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A general discussion is presented of all possible experiments on photoproduction of spin-zero bosons from
spin-2 fermions. Both scalar and pseudoscalar bosons are considered. The 3f' matrix is constructed in terms
of four particularly convenient invariants. There are altogether 64 different experimeats possible. Of these,
16 are needed to measure all the bilinear combinations of the coeKcients of the invariants in the M' matrix.
To determine the coefficients themselves (not necessarily unambiguously) seven experiments have to be
carried out. The 64 observables are given in terms of the bilinear combinations of the coefficients. An ex-
tensive list of experiments is then given each of which determines the parity of the boson participating in the
process. All of these experiments require polarized photon sources, and even the simplest one requires the
measurement of recoil fermion polarization and the use of a polarized target, although not simultaneously.
Sets of seven experiments are then constructed to determine the four coefIicients in the M matrix. The
simplest of these sets implies the same experimental requirements as the simplest parity experiment. The
simplest set of 16 experiments giving all bilinear combinations of the coefficients involves in addition also
simultaneously recoil nucleon polarization measurements and the use of polarized targets.

I. INTRODUCTION

'QHOTOPRODUCTION of bosons from fermions
has for some time been one of the most important

tools in our understanding of elementary particle re-
actions. From the very beginning of pion physics pro-
duction by photons (together with pion-nucleon scat-
tering) has been the main source of information on the
basic pion-nucleon force. ' Recently, as the energy range
available reached the Bev region, and the higher pion-
nucleon resonances were found, photoproduction again
played an important role. ' A similar situation is ex-
pected to occur for E-meson photoproduction, espe-
cially when the energies of photon-producing machines
extends beyond the present 1.5 Bev. But even today,
E-meson photoproduction experiments contribute sig-
nificantly to our guesses as to what the parity of the E
meson is.'

So far, boson photoproduction experiments have been
restricted to the simplest three kinds. Differential cross
sections with unpolarized photons and unpolarized
fermion targets have been measured extensively for
some time. ' The polarization of the recoil fermion under
similar circumstances has also been measured. 4 Finally,
some experiments have been carried out measuring the
differential cross section for polarized photons with un-
polarized targets. ' It is clear, however, that more types

*Work done under the auspices of the U. S. Atomic Energy
Commission.' H. A. Bethe and F. de Hoffmann, Mesons end Fields (Row,
Peterson and Company, Evanston, Illinois, 1955), Vol. II, p. 20.' Ronald F. Peierls, Phys. Rev. 118, 325 (1960}and references
mentioned therein. For a survey see also E. H. Bellamy, Progress
in Nuclear Physics (Pergamon Press, New York, 1960), Vol. 8,
pp. 239—291.' M. J.Moravcsik, Phys. Rev. Letters 2, 352 (1959};Y. Nambu
and J.J. Sakurai, ibid. 6, 377 (1961).'P. C. Stein, Phys. Rev. Letters 2, 473 (1959); R. Querzoli,
G. Salvini, and A. Silverman, Nuovo cimento 19, 53 (1961);L.
Bertanza, P. Franzini, I. Mannelli, G. V. Silvestrini and V. Z.
Peterson, ibid. 19, 953 (1961);J. O. Maloy, G. A. Salandin, A.
Manfredini, V. Z. Peterson, J, I, Friedman and H. Kendall, Phys.
Rev. 122, 1338 (1961).

e R. E. Taylor and R. F. Mozley, Phys. Rev. 117, 835 (1960);
R. C. Smith and R. F. Mozley, Proceedings of the 1060 Anneal
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of experiments could be carried out with improved ex-
periments techniques. It is also apparent that experi-
mental techniques are, in fact, developing fast. The
creation of polarized photon beams has made good
progress, ' and several groups are working on the con-
struction of polarized nucleon targets. 6 It seems there-
fore appropriate at this time to give a general discus-
sion of all possible experiments involving the photo-
production of a spin-zero boson. from a spin- —,

' fermion.
Such a discussion is the subject of the present paper.

Some photoproduction experiments have been dis-
cussed previously. ' ' The present paper extends these
considerations in several respects. We will be concerned
with alt possible experiments, and will list subsets that
can determine the production matrix. %'e will give the
results for both scalar and pseudoscalar bosons (assum-
ing the parity of the fermions to be even by definition)
and will suggest experiments determining the boson
parity. Finally, we present our results in terms of a par-
ticularly simple form of the matrix element which makes
the formulas for the observables more transparent.

Our discussion will be analogous to the phenomeno-
logical treatment of nucleon-nucleon scattering experi-
ments which has in fact proven very useful already. In
the case of that reaction, experiments of fair complexity
(such as spin correlation measurements) have already

-been carried out. A similar state of experimental skill
in photoproduction will make the present discussion
useful. In fact, our results might inhuence the direction
of development of experimental techniques.

One more general remark is in order before the de-
tailed calculations are presented. In this paper we will

Internati onal Conference on Hi gh-Energy Physics ut Rochester
(Interscience Publishers, Inc. , New York, 1960), p. 22.' For a summary as of the middle of 1960, see M. H. MacGregor,
M. J. Moravcsik and H. P. Stapp, Ann. Rev. Nuc. Sci, 10, 323
(1960).' G. T. Hoff, Phys. Rev. 122, 665 (1961).

See, e.g., R. J. ¹ Phillips, Harwell Atomic Energy Research
Establishment Report, AERE-R3141, 1960 (unpublished), and
references cited therein.
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deal with the production amplitudes in terms of the
coeKcients of the invariants and will not make an
expansion into angular momentum and multipole states.
It is true that in low-energy pion physics such an ex-
pansion has proven useful. ' Firstly, at low energies only
a few states are expected to play a role. Secondly, in
low-energy pion physics, even these few states are not
of equal importance, and in fact most qualitative fea-
tures can be explained by considering only one state.
Furthermore, for low-energy photopions unitarity and
time-reversal invariance requires' ' that the complex
production amplitude in a given angular momentum
state be a real number times an imaginary exponential
whose exponent is given by the corresponding pion-
nucleon scattering phase shift. This cuts in half the
number of real quantities to be determined.

This favorable situation, however, disappears rapidly
as we go to either higher energy pions or to E mesons.
As the energy increases, the number of states contribut-
ing to pion photoproduction increases rapidly, and at
the higher resonances already many states have to be
taken into account. Furthermore, it is questionable
whether these higher resonances are caused by one
dominant angular momentum state."Finally, at these
energies multiple pion production becomes possible,
and this eliminates the simplification imposed by uni-
tarity and time-reversal invariance which we discussed
above. The same is true for photoproduced E mesons
at all energies, since multiple pion production is always
possible above the threshold for E production. It is un-
likely, therefore, that with the advent of multi-Bev
electron accelerators the decomposition into angular
momentum states will continue to be a useful concept.
For this reason we will not use it in this paper but work
in terms of the coeScients of the invariants.

spin-zero boson on a spin--', fermion makes the former
potentially a more powerful tool in probing the boson-
fermion interaction. The more coe%cients of invariant
one is able to determine, the more refined information
one obtains about the underlying coupling.

The four invariants mentioned above refer to a given
charge state of the photoproduction reaction. If all
charge states are considered together, a reduction of the
four parameters per charge state may be achieved by
the use of isotopic spin. Thus, e.g. , in photoproduction
of pions from nucleons all four possible charge states of
the reaction can be described in terms of 12 parameters'
instead of the 16 one would expect without the use of
isotopic spin. This isotopic spin structure is not only
well known but is also independent of the discussion of
the invariants themselves or of anything else that takes
place in coordinate, momentum, or spin space. In this
paper, therefore, we will discuss only one particular
(but unspecified) charge state in terms of the four
invariants.

In constructing the four invariants in the center-of-
mass, system, one has to work with the photon polariza-
tion vector e, the photon momentum k, the boson
momentum vector q, and the nucleon spin e. The corre-
sponding unit vectors in the first three directions will
be denoted by e, x, and 8, respectively. The vector e has
the usual normalization e'=3, and we use the conven-
tional Pauli matrices, as given, for instance, by Bohm."

In the invariants a has to appear once and only once,
since we are dealing with a process of first order in the
electromagnetic coupling. Furthermore, e will appear
once or not at all, because if it appears more often one
can reduce it by

e au 1=a b+ie aXb.

II. FORM OF THE MATRIX ELEMENT

One can easily ascertain that the production matrix
for photoproduction of a spin-zero boson with spin--',

fermions in the initial and final states is a linear com-
bination of four invariants. This can be seen either by
looking at the covariant forms, "or by just listing the
possible vectors and constructing from them rotation
invariants (dot products) with the proper parity (to
make them reflection-invariant). "

It might be interesting to remark parenthetically
that the fact that four invariants appear in photo-
production as compared to two for the scattering of a

~ K. M. Watson, Phys. Rev. 95, 228 (1954).For a more physical
exposition of this theorem, see also E. Fermi, Suppl. Nuovo
cimento 2, 17 (1955), particularly pp. 57—60."M. Kawaguchi and S. Minanu, Progr. Theoret. Phys. (Kyoto)
12, 789 (1954)."C. D. Wood, T. J. Devlin, J. A. Helland, M. J. Longo, B.J.
Moyer, and V. Perez-Mendez, Phys. Rev. Letters 6, 481 (1961).

'~ G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957).

'3 See, e.g. , M. J. Moravcsik, Hrookhaven National Laboratory
Report BNL-459, 1957 (unpublished), pp. 15-17.

There is only one way to construct an invariant not
containing e, since there are only two vectors left in
addition to e, and e x=O. Thus for a scalar boson (S)
the invariant is e.g, and for a pseudoscalar boson (PS)
it is e. ~X/.

It is perhaps needless to remark that all invariants
are written down modulo any power of g x=cos8,
where 0 is the production angle. In fact, the coefhcients
of the invariants in the 3f Inatrix for the production will
depend on cos0 as well as on the energy of the process,
but on no other variable.

The remaining three invariants will depend on e. It
is important to realize, however, that these three in-
variants can be any e. a, cr b& and o c where a, b, and
c are three non-coplanar vectors (or pseudovectors, as
the case may be). If a, b, or c do not contain e, one can
always multiply the appropriate invariant by some e d.
%e can, therefore, select our three invariants on the
basis of the following three considerations:

' D. Bohm, Quantum Theory (Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1951),p. 391.
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Fxc. 1. Geometrical diagram of the photoproduction process.
a is the photo polarization vector for linear polarization, k is the
photon momentum, and g is the boson momentum. The vectors
1, I, and n are unit vectors used in the text to construct the in-
variants. The carets denote unit vectors.

e x=0=a 1cose+e n sin8, (2.2)

so that only one of them can be used. We select arbi-
trarily e 1. The geometrical arrangement of the various
vectors is shown in Fig. 1.Thus we Gnally arrive at the
following form of the production matrix:

M=Ae 1+iBe le m+iCe me 1+iDe ne m, (S)
M=Ae m+iBe le 1+iCe me m (2 &)

+iDe ne 1. (I'S)

The three directions we have chosen, 1, m, and n, are
fairly directly related to experiments, since they denote
polarizations for the recoil nucleon longitudinally,
transversely perpendicular to the production plane, and
transversely parallel to the production plane, respec-
tively, all in the center of mass system. Unfortunately
in the laboratory system these directions are not so
simple, but this is unavoidably due to the energy de-
pendent and relativistic kinematic relationship be-
tween the laboratory and center-of-mass systems. In
nucleon-nucleon scattering (at least in the nonrela-

I. The calculation of the observables as well as the
interpretation of the experiments are greatly simplified
if a, b, and c are mutually orthogonal.

2. The vectors a, b, and c should represent as closely
as possible experimentally measurable directions.

3. The calculations are simplified if a, b, and c do
not contain e.

On the basis of these considerations we choose the
unit vectors 1, m, and n, pointing in the &, x)&g, and

g)& (xX () directions, respectively. The invariants then
must be multiplied by e I, e m, or e n, depending on
the parity requirements (1 and n are vectors, m is a
pseudovector). The products r. I and e.n are not
linearly independent since

tivistic case) is is possible to de6ne the longitudinal and
transverse directions in the laboratory system in terms
of quantities in the center-of-mass system simply and
once and for all for all energies, since we deal with
elastic scattering of equal masses. This is not possible
in our case, but the resulting inconvenience is minor.

The question may be raised as to whether the choice
of invariants might not be influenced by theoretical
considerations. It is conceivable that the structure of
the theory might be simpler in one representation than
in another. In the framework of dispersion relations, for
instance, it would be possible that the position and
strength of the singularities naturally suggest a con-
venient set of invariants. If this is so, it is not apparent
at the present time. For instance, Chew et al." use a
representation different from ours, but for no particular
reason, and their expressions are not particularly simple.
In fact, they use two sets of amplitudes, one set having
simple properties under crossing, the other having a
simple form in terms of angular momentum states. In
any case, present theories of photo-production hold, at
best, only for low energy pions. In the absence of a
general theory, therefore, we might as well conform to
experimental requirements and to considerations of
convenience.

The above invariants have been constructed under
the requirement of rotation and reQection invariance.
One might think that perhaps other symmetries also
bear on the form of the invariants. This is not the case.
Simple time reversal invariance arguments like those
used for nucleon-nucleon scattering' are not applicable
here since the initial and 6nal states are different.
Unitarity" coupled with general time reversal in-
variance, does have a bearing on the M matrix, as we
mentioned in Sec. I, by requiring that in the elastic
region of the production process the phase of the com-
plex amplitude in a given angular momentum state be
the corresponding scattering phase. If a partial wave
decomposition is not made, the unitarity condition is in
terms of an integral relation on M, which at higher
energies also includes inelastic processes. The practical
signi6cance of such a relation is therefore slight. Fi-
nally, there is crossing symmetry which has been dis-
cussed by Chew et al."It is clear from their work that
crossing affects only the energy dependence of the co-
eKcients of the invariants, and in fact perceptibly so
only if one studies the production amplitude in the-
whole complex plane. This is not usually done in phe-
nomenological considerations. "Thus time-reversal in-
variance, unitarity, or crossing symmetry do not affect
our present considerations.

III. NUMBER OF EXPERIMENTS

The number of experiments, their independence, the
minimum set of experiments determining the produc-

~ See, however, M. Cini, R. Gatto, E. L. Goldwasser, and M.
Rudermau, Nuovo eimento 10, 243 (1958).
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tion matrix, and similar questions can be discussed in
strict analogy to the nucleon-nucleon scattering prob-
lem. '" There the M matrix in spin space is a 4X4
matrix since there are two nucleons present in both the
initial and final states. In terms of the density matrix
formalism one can say that both the initial and the
final density matrices are 4X4, thus giving altogether
16)(16=256 diferent experiments. These 256 experi-
ments are di6erent in the sense that the outcome of
none of them can be predicted from the others without
looking at the formulas giving the observables in terms
of the coefficients of the invariants.

In the case of the photoproduction the M matrix is
2X4, since there is only one nucleon in the final state.
The initial state consists of a nucleon and a photon.
Although the photon is a spin-1 particle, its transverse
nature makes it behave in spin space in many ways
like a spin--,'particle. "Thus its spin has only two pos-
sible s components, and it can be described in terms of
four parameters (e.g. , the Stokes parameters), just like
the spin--,' particle can be described by a 2)(2 matrix.
In terms of the polarization vector, we can choose sets
of four independent polarization states. One such set is,
for instance, the two perpendicular linear polarizations,
a 45' linear polarization, and one circular polarization.
Thus the dimension of the initial spin space is as if we
had two spin-~ particles. Hence the M matrix has
2X4= 8 elements, and, consequently, we have 8)&8=64
experiments that are different in the above sense.
Alternatively, one can say that the initial density matrix
is 4&(4, the final one 2)&2, and they are connected by
16'4= 64 coefficients, each representing an experiment.

We will now list these 64 experimental quantities.
They are:

differential cross section, unpolarized target;
polarization of the recoil fermion, unpolarized

target;
differential cross section, polarized target;
polarization of the recoil fermion, polarized target.

The indices i and j correspond to the three possible
nucleon spin directions, in our case I, m, and n.

Each of the above observables can have a superscript
according to whether the incident photon is unpolarized
(U), polarized parallel (~~), perpendicular (J ), or at
45' (45') to the production plane, or is right (R) or
left (L) circularly polarized.

The notation suggests the analogy with nucleon-
nucleon scattering. J' stands for polarization, A for
"asymmetry" experiments. ' The latter is identical to
the polarization for nucleon-nucleon scattering on

"See also reference 6, pp. 292—303.
"For an illuminating survey of polarized light see U. Pano,

J. Opt. Soc. Am. 59, 859 (1949).See also U. Fano, Revs. Modern
Phys. 29, 74 (1957). I am also indebted to Professor Fano for
some illuminating private communication.

account of simple time reversal arguments' which here
do not apply, hence P; and A; are independent experi-
ments. The T; s are analogous to the "triple scattering"
experiments in nucleon-nucleon scattering, although
neither there nor here is it necessary to carry our three
scatterings to perform the experiment.

If our task is to determine the M matrix from experi-
ments, however, many fewer than 64 measurements of
the ones discussed above will suffice. In fact, the four
complex coefficients in the M matrix appear in the
observables in the form of 16 bilinear combinations such
as )A )', (8)', ReA*B, ImA*B, ReA*C, . Thus
16 appropriately chosen experiments out of the 64 are,
in principle, sufficient to determine the four complex
coefficients. In fact, if we do not care about possible
ambiguities, not even 16 are necessary: four complex
numbers represent 7 parameters (one phase being
arbitrary), so that 7 well-chosen experiments should in
fact suffice to measure them. The speci6c sets of experi-
ments accomplishing this will be discussed in Sec. V.

I =-' Tr(MtM),
IpP;=-', Tr(Mto. ,M),
IpA;=-,'Tr(MtMa. ;),

IpT;, = —', Tr(Mto;Mo, ).

(4 1)

The evaluation of these traces requires the derivation
of a few simple trace formulas, the most complex of
which is

-', Tr(o ao,rr boy) =. abb g+a, bg—+ugb; (4.2).
The calculation involves the evaluation of scalar

products of a with other vectors. For linearly polarized
photons we have (see Fig. 1)

e i=sine cosP, e m=sinP, (4.3)

where &=0 corresponds to the (~~) case and &=90 to
the (J ) case. For circular polarization we have

a~=2—&(xaiy), (4.4)

where x and y are unit vectors in the x and y directions
(see Fig. 1). The + corresponds to (R) and the —to
(I.). In this case we have

a~. 1=2-& sine, e~.m= +2-&i. (4.5)
'P L. Wolfenstein and J. Ashkin, Phys. Rev. 85, 947 (1952). It

is perhaps of some interest to remark in this connection that in
pion-nucleon scattering the equality of P and A follows merely
from rotation and reQection invariance. In fact, there is no pion-
nucleon scattering experiment which could test the validity of
time reversal invariance.

IV. CALCULATION OF THE OBSERVABLES

The calculation of the observables in terms of the
four coefficients (which correspond to the Wolfenstein
parameters in nucleon-nucleon scattering) is straight-
forward. We have
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TAal. v. I. Photoproduct&on ohservables for linear photon polarization. For the de6nition of 8 and P, see Fig. &.

Ip
IpPt
I(Prn
IpP„
IpAi
IpA.e
IpA„
IoT«
IoTm, m

IoTnn
IoTim

IoTnI,
IoTin
IpT„)
IoTp s

IoTnm

(s)

(IA I'+ IC[') sin'8 cos'P+([BI'+ ID[') sin'8
2 Im(C*D A*B—) sin8 sin8 cosP
—2 ImA*C sin~8 cos'P —2 ImB*D sin'P
2 Im(B*C—A*D) sin8 sin& cosP
—2 Im (C*D+A*B)sin8 sin@ cos@
—2 ImA*C sin~8 cos'P+ 2 ImB*D sin"-@

—2 Im(B*C+A*D) sing sin& cosP
([A ['—[C[') sin'8c so'p+([B['—[D[') sin'4

{[A['+ [C[') sin'8 cos'p —([B['+[D[') sin'4

([A[s—[C[s) sin'8 copes(+( [D [s—[B[s)sins'
2 Re(A*D+B*C)sin8 sin& co~
2 Re(B*C—A*D) sin8 sinqb cosP

—2 ReA*C sin'8 cos'&+2 ReB*D sin'@

2 ReA*C sin'8 cos'&+2 ReB*D sin'P
2 Re(A*B+C*D) sin8 sin@ cos&
2 Re (C*D—A*B) sin8 sin@ cosP

(Pg)

(I A I'+
I C

I') sin'P j(I B I'+
I
D I') sin'8 cos'P

2 Im(C*D —A*B) sin8 sin8 co&
—2 ImA *C sin~qb —2 ImB*D sin'8 cos'P
2 Im(B*C—A*D) sin8 sin& cosy'
—2 Im (C*D+4*B)sin8 sin& cosp
—2 ImA ~C sin'@+2 ImB*D sin'8 cos'P
—2 Im(B*C+A*D) sin8 sin@ co+
([A ['—[C[') sin'P+ ([B['—[D[') sin'8 cos'8

([A [s+ [C[') sin'-P —{[B['+ [D[') sin'8 cos'P

( [
A ['—

[
C [') sin'@+ ( [ D ['—[ B[') sin'8 cos'+

2 Re (A*D+B*C)sin8 sin@ co+
2 Re(B*C—A*D) sin8 sin& cosP

—2 ReA*C sin'@+2 ReB*D sin'8 cos'qb

2 ReA*C sin'@+2 ReB*D sin'8 cos'@
2 Re(A*B+C*D) sin8 sing cos@
2 Re(C*D—A*B) sin8 sin& cosP

The rest of the calculation is trivial. Results are
given in Tables I and II for linear and circular polariza-
tions. The quantities for unpolarized photons are
readily obtained from the results in the tables by aver-
aging over P the quantities pertaining to linear
polarization.

V. DISCUSSION OF THE EXPERIMENTS

The measurement of the various experimental quan-
tities will now be discussed with two aims in mind.
First we will try to find experiments which can deter-
mine the parity of the boson produced. Then we will
list sets of experiments that are sufhcient to determine
the coefficients of the four invariants.

Parity experiments are in the center of interest today
as the parity of the E meson remains undetermined. "
The difFiculty of experiments leading to parity assign-
ment is illustrated here also. The structure of invariants,
as given by Eq. (2.3) is very similar for the (S) and
(PS) cases. Furthermore, since A, 8, C, and D are
unknown in the absence of a dynamical theory, and they
depend on coso, the 0 dependence alone cannot be used
for parity determination. Thus the parity experiments
have to utihze the P dependence and hence have to use
polarized photons. Furthermore, the experiments sug-
gested below also involve polarized fermion targets
and/or the measurement of the polarization of t,he
recoil fermion. These requirements place the experi-
ments proposed below considerably beyond present day
techniques certainly for K mesons and probably even
fol plons.

There are some parity experiments involving only
linearly polarized photons, in which the @ dependence
of a certain combination of experimental quantities is

"P. T. Matthews, Proceedings of the i%60 Annual International
Conference on High-Energy Physics at Rochester (Interscience
Pnbiisbers, Inc., New York, 1960), p. 700.

measured. A few of these are

IpP (lin) +IpA (lin) pc

cos'g, (S)

sin'p (PS)

sin'@ (5)
IpTt, „(lin)+IsT„t(lin) ~

cos'P (PS)

IpT~~(lin) —IpT„„(lin) or
sin'P (S)

cos'p (PS)

sin'p, (5)
Ip(lin) —IpT„„(lin) ~

cos'p (PS)

Ip(lin)+IpT~~(lin)+IpT (lin)+IpT„„(lin)

(iv)

sin'P, (5)
(v)

c os'P. (PS)

IpT~„, (lin) and IpP„(circ),

IpT „(lin) and IpA ~(circ),

IpT i(lin) and IpA„(circ),

(vii)

Vill

(ix)

The first of these is the most feasible since it involves
none of the T; s.

Other experiments also involve circularly polarized
photons and are based on determining a certain com-
bination of coefficients from the linear polarization
measurement and then measuring the sign of the same
combination in the circularly polarized case which then
gives the parity. The linear polarization measurement
usually has to be carried out at @&0'or 90'. We have,
for instance IpT„(lin) measuring 2 Re(C*D—A*8),
then the sign of IpP&(circ) gives the parity.

Other pairs of experiments of this sort are
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TABLE II. Photoproduction observables for circular photon polarization. The upper and lower signs correspond to
right and left polarization, respectively. For the definition of Ho, see Fig. f.

Io

IoP
IoP„
IoA )

IoAm

IoA„
IOTll

IoTmm

IoTnn
IoTim

IOTml

Ior'i'
Io&ni
Io~nin
Ior';m

(S)

-'(I A I'+
I
c I') sin e+-:(IBI'+ ID I')

&Re(C*D—A*B) sine
—ImA*C sin'H —ImB*D
WRe(A*D+B*C) sine
%Re(C*D+A*B)sinH
—ImA*C sin'H+ImB*D
%Re(A*D—B*C)sinH

2(IA I' —Icl')»n'e+2(IB I' —IDI')
2 (I A I'+

f
c I')»n'e —s (I BI'+ ID I')

—', (IA I'—ICI') sin'e+-', (IDI' —IBI')
WIm (A*D—B*C)sine

+Im(A*D+B "C) sine
—ReA *C sin'H+ ReB*D
ReA *C sin'H+ReB*D
+Im(A*B+C*D) sine
&Im(A*B—C*D) sing

(PS}

2(IA I'+ ICI')+2(IBI'+ IDI')»n'e
WRe{C*D—A*B) sing
—ImA*C —ImB*D sin'H

&Re(A*D+B*C) sinH

&Re(C*D+A*B)slnH

—ImA*C+ImB*D sin'H

&Re(A*D—B*C)sinH

2 (I A I' —
I CI )+2 (IB I' —ID I') sin'e

-'(
I
A I'+

I
C I') —

2 (I B I'+ ID I')»n'e
s ( I

A I' —
I
cI')+-'(I D f' —

I
B I') sin."e

~Im(A*D —B*C)sine

%Im (A*D+B*C)sinH

—ReA*C+ReB*D sin'H

ReA *C+ReB*D sin'H
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Various other combinations are also possible.
It is evident that if the parity of the boson is known

from other experiments, the above measurements test
the conservation of parity in photoproduction processes.

Now let us turn to the determination of the coeffi-
cients in the M matrix. It is well to note first that of the
various polarization states possible for each of the Ip,
Ipr, IpA, OI IpT'& s, tw'0 and only two supply inde-
pendent information a,bout the 16 bilinear combinations
of the coefFicients. For Ip, Ipr', IpA, the three IpT; s,
IsTi„, and IsT„~, where only cos'p and sin'P appear, the
circular polarization gives no new information and also
agrees with the unpolarized case, while the linear
polarization gives two combinations of the coefFicients.
For the other observables the unpolarized measurement
is identically zero, and the linear polarization gives only
one combination, but the circular polarization yieMs an
additional independent combination.

In view of this we can make the following statements
about the sets of seven experiments needed to determine
the coefIicients at a given production angle.

(I) If we want to use only unpolarized photons, the
simplest set, in addition to Io(U), IoP (U), and IsA (U),
has to include any four of the nine IsT;, (U)'s.

(2) If we want to use only linearly polarized photons,

the simplest set, in addition to Is(f~) and I,(J ) in-
cludes five of the quantities IoPi(45'), IsP (ff),
IsP (J ) IsP (45 ), Ip.4~(45 ), IsA~(ff)& IsA~(J )& and
IsA„(45'), except that only two of the four quantities
IpP (ff) IsP (J ), I&A (ff), and IsA„(J ) can appear
in the set.

(3) If we have both linearly and circularly polarized
photons available, we can use for the simplest set any
seven of the following eight quantities: Is( ); Is(J );
Pi(ff) or P~(J );P~(R) or P~(L); two of P ( ), P (J ),
P (R), and P„(L);P„(ff) or P„( L); P„(R) or P„(L).
Thus, in this case, no polarized targets are needed.

Since the set of seven measurements give bilinear
combinations of the seven real quantities to be deter-
mined, ambiguities are possible. These can be avoided

by 16 experiments giving all the 16 bilinear combina-
tions. Even if both linearly and circula, rly polarized
photons are available, the simplest of these sets, in
addition to Ips, IpI', 's, and IpA 's, includes two IpT,;
measurements.

It is evident from the above discussion that an
experimental determination of the photoproduction M
matrix is not just around the corner. Neither is the
corresponding basic theory, however. In the meantime,
phenomenological considerations might serve as a
stimulant for further experimental efforts.
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