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Can Massless Particles be Charged' ?*

K. M. CASK( AND S. G. GASIOROWICZt
Lazorenee Radiatiorz Laboratory, Urziversity of Califorlia, Berkeley, California

(Received September 25, 1961)

It is shown that for particles of spin one or larger, I.orentz invariance, masslessness, and conventional
electromagnetic coupling are mutually incompatible.

A. INTRODUCTION

1
~~F the many particles that exist in nature, only

two, the neutrino and the photon, are massless.
To these we must add the graviton, if it exists. All
three are electrically neutral, and it is perhaps not an
idle question to ask whether there is a deep reason for
this. Ke shall show that for particles of spin one or
larger, Lorentz invariance, masslessness, and "conven-
tional" electromagnetic coupling, ' are incompatible.
our argument does not apply to particles of spin zero
and spin —,'.

B. NONINTERACTING MASSLESS PARTICLES

WVe shall lean heavily on the generally accepted
definition of a massless particle as one whose possible
states belong to an irreducible representation of the
inhomogeneous Lorentz group. In particular, for dis-
crete spin s/0, we treat the massless particle states as
belonging to the irreducible representation of the class
0„ in the notation of Bargmann and signer, which is
characterized by only two independent polarizati'on
states. This characterization is to be contrasted with
the (2s+1) polarization states possible for a particle
with mass. If we use a representation in terms of fields
P...(x) (we leave off the indices for the time being),
then the free fieM equations of motion will be

Hy. ..(x) =0.
For s)~ 1, i.e., 2s+1)2, these equations must be
supplemented by subsidiary conditions expressing the
constraint to two polarization states. Such constraints
are generated by an additional invariance property
called "gauge invariance of the second kind. " For
example, for the photon field, the equation of motion is

~A„(x)=0.
The subsidiary conditions are

(8/Bx„)A„(x)=0,
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together with those generated by the requirement that
a, ll solut. ions of Eq. (1) obtained by the transformation

(2')A„(x) —+ A„'(x) =A„(x) BA—(x)/Bx„,
with

A(x) =0, (2")

describe the same physical state. There appears to be
an asymmetry in the two requirements that are
necessary to eliminate the two unwanted polarizations,
but this asymmetry is only apparent, as can be seen
by the unified treatment of this problem for the case
of spin 1, given in the Appendix. Ke assume that such
a unified treatment can be given for all spins s&~ 1, and
therefore include the divergence condition fEq. (2)]
and its generalization in our definition of "gauge
invariance of the second kind. '" For higher spins we
can proceed in a manner analogous to that for spin 1.
KVe shall use the following representations4:

1. Irztegral spi&z s. For integral spin s, the field is
given by p e. ..„(x), a traceless symmetric tensor of
rank s, obeying the equation

Oy.&....(x) =0, (3)

together with gauge invariance of the second kind,
which includes the equation

4.e"'(x)=o,
OX'

(4)

and the statement of the physical equivalence of all
solutions of Eq. (3) generated by the transformation

d -e '(x) ~ 4"-e .'(*)=4 -"e .(x)+G-e-'(x), (3")

where

and Aev. ...(x) is a traceless symmetric tensor of rank

' We do not want to give the impression that there is any
question about the appearance of a divergence condition, but

-merely to point out that it can be considered part of a gauge
in variance.

4 See, for example, H. Umezawa, Qzsantzws Field Theory (Inter-
science Publishers, Inc. , New York, 1956).
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s —1 obeying the equations

x„....(x) =o,
and

1et us consider the interaction of a massless particle
with a very weak external electromagnetic field,
A„'"'(x), which we take to obey the I.orentz condition

—Ap ... , (x)=0.
8$p

A '"'(x) = 0

Z. Odd haljizzt-egrat sPzzz (s+ zi). For odd half-integral
spin (s+—,), the field is characterized by an additional
spinor index A. The equation obeyed by P„p...,z(x) is
taken to be

The equation of motion is

Cj4 -p" (*)= j -p"-(*),
where

(15)

v."—0-p "'~(x)=0,
BXp,

j.p. ..(x)= 2ie—A„':"'(x)- y p. ..(x).
BXp

~y„p....&(x) =o. (10)

where the y„are the usual Dirac matrices.
Repeated application of the operator y„B(8x„yields

the Klein-Gordon equation

If "nonminimal" (i.e., arising from static moments)
electromagnetic interactions are included, j p. ..(x) will

contain additional terms, but these will still have the
property of being linear in the field p p. ..(x). We no'w

write the equation in integral form:
The analog of Eq. (4) is the equation

v-"4-p"' i(x) =0,

which has as its consequence the equations

(11) 4-p -(x)=4.p '"(x)"+ dx' D~(x—x') j-p" (x'), (17)

4.p -.~(x) =o
OX'

(12)

C. INTERACTION WITH THE
ELECTROMAGNETIC FIELD

Equation (11) is supplemented, as before, by a state-
ment of equivalence of a certain class of solutions.
The main results of this section, which we shall use in

proving our assertion, are that (a) the fields obey the
Klein-Gordon equat. ion with no mass term, and (b)
the fields obey a divergence condition t Eqs. (4), (12)$.
These are necessary, though not sufhcient, conditions
for the characterization of a massless particle.

where Dzz(x x') is the usu—al retarded Green's function
for a massless field and P p. .. ' (x) is a free field to
which p, p. ..(x) reduces asymptotically as xo~ —x&.

Although this form assumes an asymptotic condition
which clearly cannot be satisfied when the interaction
has infinite range (as is indeed the case for the electro-
magnetic field), there is no diKculty if we consider a
weak external field which may, for example, be a
screened Coulomb field. From Eq. (17) we may express
the outgoing field in terms of the ingoing one by
letting xo~+~:

...'"'(x) =y ...'"(x)— dx' D(x—x')j . ..(. '). (lS)

It is now clear that if P p. ..'"(x) represents a massless
incoming particle and obeys the necessary condition

Invariance of the charged field under coordinate-
dependent gauge transformations of the hrst kind, i.e.,
invariance of the equations of motion, when the 6eld is
transformed according to y.p. ..'"(x)=0,

AXE
4-p (*) 4«-p '(x)= expLzpx(x) j&-p (x) (1-~) then

—ieA„(x)
~ y.p. ..(x)=0.

ax„ )
(14)

One would also expect the subsidiary conditions to be
modified, but fortunately it turns out that it is not
necessary to specify this modification, because the
incompatibility between the equations of motion with
interaction, and the free Peld slbsidiary -conditiozzs is

sufhcient to establish the result that massless particles
of spin s~& 1 cannot be charged. To see this in detail,

leads in well-known fashion to an equation of motion
of the form

8-~.p
- (x)= ——~x D(x—x)j.p (, )

Bx~ 8$rr

dx' D(x—x') j p. ..(x') (19).

&Scan

Now one can see by inspection that

j p. ..(x) W 0.
Bx~

The argument can be made more general: if
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(8/Bx )j tt. ..(x) had vanished, it would be possible to that follows from Eq. (22) is much more complicated
construct a generalized "charge" in the presence of an electromagnetic field. For the

outgoing field, however, it follows from

()&~" = t d x jtsv "(x)

which should be conserved. Since, however, j t). ..(x) is
linear in the field P s...(x) no such conservation law
can possibly hold. ' Hence Eq. (20) is generally true,
and therefore it follows that

1 8 8
out(X) y in(X)

nz "ax„-ax„

&( dx' A(x —x', nt) j„(x'), (25)

(21)
and

(26)

Thus the outgoing field no longer satisfies gauge
invariance of the second kind, as defined in the last
section, and therefore the final state no longer has only
two polarization states, which contradicts the require-
ments of I.orentz invariance.

It is instructive to compare this with the case of a
massive particle. For simplicity we consider the vector
meson, whose equation of motion is

out (.r) —()
BXp

(27)

(2S)

and
l9

f» =
BXp

in the free field case, and

(22)

(23)

independently of the properties of the current. For the
massless case, it is impossible to write the integral
equation in a form analogous to Eq. (24) without
introducing additional singularities into the Green's
function: Changing the Green's function (in momentum
space) from 5„„/k' to (h„„—k„k„/k')/k', which would
satisfy the divergence condition, automatically amounts
to introducing an additional massless scalar field into
the theory. This, however, violates the requirement
that irreducible representations of the I,orentz group
be used.

when electromagnetic couplings are introduced. The
integral equation takes the form '

X dx' Art(x —x', ~n) j„(x'). (24)

One can thus see that the condition

(22')

~ We have been presenting the proof in purely classical terms,
but the last argument is perhaps more easily made in terms of
quanta of the 6eld. Since the current is linear in the field operator,
it has nonvanishing matrix elements between the one-quantum
state, and states di8ering from it by an odd number of quanta.
Hence it is impossible to get a condition like

where
~ rg) is a one-particle state vector.

D. PHYSICAL INTERPRETATION

The argument that there is an incompatibility be-
tween masslessness, Lorentz invariance, and electro-
magnetic couplings, or in other words, between gauge
invariance of the first kind and gauge invariance of the
second kind, may be visualized physically if we consider
the massless particle as a limiting case of a massive
one. The (2s+1) polarization states go over into two
in a continuous manner as the mass goes to zero, and
the mechanism is one by which (2s —1) of the polar-
ization states "decouple" from the remaining ones,
with a factor proportional to m, the mass of the particle.
An initial state that is transversely polarized remains
so for admissible interactions. Our argument shows
that the electromagnetic interaction is not admissible:
The final state is not necessarily transversely polarized.
This way of looking at our result shows why we can
make the argument for spins s~& 1:Only then is 2s+1
& 2 and an incompatibility possible.

Explicit calculations support this interpretation.
Consider for example the formulas for the differential
cross section for the scattering of massless vector
mesons by a Coulomb field (in the limit of vanishing
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screening): We have

$=0

c.llld
1$=2

do (Zn)'-' 1

dQ 4(0'-sin'(8/2)

do (Zn)'-' 1

1 1+sin'(8/2) j,
dQ 4(0' sin4(8/2)

both of which are well behaved. However, ' for

$=1

(.30)

II„=0. (A1)

APPENDIX

We sketch a treatment of subsidiary conditions for
the case of spin 1, in which there is no artificial sepa-
ration between the divergence condition and the
remaining gauge invariance conditions.

Spin 1. In order to describe a relativistic pa, rticle of
spin 1, we have a choice of using an antisymmetric
tensor of rank 2, (D(")+D(""), or a four-vector,
(D(& '&). Ke choose to describe the particle by the
antisymmetric tensor II„which obeys the equation

do. (Z(z) ' 1 —lim
dQ 4(d0 sin4(8/2) '"='

1 (~'-' —m'-')'-'

1+— sin'-'8

6 cu'-'m'

The 6eld has six independent components. Ke may

(3]) reduce these to two by requiring that the solutions of
Eq. (A1) of the form

(Z~)2 —(1+cos-"8),
( dQ J r r 4(00 sin'(8/2)

longi tudi nal longitzzdinal -spin transi tions

[do)(Z. u)-' 1

EdQ) 1,( 4(00 sin4(8/2)

(32)

(33)

trans(&erse longi tzzdinal s-pin transitions

(d(r) (Z(z)-' 1 ((0'+ &n-')-'

lim —— sin'-8, (34)
kdQ) rl. 4(0' sin'(8/2) "'=' 4(0-'m'

shows that the singular behavior occurs in just those
transitions leading to a hnal state that violates I.orentz
invariance for a massless vector meson.

In conclusion, we might point out that this argument
can be used to forbid the coupling of massless particles
with other interactions; the only condition for this is
that the source of the field not be divergenceless.
Another "application" of our conclusions has to do
with the Yang-Mills Geld: Because two of its compo-
nents are charged, they cannot be massless, and because
of the charge symmetry among the three components,
the same must hold for the third component, and it is
not possible to identify the neutral one with the
electromagnetic fieM. ~

'Formulas (31) through (34) are taken from J. A. Young,
Ph. D. thesis, Lawrence Radiation Laboratory Report UCRL-
9563, 1961 (unpublished).' We would like to thank Dr. S. Bludman for pointing this out
to us.

which is infinite, so that there is a contradiction
somewhere. The separation of this cross section into
the following terms:

transverse trans(&erse -spin transitions

II„'=II„„+ W, —
Bxtt IPx~

where 5'„ is an arbitrary four-vector obeying the wave
equation

lV„=0,

are physically indistinguishable.
The number of independent components is thus

6—4=2. We can check that the remaining two compo-
nents have indeed the correct transformation properties
under the two-dimensional rotation group (the "little"
group). '

II„. Under the homogeneous I.orentz group the
tensor belongs to the representation D("&+D(' '&.

There are, therefore, 2D") representations of the
3-dimensional rotation group, and so the tensor splits
up into the following representations of the little group:
2d (+z )+2d (—1)+2d (0)

8"„.The four-vector, belonging to D&& *' transforms,
under the 3-dimensional rotations group like D('&+D("&,

i.e., like d(+')+d( ')+2d(0) under the two-dimensional
rotation group. Thus the difference transforms like
d'+'&+d( '&, which is just what we want.

It is possible to construct a divergenceless field,

which satisfies the usual gauge-invariance conditions,
so that the equivalence of the two methods is obvious,
in this case, at least. Ke have carried out a similar
treatment for a spin-2 6eld, but have not searched. for
a systematic way of unifying gauge invariance of the
second kind, in general.

E. P. Wigner, Ann. Math. 40, 149 (1939).


