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s sheet. '" Since A(ip, s) is defined for the continuous
variable p, poles in 5(ip, s) at complex s can give rise
to such branch cuts in f

6(ip, s) can be continued to the second s-sheet by
the symmetry property of the "Smatrix" (13):
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which reduces to the familiar form at X=l+-', . Thus
one defines
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' R. Blankenbecler, M. Goldberger, S. MacDowell, and S,
Treiman, Phys. Rev. 123, 692 {1.961).

The summation in (17) could have been avoided by
omitting the cosh' in the integral, but this factor is
required for convergence as will be seen below. In any
case the analytic properties of the sum are readily
obtained by studying T&(gs) for / —+ ~ by the methods
of reference 3 using the following artifice. From the
Schrodinger equation one sees that a problem with
complex energy may be replaced by an equivalent one
with a fixed real energy in which the range of the
potential and the coupling constant are complex
variables. As in reference 2 one then shows that
T~(gs)=0(e &'), l~ ~, where p)0 when Regs)0
provided that the range p ' of (1) is finite. For
Re(gs)(0 one makes use of the extended unitarity
T~(gs) = Tg*(gs*), with the result that the summation
in (17) is an analytic function of s except for cuts on
Ims=0. One may now substitute (I) and (IIa) into
(17) and interchange orders of integration. The last
step is justified by the uniform convergence of the

integrals guaranteed by the known behavior of the
functions for large p with s)0. Finally one concludes
that Z(ip, s) and hence S(Nip, s) are analytic in s
except for cuts on Ims=0. Thus d "(ip,s) has the same
cuts as 5 (ip, s), but in addition it may have poles due
to the zeros of S(Nip, s) which may be called the
resonances of the conical amplitudes.

APPENDIX

The following properties of conical functions are
required in the text' ":
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III. CONCLUSIONS

It has been shown that dispersion relations for
Yukawa potential scattering may be formulated simply
by a representation of the scattering amplitude in
terms of conical function amplitudes. It has further
been demonstrated that these amplitudes, while pro-
viding a complete description of the full amplitude
throughout its domain of holomorphy, still retain much
of the simplicity of the partial waves, in particular a
similar behavior on the second energy sheet.


