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The amplitude for Yukawa potential scattering is represented by a Watson-Sommerfeld integral over
Legendre functions P;,_3, p real. A dispersion relation and unitarity condition are given for the amplitudes
appearing in this integral and it is shown that the resulting system for iterative calculation of the amplitude
from the Born approximation is considerably simpler than in other formulations. It is also shown that these
amplitudes behave similarly to the partial waves on the second energy sheet.

I. MANDELSTAM REPRESENTATION FOR
CONICAL AMPLITUDES

T has been shown that for scattering by a potential

which is a superposition of Yukawa potentials, the
Mandelstam representation and unitarity suffice to
determine the scattering amplitude by iteration from
the first Born term.! For simplicity, ignoring bound
states and subtractions,? the Mandelstam represen-
tation with the potential

V(r)=cr exp(—ur), n
may be written
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where s and ¢ are the energy and squared momentum
transfer, respectively. The unitarity condition then
implies a nonlinear integral equation for p(s,t), namely :
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where K; and K, are complicated rational functions
multiplied by step functions.! No particular simplifi-
cation results from rewriting (2) in terms of partial
wave amplitudes because p(s,£) and hence (3) is required
to specify the unphysical cut. The reason is that p(s,?)
cannot be represented in terms of the partial waves
directly over its entire domain of definition (in par-
ticular outside the Lehmann ellipse).

The system (2)-(3) may, however, be somewhat
simplified if one represents the scattering amplitude
by the so-called Sommerfeld-Watson integral employed
by Regge? in the proof of (2).# In this method one writes
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the partial wave series for fixed s> 0

1 w
F(s,2)=f(s5, 25(1=2))=— 3 QU+DTi(v/s)Pi(2), (4)

4/§ 1=0

as an integral in the complex angular momentum plane:

1
o /C COSWAT(N\/S)PM(—Z),

where the contour C encloses the points A=143,
1=0, 1, 2, --- and T(A\n/s) which interpolates the
partial waves T:(n/s) at A=I4+3} must be analytic
within C. It is shown in reference 3 that for a class of
potentials including (1) such a function T(A\,4/s) exists.
It is further shown that T'(A,z/s) is analytic in Rex>0
except for poles lying in ImA>0 and that its behavior
as |[A| — « in ReA>0 permits one to deform the
contour C into the line ReA=0, the resulting integral
converging to an analytic function of z in the plane cut
from z=-1 to z=- . The residues at the poles en-
countered in the deformation contain Legendre func-
tions of complex order which determine the asymptotic
behavior of the amplitude in 2, since the deformed
integral vanishes at large 2.5 As we are omitting sub-
tractions, we ignore these pole terms and write:

© pdp

o coshwp

F(s,2)= A(ip,s)Pipy(—2), s20, (5)

with

Alipys)=—[T(ipN3 —T(~ip, v9)],  (6)
/s

and we have used the evenness in p of the Legendre
functions appearing in (4). Legendre functions of this
type were first encountered in electrostatic problems
involving conical surfaces and are known as conical
functions®; we hence refer to the quantity A(ip,s) as
the “pth conical amplitude.” A table of some important
properties of the conical functions is given in the

5 T. Regge (to be published).
6 F. G. Mehler, Math. Ann. 18, 161 (1881); C. Necumann, Math.
Ann. 18, 195 (1881)

1085



1086

Appendix. One may now write for s> 0 and physical ¢,

00

Imf(s,t) = ImA(ﬁp:s) 'Piz’~%(’f‘/23“ 1)) (7)

o coshwp

which may be analytically continued in ¢ by means of
(A1) as

Imf(s.) = / "

™

a e
dp TmA (ip,
Mﬁ pdp TmA(ip,s)

(1+t') ®)

o= / " pip TmAGps) Py (141/25),  (9)

Hence, from (2),

and from (5), (A2), and (A3),
“dt’ p(s',t')

tanhwrp ds
AGip,s) = An(ip,s)+ / =
2s o m™Jo

T §'—s—ie
XPip3(1+4/2s), (10)
with the Born term
. cm tanhwp
Aa(ip) = ———Pur- (142 ) (11)
s

Equation (9) expresses the spectral function directly
in terms of the conical amplitudes. Equation (10)
defines the analytic continuation of A(Zp,s) hitherto
given only for s> 0. If one writes from (A1)

s coshmp /“"4 ds"
™ 0
and

S,, (sll+s)
X Pip3(1/25"—1),
("= (") = (5" +5") (= 5) (" 45) 7,
in (10) it is clear that A(ip,s) is analytic in s except for
cuts on Ims=0. In fact,

Pipy(1+1/25)=

© ImA(ip,s’) ds’

A(ip,s)=Ap(ipys)+ | ———— —
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in which

Clpa)= / Peb;(y>P,-.,_§(1+———)dy. (1)
1 u
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Since (IIa) gives the left-hand cut in terms of the
right hand cut, (I) and (II) will determine A(ip,s)
once unitarity has been introduced to obtain an ex-
pression for ImA (ip,s), s 2 0.

The unitarity condition for A(ip,s) may be obtained
by substituting (7) directly into the unitarity condition
for f(s,t) and making use of addition theorems. It may
be found more simply by means of the property

S*(VA/$)=5"WJ5), (12)
of the “S matrix”? defined by
SAAN$)=1+2T A n/3), (13)

together with the known analytic properties of A(},s)
in A.% The result is

]

y
qu(iq,s) ] (111)

P
ImA(ip,s)=+/s Re[ A*(2p,5)— /
o ¢'—p

™

Equations (I)-(III) define an iterative scheme for
the computation of A(ip,s) from Agp(ip,s) which may
be used in place of (2) and (3). While the major diffi-
culty of nonlinearity has of course not been overcome,
the new system has the advantage of containing only a
one-variable dispersion relation with a direct relation
between the left- and right-hand cuts.

It has been shown® that a Mandelstam representation
holds for Yukawa potential scattering off the energy
shell. In this case (I) and (II) continue to hold when
A(ip,s) is replaced by A(ip,s;s’), where s” is a fixed
initial energy. The unitarity condition then becomes

ImA(Gp,s;s’)

Vs P [ 2d
=——-Re{A*(ip,s:s’)——-/ “
2 T Jo ¢—p
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and (I’), (Il), (IIT") constitute a linear system for the
determination of A(ip,s,s”) if A(ip,s) is given.

II. CONICAL AMPLITUDES ON UNPHYSICAL
RIEMANN SHEETS

We shall now prove the remarkable fact that the
conical amplitudes retain the simple properties of the
partial wave amplitudes on the second energy sheet.
As is well known the partial waves are meromorphic
except for cuts on Ims=0 in the second sheet, the poles
corresponding to resonances. The full amplitude f(s,?)
may however have complex branch points on the second

7 This reduces to the familiar form at A=J+-}. See reference 3.

8 A(\,s) is the sum of a function analytic in Rex>0 and a
function analytic in Rex <0 if the poles are ignored.
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s sheet.!® Since A(ip,s) is defined for the continuous
variable p, poles in A(ip,s) at complex s can give rise
to such branch cuts in f.

A(ip,s) can be continued to the second s-sheet by
the symmetry property of the “S matrix” (13):

SA, =V95)=57Aw/5), (14)

which reduces to the familiar form at A=/+3. Thus
one defines

Al (zp)s) =Al (517:5)'5_1 (iP,\/S)S_l(" 'LP: \/S), (15)
with
Al(ip,s)=A(p,5), Ima/s>0.
Since Al(2p,s) is analytic in s except for cuts on Ims=0,

it suffices in view of (6) and (13) to study the analytic
properties of

2(ipys)= (2V/s)[S(Gp/5)+S(—ip,v/5)] (16)

From the known properties of S(A\,n/s) as a function
of A for s>0, one readily obtains

1P r* 2¢dg A(ig,s)

w Jo ¢*—p? coshgr

1 2% w (A1) (=1)TiH/s)
=3 (ip,s) ——+ e
WU GE e W

The summation in (17) could have been avoided by
omitting the coshgr in the integral, but this factor is
required for convergence as will be seen below. In any
case the analytic properties of the sum are readily
obtained by studying T:(y/s) for I — o by the methods
of reference 3 using the following artifice. From the
Schrodinger equation one sees that a problem with
complex energy may be replaced by an equivalent one
with a fixed real energy in which the range of the
potential and the coupling constant are complex
variables. As in reference 2 one then shows that
T:(\/s)=0(¢?"), I— », where p>0 when Rey/s>0
provided that the range wx! of (1) is finite. For
Re(4/s)<0 one makes use of the extended unitarity
T1(v/s)=T*(1/s*), with the result that the summation
in (17) is an analytic function of s except for cuts on
Ims=0. One may now substitute (I) and (IIa) into
(17) and interchange orders of integration. The last
step is justified by the uniform convergence of the

1 R. Blankenbecler, M. Goldberger, S. MacDowell, and S.
Treiman, Phys. Rev. 123, 692 (1961).
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integrals guaranteed by the known behavior of the
functions for large p with s>0. Finally one concludes
that 2(ip,s) and hence S(Z=ip,s) are analytic in s
except for cuts on Ims=0. Thus A (3p,s) has the same
cuts as Al(ip,s), but in addition it may have poles due
to the zeros of S(zip,s) which may be called the
resonances of the conical amplitudes.

III. CONCLUSIONS

It has been shown that dispersion relations for
Yukawa potential scattering may be formulated simply
by a representation of the scattering amplitude in
terms of conical function amplitudes. It has further
been demonstrated that these amplitudes, while pro-
viding a complete description of the full amplitude
throughout its domain of holomorphy, still retain much
of the simplicity of the partial waves, in particular a
similar behavior on the second energy sheet.

APPENDIX
The following properties of conical functions are

required in the text®!:

coshrp r* dov
———"Ijip*% ('U) ’
™ 1 9—2

Pipy(—2)= (A1)

® p tanhmwp
(y—g)-1=m / P i) P (—p, (A2
0

coshmp
f(p)= tanhmp / P (W), )
¢()= / Pips(2) 1 (2)dp,

2

12
Pipy(cost) =1+ [sin(6/2)

22
N (4p2+12) (4p*+3?)
' 2X4
X[sin(@/2) i+ - -.
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