed above.
However, it is our belief, based on the present and past
band theoretical studies, that the general features of
the electronic structure are given correctly by the
results of an accurate energy band calculation. The test
of the validity of this belief will be the comparison of
the results of calculation with experiment. As mentioned
in the previous section, Cu is at present the ideal metal
to test.

Before going on to the results of the calculations, it is
desirable to remind the reader of the Brillouin zone for
the face-centered cubic structure. This is shown in
Fig. 3 in which the points and lines of high symmetry
are indicated. In this work we will use Bouckaert,
Smoluchowski, and Wigner's22 notation for the irre-
ducible representations associated with these points
and hnes. The eigenvalues for points along these axes
have been calculated along with points in a (110)plane.
The free electron Fermi sphere for copper comes out
about 0.90 of the way from the center of the zone, I',
to the nearest point on the zone surface, L.

The energy levels in the conduction, low-lying

"L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys.
Rev. 50, 58 (1956).
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excited, and d-band regions for all the principle syln-
snetry points t i.e., 1', L, X, E(U), and W'1 are given in
Table I. In the third column we have tabulated the
eigenvalues for Chodorow's potential. These are to be
compared with the energies obtained by Chodorow»"

using Slater's augmented plane wave method. " His
results, which were limited to the symmetry points I',
X, and I., are listed in the second column. It can be
seen that the two sets of eigenvalues are in very good
accord. Except for the lower X» level for which his
result is given to two 6gures only and where the results
diRer by 0.02 ry, the two sets of energies deviate from
each other by less than 0.01 ry.

More recently Burdick'4 has also calculated the E(k)
for Chodorow's potential using the augmented plane
wave method. His eigenvalues for all the symmetry
points in the zone are found to agree very closely with
our values for the same potential.

The symmetry point E(k)'s for the I-dependent
potential are given in the fourth column of Table I.
As it is more meaningful and convenient to compare
the relative energies, the symmetry point energies with
respect to the I'» level are given in the fifth and sixth
columns for Chodorow's and the second potential,
respectively.

The most important feature of the comparison of
the relative E(k)'s for the two potentials is their very
close similarity for all the symmetry points. The
ordering of all the levels for a given symmetry point
is identical for both. Further, the level separations are
nearly the same. This, of course, implies that the band
structure for both of these quite different potentials are
very similar throughout the Brillouin zone. Our calcu-
lations for more general k, to be discussed below, will

illustrate this more graphically.
A closer comparison of eigenvalues provides an

illustration of the fact that by using for the s and p
components the U(r) which is appropriate for the d
electrons, one is, in eRect, including too large an
interaction for 3/2. This is most easily seen for the
states at I' where the complicating eRects of the inter-
action between the s and d bands do not enter. There
we see erst that the d-state separation, E(Fts) —E(Fss ),
is very close for the two cases. On the other hand, the
s state, I'», is depressed with respect to d levels about
0.06 ry more for Chodorow's than for the l-dependent
potential, in which. the diRerences in the 6elds for the
various l are treated more appropriately.

To illustrate the nature of the energy bands for
copper we show, in Fig. 4, the E(k) for the 1-dependent
potential for k along the (111) axis. The bands for a
free electron (dashed curves) are also given in this
figure. The differences between the E(k) for copper and
the free electron are quite marked. First of all, the d
bands —which might be dered as the states in the
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FIG. 4. The calculated energy bands for Cu along the (111)
axis for the l-dependent potential.
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energy range from around the lowest I.» to the upper
I.3 state —lie practically in the middle of the 6rst free
electron band. The other point in which they diRer
greatly is that for the real metal there is a large gap at
L Li.e., E(Lr) —E(Ls )].

With these features in mind we can better understand
Figs. 5 and 6 in which the E(k) for Chodorow's and the
second potential are shown for the various symmetry
axes within the Brillouin zone and on the zone surface.
For comparative purposes we show in Fig. 7 the corre-
sponding bands for a free electron (dashed curves) and
for the metal aluminum, " which also has the face-
centered structure. We note that in marked contrast
to Cu, Al has bands which bear a striking resemblance
to those of a free electron. The essential diRerence
between its E(k) and that of the free electron is the
small splittings of the specifically free-electron
degeneracies.

"J.C. Slater, Phys. Rev. Sl, 846 (1937).~ G. A. Burdick, Phys. Rev. Letters 7, 156 (1961).

FIG. 5. The calculated energy bands for Cu along the various
symmetry axes in the Brillouin zone and. on the zone surface for
Chodorow's potential.
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COPPER

(O,O,OI
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Fxo. 6. The calculated energy bands
for Cu along the various symmetry
axes in the Brillouin zone and on the
zone surface for the l-dependent
potential.
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We will comment only on the general characteristics
of the energy bands depicted in Figs. 5 and 6. As we
would expect from our discussion of the symmetry
point energies, the E(k) for the two cases are indeed
very similar throughout the Brillouin zone. The simi-
larity between the d bands for the two is particularly
striking. The major difference is that the s and p levels
for Chodorow's potential are generally about 0.2 ry
lower than those for the second potential and the d
levels about 0.12—0.14 ry lower. This, of course, directly
reflects the differences in the potentials which are
evident in Fig. 2. The region of importance for the s
and p electrons is from about r= 2.0 to 2.7 atomic units
(a.u.), and there the potential for /=0 and 1 is weaker
than Chodorow's by roughly 0.2 ry. For the case of the
d electrons, the crucial region is in the neighborhood of
r=1 a.u. near where the l=2 wave function peaks. Here
the d potential is weaker than Chodorow's by about
0.1 ry.

For both cases, the d bands lie in the middle of the
6rst free electron band throughout the zone. The
widths of the d band are about 3.5 ev and 4.1 ev for
the E(k)'s based on Chodorow's and the l-dependent
potential, respectively. Also there are large gaps at X
and I.with the p-like states, X4 and I.s, lower than the
s-like states, X~ and l.~, for both cases. The gap at I
is 4.6 ev for the 6rst and 5.9 ev for the second case."

There is another feature of the bands which has

'~ It is interesting to note that in their attempts to 6t the Fermi
surface using admittedly rough models of the energy bands, both
A. B.Pippard, reference 10, and J.M Ziman, Advances ze Physics,
edited by N. F. Mott (Taylor and Francis, Ltd. , London, 1961),
Vol. 10, p. f, concluded that the gap at I, is large. Their values
are, in fact, somewhat larger than we have found.

important implications for the nature of the Fermi
surface. For a given ~k~, the conduction band state in
the (110) direction (Zt) has a higher energy than that
in the (100) direction (hr) which in turn lies higher than
the state in the (111)direction (At). As this fact cannot
be seen easily in the other curves, the energies for the
Z», A~, and A~ conduction band states are plotted in
Fig. 8 as a function of

~
k~ for both potentials.

All of the results presented so far have been obtained
for potentials of the "muf5n-tin" form, V .«. (r). As
the question of the eGect of using this approximation
often arises, we will estimate the shifts of the I 2, L~,
X4, and Xt levels due to 8V(r) = V(r) —V .s.(r) using
first-order perturbation theory. Since the procedure for
carrying this out has been given elsewhere, '~" it will
not be repeated here. We will note only that, as one
might expect and as we have demonstrated for AI,
almost the entire perturbation comes from the regions
outside the inscribed sphere. "

The perturbing potential, which arises primarily from
the 6elds of the near neighbors, cannot be determined
simply from the approach used in Sec. II. To estimate
6V(r) we take the total V(r) to be given by a super-
position of potentials centered at the atomic sites, i.e.,
P; U(jr —R;~). The U(r) are taken to be the fields for
the neutral atoms with the total charge of each being
normalized to an equivalent sphere. A term, calculated
by Behringer, 26 was added to correct for the fact that
the charge density is not properly represented by a
distribution of charges con6ned within the equivalent
sphere.

The resulting erst-order shifts of the levels being
"R.E. Behringer, J. Phys. Chem. Solids 5, 145 (1958).
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Fxo. 7. The energy
bands for a free electron
(dashed curve) and for
Al for the various sym-
metry axes in the Bril-
louin zone and on the
zone surface.
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considered are EE(Ls )=EE(Xt)= EE(X4 )—=0.004
ry and DE(L&) = —0.003 ry. It is seen that the per-
turbations are indeed small. The d levels would be
perturbed even less since their wave functions are much
smaller in the corners of the polyhedral cell than are
those for the states just considered.

Before concluding our discussion of the energy band
calculations, it would be interesting to compare them
with some of the previous results in the literature. This
is important because as a result of the bad discrepancies
among some of the earlier results, considerable doubt
was raised as to the value of such calculations for metals
like Cu.

In Table II we have listed the conduction and 6rst
excited band energies obtained in most of the published
calculations on Cu. To facilitate the comparison all
energies are given with respect to the F~ level. It is
apparent that there are a number of signi6cant dis-
crepancies. Perhaps the most glaring differences are
seen in the orderings of the s and p levels for the gaps
at X and L. In the works of Tibbs "Howarth (1953) '

and Howarth (1955)," the s-like state Lt is found to
lie lower than the p-like state Ls in marked disagree-
ment with the results discussed earlier and with those
of Fukuchi. ' The Xt state (s-like) is also lower than
the X4 state (p-like) in Howarth's 1955 results, and
while the order is the opposite in his j.953 vrork the
separation of the levels, E(X&)—E(X4 ), is very much
smaller than that found in the present and in Fukut. hi's
work.

Of these previous studies it is apparent that I ukuchi's
results for the symmetry point eigenvalues, obtained
by the OP% method, most closely agree with our
results. The agreement is better for the states with p
character than those with s symmetry. It is to be noted
that Fukuchi also calculated the E(k) along the (100),
(111),and (110)axes and found rather free electron-like
bands connecting the I'~ level to those on the zone
surface. This is, of course, incompatible with our E(k)
(see Figs. 5 and 6) and results from his neglect of the
d bands. This neglect is probably also responsible for
the fact that his s-like states are lower than ours. This

TABLE II. Energies for the conduction band and 6rst excited
band states obtained in earlier calculations. The energies are given
relative to the s state at the center of the zone, F&, in rydbergs.

TAmx III. Energies for the d band states obtained in earlier
calculations in rydbergs.

Tibbs Howarth (1953) Howarth (1955)' Fukuchis

Lm. 0.64
Lg 0.43
X4.
XI
E'3
+I

0.78
0.651
0.80
0.84

0.680
0.576
0.856
0.729
0.449
0.440

0.586
0.889
0.783
1.174
0.938
1.022

a See reference 27. The energies are interpolated to the observed lattice
constant.

& See reference 28. The results for the Hartree-Fock potential are quoted.
o See reference 29. The results for the Hartree-Pock potential are quoted.
& See reference 30.

~12
I 25'

X1
X2
Xe
Xg
LI
L3
L3

ss See reference 28.
& See reference 29.

Howarth (1953)'
—0.195—0.235—0.12—0.13—0.344—0.088—0,248

Howarth (1955)s

—0.155—0.054—0.335—0.106—0.074—0.066—0.276—0.146—0.065

'~ S. R. Tibbs, Proc. Cambridge Phil. Soc. 34 89 (1938)."D.J. Howarth, Proc. Roy. Soc. (London) Jt220, 513 (1953).
29 D. J. Howarth, Phys, Rev. 99, 469 (1955)."M. Fukuchi, Progr. Theoret. Phys. (Kyoto) 16, 222 (1956).
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-comes about because the conduction and excited states
"interact" with the d-band states in such a way that
the s states are pushed upwards. This interaction"
will be discussed below.

Of these earlier investigations, the only ones beside
Chodorow's in which the d bands were studied were
Howarth's 1953 and 1955 calculations. The results for
these are given in Table III. Comparing the relative
positions of these levels among themselves with the
corresponding separations in Table I, we And fair
agreement for several and appreciable disagreement for
the others.

Ke have already commented on the general agree-
ment of the Z(k) for the second potential and
Chodorow's. In our discussion above, we also noted
the reasonably good accord with Fukuchi's energies
obtained with still another potential and by another
method. As mentioned above, the agreement would be
still better had he taken the d states into account.
From these comparisons, and from our experience with
other calculations, we conclude that the energy bands
are rot extremely sensitive to the details of the po-
tentials as had been contended in the past. It appears
that the earlier discrepancies must have been due to
inadequate methods of solving the periodic potential
problem or to the improper application of accurate
methods.

%e are, of course, not contending that differences in
the potentials are completely unimportant, but merely
that small differences in the V(r)'s lead to only small
changes in the eigenvalues. Vfe have, for example,
shown that the use of the muon-tin potenti. al leads to
shifts of about 0.005 ry. By far the most sensitive
feature of the calculations of metals like Cu is the

position of the d bands as a whole with respect to the
other levels. But the present work shows that even
this can be given without too great an uncertainty by
the use of a reasonable potential. This will be borne
out in the next section where we compare the con-
sequences of these results with experimental 6ndings.

IV. COMPAMSON WITH EXPKMMENT

The Shape of t4e I"errni Surface

+.2—

&(k) =—0'kP/2m" + E(k„),

2
-.3-

L2~

F?G. 9. The calculated conduction band for Cu on the inter-
section of a {110)plane and the hexagonal zone face. The abscissa
kz is the component of k lying in the hexagonal face. The solid
curve gives the E{k)for the l-dependent potential and the dashed
curve that for Chodorow's potential.

The geometry of the Fermi surface for copper has
been studied or, at least in some aspects, checked by
all of the experimental methods noted in Sec. I and as
a result it is probably the best known aspect of the
electronic structure. It thus provides one of the most
crucial checks for the calculated energy bands.

As indicated in Fig. 8, the conduction band is far
from spherically symmetric and it has its lowest energy
along the (111) axis. This relative depression of the
conduction band in the (111)direction is the property
of the energy bands that is required in order for the
Fermi surface to contact the zone surface in the vicinity
of the point I Li.e., kl, ——(2w/a)(-'„—.,',—,')$.

Ke wish, however, to establish this point more
conclusively. Also, we want to determine the Fermi
level Eg and the parameters characterizing the Fermi
surface quantitatively. This, of course, could be ac-
complished directly by calculating the E(k) at a large
number of general points in the zone to obtain constant
energy surfaces and the density of states. It is possible
to avoid this by using two simple approximations.
First we employ the simple expression
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TABLE IV. The theoretical and experimental "neck" and average "belly" radii for the Fermi surface of copper. The theoretical values
are given for the band structures based on the two potentials used in this work. The values tabulated for the de Haas-van Alphen
experiments are the radii of circular cross sections having areas equal to those obtained from the measurements. All the tabulated wave
vectors are given in units of 10' cm '. For comparison the radius of the free electron sphere is 1.365&&10' cm '.

"Neck radius"

Average "belly" radius

Fermi surface,
Chodorow's potential

0.20a0.03

1.35~0.02

Fermi surface,
present potential

0.28+0.03

1.33+0.01

Experimental

0.26'
0 28bo

1.38" (H~~(111))
1.40bo (H~((100)}

& See reference 31.
~ See reference 2.
& See Vote added in proof.

to give the energy for k in the neighborhood of I.. In
Eq. (1) k= k,+k, ~ where k, and k» are the components
of the wave vector perpendicular and parallel to the
(111) axis, and m* represents the effective mass for
motion transverse to the axis. One can show, using the
k p perturbation approach, that Eq. (1) is correct up
to fourth-order terms in the components of k —kl.. As
we will require Eq. (1) only for small k —kz, , it is
evident that the expression is very accurate.

In order to fit the eRective-mass parameter entering
Eq. (1), the conduction band energies for k on the
intersection of a (110) plane and the hexagonal face
have been calculated. These E(k), which connect the
I 2 levels to the E3 levels, are shown for both potentials
in Fig. 9. The masses obtained by 6tting the bands
near the Fermi levels, which are close to the I.2 levels,
are 0.4 mo in both cases.

In the other approximation we take the volume of
the belly to be that of a sphere with a radius k which
is the mean of the wave vectors in the (100) and (110)
directions. %e have already noted that the calculated
belly is not very spherical; but from what we will learn
about the shape of the Fermi surface we can see that
the approximation is not unreasonable. Vfe would

judge that this approximation might lead to an error
of a few percent (say 3—5%) in the volume of the belly.
The estimated error associated with the use of Eq. (1)
is less than this.

On the circle at which the neck joins the belly, the
relation te'=k~'+k~P is satisfied. From this and Eq.
(1), the limits of k, ~ for the neck region are found for a
given energy. The neck volume is then obtained by a
straightforward integration. By adding the volume of
the eight necks to that of the sphere and making a
small correction for the eight spherical caps which have
been included twice, the total volume within the
constant energy surface is evaluated. The Fermi energy
Ep is then determined by the requirement that the
enclosed volume equal one-half the volume of the
Brillouin zone so that the correct number of states are
occupied.

By this means the E,J: associated with the energy
bands for the l-dependent potential was found to be
—0.183~0.010 ry while that for Chodorow's potential

is —0.385~0.010 ry. The ranges of uncertainty indi-
cated for these Ep result from the estimated uncertainty
in the belly volume.

Since the calculated Ep levels for both potentials
lies higher than the energies of the I 2 states, the Fermi
surfaces for both intersect the zone surface. Further,
the radius with which the neck contacts the zone
surface, kz, can readily be found from Fig. 9 or from
Eq. (1) for E(k) =EF and k~ [ =kI ~ The calculated neck
radii, kz, the average belly radii, tt&, for the two band
structures are given in Table IV, along with the corre-
sponding values obtained from the de Haas —van Alphen
effect' and magnetoacoustic eRect" measurements. The
measured period in 1/H of the de Haas —van Alphen
oscillations is related to the Fermi surface by the
relation P= m2e/h Se, where Ol is an extremal cross-
sectional area normal to the magnetic field. The radii
tabulated for these measurements are defined in terms

CQPPER

FIG. 10. The intersections of a I,110) plane with the surfaces of
constant energy for Cu for the l-dependent potential. The esti-
mated Fermi energy is —0.183&0.010 ry. The dashed curve is
the intersection with the free-electron sphere.

3' R. W. Morse, A. Myers, and C. T. Kalker, J. Acoust. Soc.
Am. 33, 699 (1961).
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COPPER

Fro. 11.The intersections of a (110) plane with the surfaces of
constant energy for Cu for Chodorow's potential. The estimated
Fermi energy is —0.385+0.010 ry. The dashed curve is the
intersection with the free-electron sphere.

of equivalent circular cross-sectional areas. It is seen
that both of the calculated k~'s agree fairly well with
the two difterent experimental values. It is to be noted
that the de Haas —van Alphen values for k~ are not on1y
higher than the theoretical values but are larger than
the free electron sphere radius kp. It is dificult to
understand why these values should not be less than
kp by a few percent because of the 6nite fraction of
the volume (about 5—10%), within the eight necks.
This discrepancy, evidently, cannot be attributed to
many-electron eBects for t.uttinger 2 has shown that
the volume within E(k)=Ep is not altered when the
electron-electron interactions are taken into account.
Thus, if the experimental values are too large to this
extent, as appears to be the case, there would be no
appreciable disagreement with the calculated values. '"

On the basis of his recently obtained E(k) for
Chodorow's potential, Burdick'4 has also studied the
shape of the Fermi surface. His results appear to be
similar to ours.

The final aspect of the shape of the Fermi surface
that we will discuss are the energy contours in a (110)
plane. A few of these are shown for the l™dependent
potential in Fig. 10 and for Chodorow's potential in
Fig. 11. In Fig. 10 the contour for the estimated Ep is
close to the curve for the highest energy, while in Fig.
11 it is between the two lowest energy curves. The
general features of the shape of the surfaces are clearly
the same in both cases. The most interesting feature of
these curves, aside from the substantial region oI
contact for E=Ep, is the fact that we 6nd that the
bellies of these Fermi surfaces are not nearly as spherical

3' J. M. Luttinger, Phys. Rev. 119, 1153 (1960).
"~ See Pote added ja proof

as was found by Pippard" using the anomalous skin
effect. These surfaces tend to be pulled out along the
(100) axes and pushed in along the (110) axes. This
particular distortion eGect has recently been observed
by Morse et al." using the magnetoacoustic effect.
4Vhile they do not present any numerical values for
the main section of the surface, it is clear from their
Fig. 1 that not only are the calculated distortions in
the same direction but that they are of the same
magnitude as the observed ones. It should be noted
that Pippard's surface exhibits distortions in the same
direction but of a, smaller magnitude (about s of the
present ones). "

These distortions result from the fact mentioned
earlier, that for a given

~
k~ the conduction band states

along the (110) direction is higher than that along the
(100) direction (see Fig. 8). We will see that this in
turn is related to the occurrence of relatively high-lying
d bands in this metal and their interactions with the
other bands. " The conduction bands are selectively
"repelled" by the d-band states of the same symmetry
through an admixture of d component in their wave
functions. Since the lowest conduction band state at
the end of (100) axis ha, s X4 (p-like) symmetry, and
since this symmetry cannot occur for the d bands, this
state is not repelled. The states near X4 will have only
a small admixture of l=2 component and will con-
sequently only weakly "interact" with the lower bands.
The states for the (110) direction, on the other hand,
will interact fully with the d bands all the way out to
the zone surface. As a result the Z» states will lie higher
than the A, states for the same

~

k ~.
This argument applies equally well to the other noble

metals for as we have shown elsewhere the ordering of
the conduction band states is the same for them as for
Cu." It is noteworthy that these deviations from
sphericity have also been observed in Au." Silver has
not as yet been investigated as thoroughly as the other
two because samples of su%ciently high purity have
not been available.

Cyclotron Masses

Through the cyclotron resonance studies a great deal
of knowledge has been obtained of the derivative
properties of the Fermi surface, that is, the difference
between neighboring constant energy surfaces for
E=E~. In their extensive investigations on Cu, Kip,
Langenberg, and Moore" have determined the cyclotron
masses for many of the various possible orbits on the
Fermi surface.

The cyclotron mass m„ for a given orbit, is defined by

3' For example, see M. Saffren, reference 1, p. 341."B.Segall, Bull. Am. Phys. Soc. 6, 145 (1961);6, 231 (1961),
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where ~~ is the component of the velocity normal to thc
m.agnetic 6eld and the integral is taken around the
orbjt, , This can readily be transforIned iogo '

[ioo]

2~ RI."
—)iiol

where A (krr) is cross-sectional area of the Fermi
surface in the plane klr=a constant, which is perpen-
dicular to magnetic Geld H.

The cyclotron masses for a fcw of the principal orbits
have been calculated. The orbit for which we can
compute m, most accurately is the "dog's bone" orbit
which is illustrated in Fig. 12(b). The velocity for this
orbit, which occurs for H in a (110) direction, can be
obtained from the energy contours in the (110) plane
that we have already obtained (see Figs. 10 and 11).
Using either Eq. (2) or (3) we obtain the values
sss, = (1.13~0.06)ssss and (1.12a0.06)ms for the case
of Chodorow's and the 1-dependent potcntia&, respec-
tively. The measured mass is (1.24)ssss."

The extremal belly orbit for Il in the (100) direction
is shown in Fig. 12(a). As we have not calculated the
energy contours for the (100) plane, we cannot com-
pute the velocity all along the orbit. %e can, however,
compute the velocities along the (100) and the (110)
axes. We 6nd from these and from the values at other
points on the belly, that v(k) does not vary much over
the main part of the surface. It is then possible to
evaluate Eq. (2) by using an average value of t', for the
orbit, which is taken to be the mean of e| for the (100)
and (110) axes. For the path length we take the value
2xk~. By this means we arrive at the mass value of
sos, = (1.2+0.1)ms for the ftrst and (1.1*0.1)me for the
second band structuI'cs. Thc experimental value is
1.38 m,o."

To evaluate the mass for orbits about the neck we
make use of the fact that the energy contours on the
hexagonal face must have hexagonal symmetry, and
thus must then be rather circular. This approximation
is consistent with Eq. (1) which, as we noted earlier,
is quite accurate for small k—kr, . With this approxi-
mation, the neck mass can readily be calculated, and
the values that we find for it are (0.39a0.02)nzs for
the case of Chodorow's and (0.41+0.02)ms for the case
of the second potential. This is close to the same value
as was found before for the effective mass m~ used in
Eq. (1), and results from the nearly parabohc de-
pendence of E(k) on ks. For comparison, the experi-
mental neck mass is found to be 0.6 mo."

As we can see, the agreement between the calculated
and measured cyclotron masses is only semi-
quantitative. The calculated values are all lower (by
about 10—30%) then the experimentally determined
values. It is interesting to note that similar discrep-

'~ J. M. Ziman, Electrons and Holes (Clarendon Press, Oxford,
1960), p. 514.

(aI (bj

Flo. 12. Two orbits on the Fermi surface of Cu. The drawiiig
(a) represents the extre|nal "belly" orbit for II!i(100) and (b) s,
"dog's bone" orbit for IIli(110).

ancies have been found for the other metals for which
a comparison between theoretical and experimental
cyclotron masses is possible (e.g. ,""" Al). It is
believed that these discrepancies are due to CGccts not
included within the framework of the individual
electron model, speci6cally the electron-electron inter-
actions and electron-phonon coupling. As yet the
contribution from electron correlations has not been
treated adequately for real metals. Studies of the
electron-phonon interaction indicate corrections to the
masses of the order of magnitude of the discrepancies. "

Another noteworthy point about the masses is the
relatively small value of the neck mass in comparison
to those for orbits on the belly. This fact can be under-
stood in terms of the previously discussed interaction
between the conduction and d bands. As Cohen"
pointed out, this interaction, which vanishes at I for
the J~ state, strongly affects the curvature of the
bands in the directions transverse to the neck. The s
level L&, which is at a higher energy, does not contribute
to the mass for these directions. The CGect is important
here because of the close proximity of the I., (d-like)
and Lg levels.

"T.W. Moore and F. %'. Spong (to be published).
"W. A. Harrison, Phys. Rev. 118, 1182 (1960)."J.J. Quinn, reference 1, p. 58.
~ M. H. Cohen, reference 1, p. 1'l6.
"S. Roberts, Phys. Rev. 118, 1509 (1960); L. G. Schulz,

A|fsarsces ia Physics, edited by N. F. Mott (Taylor and Francis,
Ltd. , London, 1957), Vol. 6, p. 102.

4' For example, see M. Suffczynski, Phys. Rev. 117, 663 (1960}.
~ N. F. Mott, Phil. Mag. 44, 187 (1953).

Optical Properties

In the optical studies of Cu, a sharp rise in the
absorption constant which is attributed to interband
transitions has been observed to occur at 2.2 ev.40

These transitions have in the past been interpreted
either as transitions from the Fermi level to one of the
excited bands" or from the d bands to the Fermi level. 4'

For the theoretical energy bands (shown in Figs. 5
and 6) the lowest energy optical transitions would occur
from the d-band states near the upper I.3 level to the
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where the first integral is over the occupied conduction
band states and the second integral is over the Fermi
surface.

As mentioned in the discussion of cyclotron reso-
nance, we have only computed the velocity for a few
lines and points on the Fermi surface and so cannot
directly carry out the surface integral. However, we
have already noted that the velocity on the belly
appears to be relatively constant except near the neck.
The velocity on the neck is obtained from the results
illustrated in Figs. 10 and 11. and from the fact that
necks are nearly cylindrically symmetric Lsee Fq. (1)].
Using the above facts and again approximating the
belly by a sphere with an average radius, the integral
can be readily evaluated. We then 6nd for the optical
mass the values (1.36a0.1)mo and (1.3a0.1)mo for the
cases of Chodorow's and the l-dependent potential,
respectively. In comparison the experimental value is
(1.44&0.01)m0.4' The comments made concerning the

4' One can note from Figs. 5 and 6 that an allowed transition
between the. d 5 d levels and the d1 state on the Fermi surface
would occur for very nearly the same energy as for the transitions
at I.However, states from this region of the zone contribute much
less to the combined density of states than the states near L.

'4 M. H. Cohen, Phil. Mag. 49, 762 (1958).

states at the Fermi level near I," which are mainly
p-like. The calculated transition energy is about 2.7
ev for the l-dependent potential and about 2.1 ev for
Chodorow's potential. For a priori calculations like the
present ones, this agreement with experiment must be
considered quite good, particularly as it involves the
location of the d bands. (The nearly perfect agreement
for Chodorow's potential is probably fortuitous. )

This good agreement is gratifying as it provides a.

good deal of conhrmation of the general correctness of
the calculated E(k). For it has been found that the
position of the d bands as a whole, relative to the other
bands, is about the most uncertain feature of results.
The positions of the d levels with respect to each other,
for example, are given with much less uncertainty. A
similar statement holds for the conduction band states
except for the shifting of some conduction band states
due to the interaction with the d bands.

At frequencies much lower than those associated with
interband transitions, the real part of the dielectric
constant, e(~) = e~(~)+ie2(&u) can be shown to have the
form eg ((a) =2 —~~'/co' if ~7))1, where v- is the
relaxation time. In analogy with the case of free
electrons an optical eRective mass m, ~ is defined by the
relation ~„'=4xe'E,ns, ~ ', where E, is the density of
conduction band electrons. This ma, ss in turn is related
to the ba,nd structure by'4

discrepancies between band theory and experiment for
the cyclotron masses are pertinent here.

iV(Ep) =
(2m)'

i
gradj, E(k) i

where the surface integral is taken over the Fermi
surf".ce. Alternatively, X(Ez) can be expressed as

2 BVI, (E')
-'i (E') =-

(2~)' aE It„
(7)

where VI, (E) represents the volume enclosed by a
constant energy surface.

The experimental values of y are customarily ex-
pressed in terms of a specific heat eRective mass, mz,
which is defined by

y/go ——nor/nz(,

where pp and pip are the free-electron values of the two
constants.

Equation (7) is a particularly convenient form for
our present purpose as we have already determined the
volume as a function of energy in order to find the
Fermi energy. Using this, we obtain for the specific
heat mass the value mr = (1.17a0.06)mo for Chodorow's
potential and (1.12~0.06)mo for the i-dependent
potential. The measured value of nor is (138&0.01)mo"
The discrepancy between the band theoretical and
experimental results is roughly the same as for the
cyclotron resonance masses, presumably for similar
reasons.

From these results and from our values of the optical
mass, m, ~, we can see that the ratio mr/m, ~ is definitely
less than unity. This is in accord with Cohen's'4 in-

equality for the case of a Fermi surface having an
appreciable area of contact with the zone surface.

This theoretical study of the electronic structure of
Cu was undertaken with two principal aims in mind.
First, we wished to see if, as has been widely contended. ,
calculated energy bands of Cu are so sensitive to the
details of the potential that they would be of doubtful

4' Vif. S. Corak, M. P. Garfunkel, C. B. Sa.tterthwaite, and A.
Wexler, Phys. Rev. 98, i9 (1955); J. A. Rayne, Australian J.
Phys. e, ~89 (~95~).

The electronic contribution to the specific heat of
a normal metal at low temperature varies linearly with
temperature, C,i=yT, with the constant y being given
by

y = -', m'k'1V(E p).

The density of states at E=Ep, 1V(EI), is related to
the band structure by the well-known relation



FERM I SURFACE AN D ENERGY BAN DS OF Cu 12i

TABLE V. Comparison of the calculated cyclotron resonance, electronic specihc heat, and optical masses with the values obtained from
experiment. The calculated masses are given for the band structures based on the two potentials discussed in the text. The tabulated
values are in units of the free-electron mass.

Type of mass

Cyclotron resonance for:
"belly" orbit, H~I(100)
"dog's bone" orbit
"neck" orbit

Specific heat
Optical

Masses,
present potential

1.1 ~0.1
1.12~0.06
0.41a0.02
1.12+0.06
1.3 ~0.10

Masses,
Chodorow's potential

1.2 &0.1
1.13&0.06
0.39&0.02
1.17~0.06
1.36+0.1

Experimental masses

1.38~0.01~
1.23~0.01
0.6~
1.38~O.Oib
1 44~0 Oic

& See reference 11.
b See reference 45.
& See reference 40.

value in the understanding of the metal's physical
properties. If this contention could be shown to be
incorrect, we then wished to see just how well the
resulting energy band structure would agree with the

empirical knowledge of it. In view of the fact that the
electronic structure of Cu in the vicinity of the Fermi
surface is better known experimentally than for any
other metal, Cu is, at present, the best metal on which
to test the validity of the individual-electron approach.

The manner in which the 6rst problem wa, s studied
was to determine the energy bands for two di6erent
potentials. The first V(r) was one originally set up by
Chodorow. In it the forces are taken to be the same for
all values of the orbital angular momenta, /, with the
forces for /=2 being given most accurately. The second
potential is one in which an attempt was made to more
properly reQect the variation in the fields for different
/ values.

Our results for Chodorow's potential were shown to
be in excellent agreement with Chodorow's values
which were restricted to the energies for the symmetry
points F, X, and I.. His work was carried out by the
augmented plane wave method, while in the present
work, the Green's function method was employed.
While both methods have already been independently
checked, this comparison provides an interesting cross
check.

The more interesting and important comparison,
however, is between our eigenvalues for the two dif-
ferent potentials. The E(k)'s for both cases (see Figs.
5 and 6) are shown to be entirely similar throughout
the Brillouin zone for the levels in the d band, con-
duction band, and low-lying excited band regions. By
this we mean that the orderings of the levels for the
diferent 4's in the zone are identical and the energy
separations of the states are comparable for the two
sets of results. From this we can infer that the physical
properties derived from these energy bands wouM be
very similar for the two band structures--a fact that
was borne out in the investigations of a number of the
properties. The important implication of this is that,
contrary to the widely-heM belief, the E(k) for Cu and
similar metals are not so sensitive to the details of the
crystal potential that meaningful calculations for them

cannot be carried out. Of all the features of the band
structure, we have found that the position of the d
bands as a whole is the most sensitive to modifications
of the fields. The spacing of the levels within these
bands is relatively invariant with respect to these
changes. From this work, and a comparison with
earlier studies, we believe the discrepancies that have
appeared in the literature on this metal must have
arisen from inadequate solutions of the band problem
and not from small di6erences in the potentials.

The second aspect of this work concerns the study of
the extent to which these results agree with the vast
amount of information about Cu that has been obtained
from experiments. It has been shown that the Fermi
surfaces associated with both of the calculated sets of
energy bands are in fairly good accord with the experi-
mentally determined one. The theoretical Fermi sur-
faces intersect the hexagonal zone surfaces as observed,
and the radii of the intersection are in good agreement
with the measured value. Further, the theoretical
results indicated that the main part of the constant
energy surface, the so-called belly, deviates from
sphericity to a much larger degree than was previously
believed. These large deviations have recently been
observed by magnetoacoustic e6ect measurements.

From the calculated E(k) the energy at which the
interband optical transitions commence can be deter-
mined and the nature of the transitions ascertained. It
is found that the transitions are between the d-band
states near the upper 1.3 level and p-like states of the
Fermi surface near I.~. ' The energy for the onset of
the transitions is given fairly accurately by the energy
bands for both potentials. This agreement provides
additional confirmation of the correctness of the calcu-
lated bands as it shows that the position of d bands with
respect to the other bands is given correctly. As we have
mentioned above, the location of the d bands as a whole
is generally the least certain feature of the E(k) for
metals with high-lying d bands.

We have also considered the cyclotron resonance (for
a few specific orbits on the Fermi surface), the specific
heat, and the long-wavelength behavior of the dielectric
con tant for the two band structures. The masses
defined in terms of these properties have been calculated
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and are all less than the corresponding quantities
determined from experiments by about 10 to 30%%uz.

(See Table V.) The agreement is thus only semi-
quantitative. Similar discrepancies have been found for
the other metals for which a comparison between theory
and experiment have been made. The discrepancies
between the band-theoretical and experimental masses
are believed to bc due to eA'ects not included in the
individual-electron. model —specifically, the electron-
electron correlations and the electron-phonon coupling.
The problem of how the many-electron eGects con-
tribute to these masses for a real metal is as yet un-
settled. For the electron gas the correlations do not alter
the cyclotron""' or optical masses" but do change
the specific heat mass, " at least in the high-density
limit. The contribution of the electron-phonon coupling
has been estimated to be about the magnitude of the
discrepancies noted above. "

A comparison of the calculated bands with soft x-ray
studies would be desirable; however, the experimental
situation appears to be unclear. "The data of Cauchois"
show a peak having a width of roughly 4 ev. If this is

interpreted as being due only to the d bands it would be
in accord with the present work (for which widths of
3.5 ev and 4.1 ev have been found); but this is an
admittedly tentative interpretation.

In addition to the above, this work has helped
provide an increased understanding of the eGects that
relatively high-lying d bands have on the conduction
bands. It has been shown how the "interaction"
between these bands has led to appreciable distortions
of the belly of the Fermi surface. This eGect also plays
a role in bringing about the contact of the Fermi
surface with the zone boundary (see Fig. 8).

Finally, we would like to summarize the limitations
of the present work. The erst and least serious approxi-
mation of all was that the V(r) was ta,ken to be of the
"muon-tin" potential form. Ke have calculated the
perturbations of the s- and p-like levels at I. and X due
to this, and have shown that they are quite small, being
&0.005 ry. The perturbations of the d levels are even

4s W. Kohn, Phys. Rev. 123, 1242 (1961).
Recently Kohn and Luttinger (private communication}

have shown that when the skin depth is small compared to the
radius of the cyclotron orbit, the interactions do contribute to m, .
For the electron gas, m, is still given by Eq. (2) except that the
energy involved includes the effect of the interactions.

'~ D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953); K.
Sawada, K. A. Srueckner, ¹ Fukuda, and R. Brout, ibid. 108,
507 (j.957).

4' M. Gell-Mann, Phys. Rev. 106, 369 (1957).
4'L. 6, Parratt, Revs. Modern Phys. Bl, 616 (1959).
~ Y. Cauchois, Phil. Mag. 44, 173 (1953).

smaller than these. The other approximation, still
within the individual particle framework, was the use
of potentials which were not shown to be self-consistent.
That is, the solutions were not used to construct new
potentials from which new solutions are sought, and
so forth. The other limitations are those common to all
band calculations. They are, as has already been noted,
the neglect of the many-electron eQ'ects and the electron-
phonon coupling.

It is very difficult to estimate the magnitude of the
errors involved in not using a self-consistent potential
and in employing the individual particle model for a
particular physical property. However, since the
potentials employed were reasonable and since there
was a rela, tively wide area of agreement between the
calculated results and those of experiment, it would
appear that the errors attributable to not having a
self-consistent potential are not too large. As already
mentioned, it is believed that the discrepancies between
the calculated and the observed masses are due to the
limitations of the individual electron model.

1Vote added im proof. Shoenberg (private communi-
cation) has recently revised the previously published
de Haas-van Alphen data on which the "experimental"
dimensions of the Fermi surface listed in Table IV are
based. The revised data, which are in much better
accord with the present theoretical results, removes the
discrepancy discussed in Sec. III.

An analytical expression for the Fermi surfa, ce, which
has the form of the first several terms of the tight-bind-
ing approximation, has been fitted to Shoenberg's
revised data and, in addition, to Pippard's" anomalous
skin effect data by D. J. Roaf (private communication).
The resulting surface has been compared to the two
surfaces discussed in this work, and it is found that the
"empirical" and present theoretical surfaces are quite
similar.

It is interesting to note that apparently the two
surfaces, the present and the one constructed earlier
by Pippard, which has a more spherically symmetric
belly, equally well 6t Pippa, rd's data. |A'ith the removal
of this seeming discrepancy with Pippard's data, it
appears that the sha, pe of the present theoretical surface
is in satisfactory agreement with the data from all
the principal experiments bearing on the shape.
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