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section computed, one obtains the generalized;Rosen-
bluth expression"

do/dQ =a'(F Iz+ (q„'/4Mz)
X L2 (FI+EFs)' tan'-'(8/2)+K'F~'-']}. (A11)

To obtain the approximation appropriate to a non-
relativistic nucleon, we note that, for a given 8, the
nucleon's recoil velocity w = q/M, appears explicitly only
in q„'/M', which to second order in ~ is q'/M', since
&o=q'/2M. Hence (A11) and (A9) agree through second
order, as they should. In contrast, we note that, e.g., the
diagonal terms of Eq. (19) of reference 5, which should
in the same way agree through second order with Eq.

"M. N, Rosenbluth, Phys. Rev. 79, 619 (1950).

(A11), fail to do so because the Darwin-Foldy term was
neglected in the interaction. "
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The question is raised for non-Abelian vector gauge fields whether gauge invariance necessarily implies
a massless physical particle. As a preliminary to studying this problem, the action principle is used to
discover the independent dynamical variables of such gauge fields and construct their commutation relations.

INTRODUCTION

''T is well known that gauge invariance intimately
~ ~ ties the electromagnetic field A„(x),F„,(x) to the
set of all fields x(x) that bear electrical charge. This
internal property is described by a finite imaginary
Hermitiaii matrix q with integer eigenvalues. A gauge
transformation involves an arbitrary numerical function
X(x). It is a linear homogeneous transformation for the
charged fields x(x), but an inhomogeneous one for the
gauge fiel A„(x),

X(x) —+ o'"&*&X(x), A„(x)—+ A„(x)+It„X(x),
F„,(x) —+ F„.(x).

Such transformations form an Abelian group, in which
the gauge function,

describes the superposition of two individual transfor-
mations. The integer spectrum of charge is related to
the compact structure of this group, which has the
topology of the circle. Gauge invariance implies that
local conservation of charge is not just a consequence
of the equations of motion of the charge bearing fields

* Supported in part by the Air Force Office of Scientific Research
(Air Research and Development Command).

t Visiting professor, Stanford University, Stanford, California,
summer, 1961.

but appears as an identity characteristic of the gauge
field differential equations.

In this familiar situation the gauge field does not
carry the internal property to which it is coupled. A
diferent example is furnished by the gravitational field,
for this couples with energy and momentum, to which
all physical systems must contribute. In other respects,
ho~ever, the requirement of general coordinate invari-
ance is quite analogous to that of gauge invariance.
There is an intermediate possibility in which the gauge
field is coupled to, and also carries, internal rather than
space-time properties. Then the gauge field retains the
space-time transformation properties of the electro-
magnetic fieM. This is indicated by the tensor notation

G„„„wherethe index Iz= 1 zz refers to the
internal space. For the gravitational field the latter is
also a coordinate index, which requires fields of more
complicated space-time transformation properties.

The gauge transformations of a field x (x) that
supports a number of internal properties, as represented
by finite linearly independent matrices T„c=j e,
can generally be stated explicitly only for infinitesimal
transformations,

If these are to generate a transformation group, two
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successive infinitesimal transformations, performed in
opposite order, must be connected by another such
transformation. This implies the commutation rela-
tions,

p„(x)~ [1+iQ t.Q,.(x))&„(x)+B„A(x),

G„„(x)~ [1+ig t.m. (x))G„„(x),

which uses a matrix notation for the n-dimensional
internal space. The homogeneous transformation of6„„implies that the matrices t, obey the group com-
mutation relations,

But the inhomogeneous transformations of @„must
also represent the group structure. The corresponding
condition is

P[(tb)..Q.b "&H„Q.."&—(t )b., Q, "b'a„A."' )

which asserts that
(tb)ac tahe

Thus the matrices t, are derived from the structure
constants of the group. To verify that these matrices
do obey the group commutation relations, we write the
latter in the matrix form

Then
[Tb)T)—Ttb

[Tb [T.T))—[T [Tb T))=T[tb t.)
which also equals

[[Tb T.),T)= T Z. t.t.b.,

and the desired result follows from the linear inde-
pendence of the T matrices.

A general intuition about the space of internal
properties can be formulated as the requirement that
its symmetry group be compact, in contrast to the open
Lorentz group. It is then possible to make all matrix
representations be unitary, so that the matrices T, are
Hermitian. This includes the matrices t, which generate
an n-dimensional represent, ation. But we should also
note that the structure constants associated with the

[~ b, T )c= P ratcbcq
n.=1

a,nd the constant. s,
tabc tach'

characterize the structure of the group.
The statement that the gauge 6eld also ca,rries these

internal properties is conveyed by the infinitesimal

gauge transformation,

Hermitian T matrices are imaginary, and thus the
imaginary Hermitian t matrices must be antisym-
metrical, or

(tb) ac tahe tcba

This property, in conjunction with

~a~b&

expresses the total. ant, isymmetry of the set. of ~~'

numbers t,b, . In order to construct nonzero t matrices
it is necessary that n& 3, and for n= 3 the structure of
a, non-Abelian group is uniquely that of the three-
dimensional Euclidean rotation group. '

The concept of an internal symmetry group has long
been considered a possible basis for describing the
non-space-time properties of physical particles. To
relate such a group to gauge transformations of vector
fields is an attractive idea, but one which seems to run
into di%culty immedia, tely if it is accepted' that a gauge
field implies a corresponding massless particle. Only
the photon is known as an example of this class of
physical particle. It is hard to agree that the objection
is overcome by destroying completely' the gauge
invariance which is the entire motivation of the gauge
fields. But there may be an escape from this dilemma.
The author has remarked that gauge-invariant systems
of the electromagnetic or, more generally expressed,
Abelian type need not have an accompanying massless
particle if the coupling is sufficiently strong. ' The
question is whether a simila, r possibility exists for
systems with non-AbeIian gauge groups. To discuss
this problem requires at least a full knowledge of the
operator properties of the gauge field, treated as a
physical quantum-mechanical system without reference
to weak coupling approximations. These commutation
relations are not known. And it is not a trivial query
whether a consistent quantum field theory is possible
at all for a system that admits a non-Abelian gauge
group. But the latter can hardly be answered until a
set of commutation relations has been displayed, for,
without these, the nature of the operator description,
with its necessary attribute of completeness, remains
unknown. It is the purpose of this paper to produce
such commutation relations, but we shall leave un-
touched the more diRicult question of consistency.

THE ACTION PRINCIPLE

In order to construct an invariant Lagrange function
in the standard first order differential form we must
combine the antisymmetrical tensor of Hermitian
operators G„„witha similarly transforming differential
construct of the Hermitian operators @„.Unlike the
electromagnetic situation, the antisymmetrical gradient
or curl will not su%ce, since its infinitesimal gauge

' lt is this context that non-Abelian gauge groups were first
discussed, C. N. Yang and R. Mills, Phys. Rev. 96, 191 (1954).

See, for example, J. Sakurai, Ann. Phys. Il, 1 (1960).' J. Schwinger, Phys. Rev. 125, 397 (1962).
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transformation is

a„y. —a„y„—-b [1+ip. t.ax.](a„y„a„y—„)
+i Q t,(g„a„Q.—p„a„Q,),

and the last term has no counterpart in the 6„,trans-
formation law. %'e are thus led to consider the compen-
sating gauge transformation of the expression

i(4. t4.),

which employs a notation for a vector in the n-(dimen-

sional internal space. The component» are

&(Q„.lb/„)=Q Q~„.Cl„b,g„.
In addition, the dot symbolizes symmetrized multipli-
cation of the operators,

&la 4.e=2(@.lag. c)

so that the whole structure is a Hermitian operator.
In view of the complete antisymmetry of t„&,, the same
vector can be written alternatively as

i(4. 4.) = i'l4. 4-.= i4, 'l4.-'= —i(4'At, )

Here we have introduced a notation for a matrix,

'At '= P a 4&a,

which has the elements,

(t4)b.=Z. lb.A'
On transcribing the gauge transformation of the curl
into this notation, it reads

a„y„—a„y„—+ (1+i'tm, ') (a„y„—ap„)
pi(y„ta„Q) i(y„ta—„t'a),

which is to be compared with

i(4. At.) ~ i(4 . At.)—(4 ' [t,'tQ ]4 .)
—i(y„ta„B)+i(y„ta„bx).

The commutation properties of the t-matrices are
expressed by

(@„[t,'tax']y. )=. 'tax'(y„t4„), .

and we have the desired result

vented by the matrices 1 . The latter, incidentally, are
imaginary and antisymmetrical if all fields are chosen
to be Hermitian. The Aux of these properties is described
by the Hermitian current vector

k.~(x) = ',ix—(-x)2 ~T.x (x),

the structure of which follows from the requirement of
gauge invariance. If 3C(x) is a gauge scalar, the response
of Z(x) to an infinitesimal gauge transformation is

~(x) L;(x)—k a„m,,

under the assumption that the kinematical matrices
A& operate entirely in space-time, or that.

[A~, T.]= O.

A compensating term is produced by k&. @„,on taking
into account the homogeneous gauge transformation
of the current,

k~ ~ (1+i'tQ. ') k~,

which follows from the commutation properties of the
T matrices, displayed as

[T,'TSX'] = 'tQ, 'T.

The dimensionless number f' appears as an arbitrary
coupling constant. VVe shall see that it must be a
positive quantity.

Until the commutation properties of the fields are
known, a Lagrange function 2 or action operator

(dx) Z,

constructed from formal invariance arguments, has
only a heuristic significance, leading through the
principle of stationary action,

bkVI2= Gi —G2,

to the tentative statement of covariant field equations
and infinitesimal transformation generators. Let us
consider first the infinitesimal gauge transforrnations
of the y field alone,

(dx)[ k~a„m +y„i'taX—'k~], .

aA.—aA, +i(4, At.) ~ which imply the extended conservation law
1 i'thx' a„p„ag„i p„—. @„

A possible Lagrange function is given by

'G"" [a.~. a.~.-+-(~. At.)7-
+ 'f'G""G„„+k"-P„+2 (x), .

where scalar products of vectors in the internal space
are understood. The contributory Lagrange function,

&(x)= —.
' (x~"a.x—a.x~ "x)—~(x),

is that of the systems carrying the properties repre-

a„k~ i't4„' k~=0, — .

and the infinitesimal generator

G, = d~„(—k m, ) = (dx) (—k"m, ).

The significance of the latter is expressed by

(1/i) [x,Gb]= ~x
= i'TQ 'y,



which gives the commutation rule

x'= x": (x (x),k,'(x')) =b(x —x') T„X(x).

The corresponding integral form is

LX (x),K.P = ~.X(*),

K„= do „k.»= (dx) k.'.

and equations of constraint,

fPGkl=~k4l &4—.+&(4k tel). ,

8 G"=i'ty. ' Go" +ko

The latter show that neither GI, E nor the longitudinal
part of the three-dimensional vector G'~ are independent
dynamical variables. It will be useful, then, to write

Gok —GokT+GokL

where

These Hermitian operators obey the group commuta-
and

tion relations,
LKO, K,j=p, K,t.k, .

Go/T 0

GokL — gkP

They are not constants of the motion, hov ever, since
k& is not governed by a true conservation equation.

The differential equations of the gauge Geld implied
by the action principle are

~.4.+i(e, t4.) = f'G...
and

8 G»"—p'g, ' G»"=k»

These equations are also conveyed by the following
matrix statements:

$8„, i'Q»', 8„i'Q.—„')—= —if"tG»„')

$8. i'ty. ', 'tG»"—']= 'tk",

in which it must be clearly understood that the commu-
tators refer only to the coordinate and matrix indices;
the operators, on the contrary, are to be symmetrically
multiplied. In this manner of displaying the operators,
an infinitesimal gauge transformation is generated by
orthogonal transformation with the matrix I+i'tQ'.

According to the antisymmetry of Gt'", the vector

J»= k» i (y„tG»")— .

is divergenceless,

and thus it is the Hermitian operators,

T = do„j"

In an ordinary three-dimensional notation, the equation
to determine the Hermitian operator f(x) is

V'P+—i'ty' V' /=i't. P': GT+k'.

This information can be utilized in the equation of
motion for pk by taking the divergence,

Bov. P i'Q—p'. v' P=v'Qp i'ttP' v—ltlp f'.v' —G.

But we must still reckon with the freedom of gauge
transformation, which shows the impossibility of a
complete specification of lt

k and Po by the field equa-
tions. In order to obtain a definite set of operators we
adopt a specific gauge, and the naturally indicated
choice is the three-dimensional transverse or radiation
gauge,

Bkgk= V' )=0,
for this extracts from the apparent equations of motion
another equation of constraint,

—Volko+i'Ptg'. V'. Po= f'V—'-

which must serve to determine qF.
It has now become clear that the independent

dynamical variables of the gauge field are the three-
dimensional transverse vectors P,k and G ""T, in close
analogy with electrodynamics. If the varia, tions of lt

k

are performed within the radiation gauge,

Bkhgk=0,

only the transverse part of G'~ appears in the generator,

=K. i (dx) y—„t.Go', .

that are constants of the motion. It is natural to expect
that these operators also obey the group commutation
relations, but the verification must await the specifi-
cation of the gauge fieM's operator properties.

The field equations can be decomposed into apparent
equations of motion,

&O4k= &k4o i'Wk' Qo+ f'G—ok, .

P Gok P Gkl+«t@ & Gkl &&ty
& Gok+kk

Gp ——— (dx) G"Tbltlk,

the interpretation of which is given by

(&/i)L4k(*) Gpl= ~4k(x), (&/i)LG'"'(x) Gpl=o

AVhen these statements are combined with the similar
properties of the alternative generator

Gg&= (dx) plbGokT

we obtain the full set of commutation rela, tions for the
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fundamental dynamical variables of the gauge field:

&0. &Ot'. Lyb. (x),@(b(x'))=0,

$G ob(x)T G Ol(xl)T5 0

i[yb, (x),Gb" (x') rg= b.b(bb'5(x —x')) ".

(dx) P t.G, i (dx) P tbG—r

Apart from the multiplicity of the internal space, these
are identical with the electromagnetic field commutation
relations.

The ability to display the fundamental commutation
relations is of the greatest importance, for it provides
the assurance that the operators designated as the ba, sic

dynamical variables do constitute the generators of a
complete operator basis, which is their primary role as
opera, tors. Otherwise stated, it makes explicit the
infinitesimal transformations of the quantum transfor-
mation group which, together with the coordina, te and
other invariance groups, largely characterize the
physical system.

Ke can now confirm a previous expectation. The
contribution of the gauge field to the operators T,
involves only the transverse components of G'~, since
@' is divergenceless. The canonical structure of the
commutation relations implies that

Now return to the f equation and remove the sym-
metrization of P with P, which gives

L
—V'+i'tP' V]/=i'tP' Gr. +k'+ih(P),

where h(g) is a Hermitian function of P. On solving
this equation the last term will contribute a skew-
Hermitian function of P, which disappears on com-
bining f with its identical Hermitian conjugate oper-
ator. The result is the symmetrized form

P(x) = (dx') Sq(x,x') . 1't'ai(x')'. G'"(x') r+k" (x')),

or, more symbolically,

P= Sg. Li'tP': Gr+k'j.

It is immaterial whether the symmetrization of P with
Gr is independently performed, as indicated, or
accompanies the symmetrization of the X)~ product.
Tha, t is,

A . (8 C) (A . h. ) C—= ,'[fA,.C],8-$,

which vanishes when A, 8, C are Sq, P, and Gr,
respectively.

The form of the complete operator G'~, as it has now
been obtained, is given symbolically by

G= (1 Vn,i'ty'—):G' Vn, k", —

which, together with statements of kinematical inde-
pendence between the gauge fieM and the othersysterns,

x"=x": Py."(x),kb'(x')j= [G,"'(x) ,kb"(x')]= 0

supplies the verification that the group commutation
rela, tions are obeyed by the conserved T-operators,

LTb, T,7=+, T.t,b, .

To complete this part of our study we must give the
explicit operator construction of the longitudinal pa, rt
of G" and of qP. Consider then (x'= x")

and note that the solution of this equation requires no
reference to operator properties since it is concerned
only with the completely commutative components of
P(x) at a, common time. The relevant Green's function
is defined by the matrix differential equation

L
—V'+i'tP(x)' VjSb(x,x') =8(x—x'),

in which the indicated functional dependence on P also
produces a time dependence. The self-adjointness of the
defining equation implies the symmetry of this real
function,

x)g(x,x').b
——$~(x',x)b. .

or, equally well, by the versions

G=
t 1y Vn, (V—i'ty') ):G~' —Vn, k"

= Gr: L1+ (V i'tP') QpV—$ VSgk', —

which are related through the symmetry of X)~. The
significance of the bracketed structures is indicated by

V [1+(V—i'tel') SpV]=0,

(V' —i'tP') L1+VX) (V—i'tP')j= .0

The equal-time commutator of P with G is immediately
evaluated as

i' b.(x),Gb" (x')g
= Pb'8(x —x') —(Bb—i' yt(b)x') n~(x, x')8"j.b,

where the last gra, dient acts on the function to its left.
The construction of g, '(x) proceeds from the equation

( V2+i'ty—'
V) y' f2V .G=

and the solution is

~o f2'~ V. G
or alternatively

gP= f'X)bi'tP' $1+VX)P(V i'tP') j:G—r
+f'(Sp 53pi'tP' V X)p)k-".

It follows directly that
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which symbolic equation has the following explicit If we introduce an arbitrary real numerical transverse
meaning as an equal-time commutator: vector function a, (x) and define the Hermitian operator

A(x')= (dx) a. 1t,

+ (dx") ne(x, x")i'ty(x")' this commutator becomes

.r "n, (x",x')(- a"- i ty" (x')')
—ab

If the expression for g" is substituted in the equation
for Bop, one obtains a fundamental transverse equation
of motion,

8—y= f'C1+(V—s'tP')X)gVj: G,

or, equivalently,

—
r) op = f'(C1+ (V' s'tfti') S—eV'j

C1+Vn, (V i'tf—l'))}:G'
—f'C1+(V' i'trodi')SeV'g —i'trtl'X)ek"

One implication of this equation of motion is the
equal-time commutator

Cr'r)sA, A)= f' (dx) b. b,

where the Hermitian vector b is

b = C1+V n, (V—s'ty')]. a.

But the vacuum expectation value of such a commu-
tator can never be negative,

(CCA P'j A j)=2(Ar"A) &0

and therefore
f') 0

Finally, we state, the equal-time commutator

sCG '"(x) Gs" (x')1=CB'X)~(x,x') .i'tG" (x')'
+i'tG""(x)' S (x x')8"j

Csr)&re&dl=f'CI+(~ s'tie')&e~j'CI+~&s(~ —&'tg')g. and leave the proof to the reader
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An estimate is made for strange particle production in P-p collisions based on the single pion exchange
model. For the three-particle final state (EFE), fair agreement with experiment is achieved in both the
total cross sections and the momentum and angular distributions of the final particles. For the four-particle
final state (A. FX~), general qualitative agreement is achieved for all total cross sections bnt one. In this, the
case of ~0+p+E'++AD(Z~) production, it is suggested that perhaps F* production in p-p collisions plays
an important role.

I. INTRODUCTION

ECENTLY, there has been much interest in the
single boson exchange mechanism in high-energy

collisions. ' Ferrari has made a calculation for associated
production in proton-proton collisions at incoming en-
ergies of 2 to 3 Bev in the lab system. ' Of the two models
he considered (single pion exchange and single E-meson

* Work supported in part by U. S. Atomic Energy Commission.
f Quincy Ward Boese Predoctoral Fellow.
I F. Salzman and G. Salzman, Phys. Rev. 120, 599 I,'1960),

I. M. Dremin and D. S. Chernavskii, Soviet Phys. —JETP 11,
167 (1960);V. I. Veksler, Proceedings of the Tenth Annual Inter-
national Rochester Conference on High-Energy Physics, D'60
{Interscience Publishers, Inc. , ¹w York, 1960).

'E. Ferrari, Nuovo cimento 15, 652 (1960); Phys. Rev. 120,
988 (1960).

exchange) the pion exchange model seems to fit the
experimental data rather well. ' This result naturally
suggests that perhaps single pion exchange plays a
dominant role even at the relatively low energies of a
few Sev for many other nudeon-nucleon collision
processes. In this note we shall concern ourselves only
with strange particle productions with or without an
additional pion in the final states.

In Sec. II the three-particle final states of the kind
p+p —+ I'+It+Ã are considered. The treatment is
essentially that of Ferrari's with some modifications.

'R. I. Louttit, T. %. Morris, D. C. Rahm, R. R. Rau, A. M.
Thorndike, and W. J.Willis, Proceedings of the Tenth International
Rochester Conference on JIigh-Energy Physics, 1960 (Interscience
Publishers, Inc. , New York, 1960).


