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A constant-¢g and - sum rule is constructed in Born approximation for inelastic scattering of electrons on
nuclei by integrating over the outgoing electron energy spectrum at constant 3-momentum transfer, ¢, and
scattering angle 6. A consistent treatment of the nucleon current interaction through second order in ¢/M,
the recoil nucleon velocity, gives a result reliable to 5-109%, out to ¢g~2.5 71, and shows that the often
neglected Darwin-Foldy term contributes substantially. It is well known that the ¢ dependence of the sum
can be directly related by closure to the Fourier transform of two-nucleon correlation functions in the
ground state of the nucleus. This ¢ dependence is studied for various nuclear models of O'¢; the effect of the
Pauli exclusion principle on the sum is found to be large for g~1 2, but the effect of a hard-core force of

radius 0.4 f appears to be small for all values of ¢.

I. INTRODUCTION

UM rules for the inelastic scattering of x rays on
atoms and of slow neutrons on solids and liquids
have provided useful information on two-particle spatial
correlations in these systems.! The technique is based on
the fact that waves scattered with momentum transfer
q from particles at positions r; and r; in the target
system will interfere with a phase difference of
q- (r;—rs), so that the q dependence of the scattering
bears a direct relation to Ps(|r;—ri|), the pair distri-
bution function in the target system.

It has also long been recognized? that the inelastic
scattering of high-energy electrons by nuclei should, by
analogy, be a means of investigating nucleon-nucleon
correlations, provided that momentum transfers of a
few hundred Mev/c can be attained.® Since the neces-
sary experimental techniques are rapidly becoming
available* our purpose is to construct a sum rule which
can be used in the analysis of such experiments, and to
investigate its relation to realistic nucleon pair correla-
tion functions. In particular, we wish to estimate the
sensitivity of the sum rule to Pauli and hard-core
correlations. Similar analyses have been published re-
cently by Drell and Schwartz,® Fowler and Watson,®
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! See, e.g., A. Guinier, G. Fournat, C. Walker, and K. Yudo-
witch, Small-Angle Scattering of X Rays (John Wiley & Sons,
Inc., %\Tew York, 1955); and L. Van Hove, Phys. Rev. 95, 249
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% References to the literature previous to 1957 are given by R.
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4 See in particular, D. B. Isabelle and G. R. Bishop, Rapport du
Laboratoire de I’Accélérateur Linéaire 1017, Faculté des Sciences
de Paris, Orsay, France (unpublished).

5S. D. Drell and C. L. Schwartz, Phys. Rev. 112, 568 (1958).
6T, K. Fowler and K. M. Watson, Nuclear Phys. 13, 549 (1959).

and Drummond’; since the points of distinction between
their work and ours are rather involved, we shall
postpone discussion of them to the appropriate places in
the development of our formalism.

In Sec. IT and Appendix A we present the formalism
necessary for a Born approximation analysis of the
scattering, taking especial care to retain all terms in the
interaction of second order in (¢/M), the recoil velocity
of a nucleon. In Sec. ITI the sum rule is constructed for
the simple case of Coulomb scattering alone, which
bears the closest relation to the work of reference 1.
This is extended in Sec. IV to include the current
interaction terms, and the resulting sum rule is evalu-
ated in Sec. V for specific models of the nuclear ground
state.

II. BORN APPROXIMATION FORMALISM

Our analysis will be based on the first Born ap-
proximation, and is consequently limited to light nuclei;
explicit calculations will be performed for O. Further,
because of our total lack of information on a relativistic
wave function for the target nucleus, we shall restrict
ourselves to events in which the nucleons interact like
nonrelativistic Pauli particles. This is accomplished by
expanding the electron-nucleon interaction in powers of
1/M, the inverse nucleon mass, and retaining terms
through order M2 The range of validity of this ap-
proximation is determined by the 3-momentum, g,
transferred to the target; an estimate of the leading
correction term indicates that it should not exceed
5-109%, of the terms retained at ¢/M =3, or ¢~2.5f7% so
we take this as the maximum ¢ at which the M2
approximation is useful. Since the hard core radius of
the nuclear force is assumed to be about 0.4 {, this range
of ¢ ought to be just about adequate to detect hard-core
effects on the scattering if they are large enough to be
seen at all.

Our treatment of the nucleon-electron interaction in-

?W. E. Drummond, Phys. Rev. 116, 183 (1959).
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cludes the nucleon form factors, but it neglects the
possibility of pion electroproduction. The analysis con-
sequently rests on the assumption that the theory of the
““elastic” (nonmesonic) events is self-contained, and is
not seriously affected by the presence of an inelastic
channel. In particular, the sum rule considered will
include only nonmesonic final states and so presumes the
possibility of carrying out the nonmesonic sum experi-
mentally. As is explained below, it seems likely that this
can be donereliably over the momentum range ¢<2.5 !
in which we are interested.

The covariant interaction between electrons and rela-
tivistic nucleons is of course well known, but its reduc-
tion to two-component form for the nucleon is not
entirely trivial and has often been done inconsistently in
the past (in particular in references 5 and 7). One way of
performing the reduction consistently is via the Foldy-
Wouthuysen transformation, as is sketched in.Ap-
pendix A.

The conclusion of this appendix is that, if the electron
is described by plane waves, then in the (two-com-
ponent) nucleon space the Hamiltonian operator which
describes the electron-nucleon interaction, correct
through order ¢/M?, is

4me?
H=— Uo
g’

Fy

Fleiq;u fu_2_]12[ (p . (I)E'E qux,‘.{__eiq,‘xp (p . Gf)]

(F1+KF») _
—_ (qxa)ezq,_hr,.
2M

9#2 . . (F1+2KF2).
(I’ 1+2K1‘ 2)6“1"'“"‘*‘~ 10
8M? sSM?

u1> (1)

The notation used here is as follows: the electron mo-
menta in the initial and final states are k; and ks, with
energies 8= (k2+m?)? and ;= (k2+m?): In terms of
them, the momentum and energy transferred to the
target are defined as

q=k1—k2 and w=51-82, (2)

so that they are (with correct signs) the momentum and
energy of the recoiling target particle, assumed initially
at rest; ¢,2=¢*—w? is then the square of the 4-mo-
mentum transfer. e is the electron’s Dirac operator,
which operates on the free-electron spinors |#1) and
| us), p and e are the momentum and Pauli spin opera-
tors in the nucleon’s space, Fi(g2) and F2(g,?) are the
nucleon’s charge and magnetic momentum form factors,
and K is its static anomalous magnetic moment, in
nuclear magnetons.

The first three terms of (1) describe the usual static
Coulomb, convection current, and spin current inter-
actions, and are of zeroth and first order in M. The
last two expressions, of order M2 are the Darwin-

{pX (wa—q)eiteni— i s (wa—q) Xp)
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Foldy and spin-orbit terms. Because the square of the
matrix element contains a cross term between them and
the Coulomb term which is of order M2, they must be
included in a consistent calculation of the cross section
through order M—2. For unpolarized nucleons, the spin-
orbit term does not contribute to this M~2 cross term, so
if higher-order contributions are to be neglected, we can
drop it at once. The Darwin-Foldy term, though, must
be kept for an M~%-order calculation of the cross section;
inspection of the Rosenbluth formula for the single-
proton cross section shows its contribution to be quite
substantial.

Equation (1) describes the scattering by a single
nucleon. To handle the many-nucleon system we make
the usual assumption that the nucleons in a nucleus do
not “‘distort” one another, so that the form factors F,
and F; are the same inside a nucleus as out. Then since
the operators for distinct nucleons commute, we can
apply a Foldy-Wouthuysen transformation for each
nucleon to the relativistic many-body equation, to see
that the electron-nucleus interaction Hamiltonian is
simply Eq. (1) summed over all the nucleons present.

The form factors F1(¢,2) and Fs(g,?) are known quite
accurately for the proton® and with fair accuracy for the
neutron® over the range of ¢ we need. They are con-
sistent with the relations F1,(g,%) = F2,(¢.2) = f(g.2) for
the proton and Fi,(g.2) =0, Fi.(¢.2)=f(¢g.*) for the
neutron, which is the approximation we shall use.

When the time dependence of the nuclear states is
included, the x4 integration produces the energy delta
function. The Born approximation matrix element (with
respect to nuclear as well as electron coordinates)
of the electron-nucleus interaction Hamiltonian, correct
through order M2, can then be written in the compact
form

Mo,=8(861— 62— ¢*/2AM — E,+ Eo) (4e?/ q,2) f(¢,2)
X { (2] 1) Qno— (o] @| 1) - Jno}, (3)

in which E¢ and E, are the initial and final state energy
levels of the system of 4 nucleons. The nuclear matrix
elements between these states are'

0),

A e; ) )
2 [—(pfe”"“rem"fpj) 4
=1 {2M

QnO(‘l)= <nl z=:1 [e,-—f—i;(ej— Q'u].)}eiq.rj

Ld®=<w

Mo .
+—-w]'><qe’q"f} IO>
2M

8 R. Hofstadter, F. Bumiller, and M. Croissiaux, Phys. Rev.
Letters 5, 263 (1960).

? R. Hofstadter and R. Herman, Phys. Rev. Letters 6, 293
(1961). The conclusions of this reference suggest small deviations
from our approximations for ¢>2.5 {71, but a re-analysis by L.
Durand, III, Phys. Rev. Letters 6, 631 (1961), largely removes
them again.

10 The factor ¢,2/M? occurs in the Darwin-Foldy term. Because
w<¢*/2M in all practical cases for the present problem, we take
gt/ M?~ g2/ M? throughout.
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r; and p; are the position and momentum operators for
the jth nucleon and e; is its Pauli spin operator; the
nuclear states |0) and |#') are now two-component
nonrelativistic states. In terms of isospin operators
¢;=%(1473;) is the charge or proton projection opera-
tor, and we are using the approximation

pi=3(A475) 1+ K) =3 (1—75) K=3(1+73))+75,K

as the magnetic moment projection operator, with
K =~1.85. In writing down the expression for J we have
used the result found by Drell and Schwartz,® that the
presence of an exchange potential in the nuclear Hamil-
tonian produces only a negligible effect on the (non-
energy-weighted) sum rule which we wish to discuss, so
we have left out the exchange currents from the
beginning.

We have written the nuclear states in Eq. (4) with a
prime, |#'), to indicate that they are written in the
laboratory system, where the recoiling nucleus has mo-
mentum q. The transformation to the center-of-mass
system of the nucleus, where they become | 7)=e~""R| '),
is accomplished in symmetric fashion by employing the
transformation of Gartenhaus and Schwartz.!* The
matrix elements Qno and J,o are left by this transfor-
mation in exactly the form of Eq. (4) provided the re-
placements |#n)—|n), r;— pj=1;—R, and p;— =;
=p,—A7'P are made;

A A
RZA—1 Z ) and P: Z Pk
k=1 k=1

Also, the matrix elements are understood to be zero
unless the final nuclear state has momentum q relative
to the laboratory system.

For the remainder of the paper we shall use the ex-
treme relativistic approximation for the electrons, in
which 8=k, and 8,=k,. Squaring M ,o and summing it
over initial and final electron spin states gives in this
approximation

32 2 [ Maul?

electron
spins

= 20(— g2/ 24 M — Byt Eo) (de2/0,2) (g, W,
W ={] Qno| >(1+c0s8) — (ks E2) - (Qud* T not T Qo) (3)
4| Jnol2(1—=cos8)+ (T no*- 732) (JnO'EI)
+ (Tno* k) (Jno- k2)},

with the abbreviation d=a¢a for any vector a.

III. SUM RULE FOR COULOMB SCATTERING

Since Eq. (5) is algebraically complicated we shall,
before evaluating it for a specific nuclear model, briefly
discuss the Coulomb scattering terms alone. These are
the terms of Eq. (5) which are of zeroth order in (1/M),

n ? Gartenhaus and C. L. Schwartz, Phys. Rev. 108, 482
(1957).
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q=const

dc
dadky

Fi16. 1. Schematic energy spectrum of electrons scattered with a
given momentum loss ¢, indicating resolved discrete nuclear levels,
unresolved discrete levels, and a continuum corresponding mainly
to single ejected nucleons (‘‘quasi-elastic scattering’’). The latter
peaks at roughly w=¢?/2M, and is Doppler-broadened by the
momentum distribution of the target nucleons.

and they give for the Coulomb cross section

do¢ do'oc( ) (
= W/, 6)
dQadks  dSQ !
with p \ 0/
o) et cos*(6/2
—= (gD |*————, (7
aQ 4k,? sint(6/2)

the free-proton cross section, and

Clgw)=2|(n| éej exp(iq-p,)|0) |
X6(w—q?/2AM—E,+Ey), (8)

a function containing only properties of the target
nucleus. At fixed ¢, the w dependence of C(g,w) gives the
energy spectrum of electrons scattered with a given
momentum.transfer, which looks something like Fig. 1.12
The sum rule we wish to discuss is obtained by inte-
grating over this spectrum at fixed ¢; constant g rather
than constant 6 is of course chosen to enable us to use
closure. At small ¢, the elastic scattering becomes
overwhelmingly large (note that by orthogonality it is
the only nonzero term of the sum at ¢=0) and masks the
more interesting ¢ dependence of the inelastic terms, so
we shall eliminate it from the sum rule and define a
function C(g) by the inelastic integral

0

Clg=2-1 / Clgw)de
=27 % [(n] L e; explia-e)|0)]*

— 771 O1 L e explin-e;) [0)[*

=270 X esex explia- (= £)1|0)

—ZIF@@)’, (9)

12 See, e.g., J. H. Fregeau and R. Hofstadter, Phys. Rev. 99, 1503
(1955); G. R. Burleson (to be published); and reference 4.
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where

F(q)=(0le; exp(iq-o;)|0) (10)

is the elastic scattering form factor, which we assume
known over the necessary range of ¢.”
The “diagonal terms” (j=£%) in the double sum give

O £ efl0)=2,

and for the off-diagonal terms it is useful to define the
proton-proton correlation function (probability den-
sity) in the ground state

Pop(r' ") =[Z(Z—-1)]?
X(O]iﬁejeké(r—rj)é(r"~rk)|0), (11)
i#k

which is normalized to 1. Then

Clg=1+(Z— 1)//d37'(i3r" e = p L (r x")

—Z|F(@[* (12)

from which the dependence of the Coulomb sum rule on
the proton-proton spatial correlation function is clear.

C(g) hasa simple and important asymptotic behavior:
because of oscillating integrands the last two terms of
Eq. (12) vanish as ¢— o, so that C(¢g) — 1. The

13 Two important comments must be made with regard to Eqs.
(9) and (10). First, in the closure term only @;—@i=r;—r;
appears, so the Gartenhaus-Schwartz transformation has no effect
on this term. Secondly, we emphasize the fact that the ‘“density of
final states” factor is unity because C(g) is defined as the integral
of C{g,w) over w (or ks if &y remains fixed) at constant ¢. That is,
since 8s=Fks+-¢2/2M A+ E. appears in the argument of the energy
delta function, the integral over k. introduces the factor
(082/0k2)™1. At constant ¢ this is 1, but experimentally the “con-
stant ¢”’ sum is actually performed in small steps at constant 6. In
the continuous part of the spectrum, the delta function is actually
removed by the sum 2, (which includes an integral over E,, the
energy of relative motion of the parts of the recoiling nucleus).
Then C(g,w) can be presumed nearly constant over a small interval
Ak2; fary C(gw)dw=C(q,w)Aks, and summing such increments at
constant ¢ we get

2 Cgm)Akm = [

Clgw)de=21n|Z e; exp(iq-0,)|0)]%
g=const n i

Provided that C(g,w) varies little over the Ak, intervals, the result
of adding small constant-6 increments in this way is the same as a
true constant-¢ integral. In the discrete spectrum, on the other
hand, the delta-function dependence of C(g,w) on k; does introduce
the factor (08:/dks)et=[14 (ka—k1cos0)/AM T, when C(g,w)
is integrated over k; in constant-6 steps. This will only be true
provided the energy level spacings AE, are large compared to Aks;
if AE,<KAks, enough levels will be included to make the experi-
mental C(g,w) effectively continuous, so the first argument applies.
In summary, the prescription for obtaining C(g) experimen-
tally is to multiply the contribution of an interval Aks by
[1+ (ka—Fky cos®)/AM T if ALZ,> Aks, but not if AF,<Aky. This
prescription also applies to the construction of the function
T(g0), Eq. (20).
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vanishing of the off-diagonal or correlation terms as
g— o means that ZC reduces to a sum of free-proton
cross sections, without interference, a process often
called impulse approximation or quasi-elastic scattering.
Since C(0)=0, C(g) is a function which increases from
zero to 1 as ¢ increases, in a manner determined by F(g)
and the Fourier transform of P,,(ry,r»).

We mention in passing that C(¢) has an especially
simple form in the special case of a shell-model ap-
proximation for a proton-magic nucleus. In this case the
correlation function, in terms of the single-particle
functions ¥, is the sum of a direct and an exchange
term,

Z(Z— 1)])1,1,(1‘1,1‘3)

Il

z 3 (D) 121¥5(2) 2= pa* (Dda(Ds* (2¥a(2)}

a=1 B=1

=22P(r1)Py(rs)— ZP . (11,13), (13)
Pi(r) is the one-particle probability density and P, is
defined as the exchange sum, normalized to 1. If we now
approximate F (¢) by substituting r;for g;=r;— 473" 1y
in Eq. (10) (thus making an error of order 47), we get
the simple result

Clo)=1— / / dEridirs eGP (). (14)

In this case, C(g) is determined entirely by the exchange
term of the correlation function, which indicates that
the Pauli principle can be expected to exert an impor-
tant influence on the shape of C(g). {It definitely does in
the case of alarge IFermi gas with periodic boundary con-
ditions, for which C(q)=32(¢/kr)[1—35(g/kr)*] for
q<2kp and C(g)=1 for ¢>2kp; 1—C(g) is just the
fraction of the volume of the Fermi sphere excluded by
the Pauli principle for a scattering with momentum
transfer q.}

Before going on to a discussion of the current inter-
action terms, we note two important experimental re-
strictions on the construction of this sum rule. The first
is that the entire range of w from 0 to « is of course
never available. The accessible range can be seen from
the kinematic relation w®=¢*—4k:k,sin?(0/2), from
which the restriction w< ¢ follows. It is only the fact (as
is indicated in Fig. 1) that the contributions to the sum
from very large w’s are insignificant which makes C(g)
accessible experimentally at all; the use of closure is

" reliable only when essentially the entire area under the

C(g,w) curve is found to the left of wmax=g.
For ¢ sufficiently large, the scattering is expected to be
predominantly quasi-elastic. In this case the impulse
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approximation provides a simple estimate of C(g,w),
Conlg)= [ NOUL /20— p/ 24 =10, (19

where N (p) is the momentum distribution of the struck
nucleons. The approximation N (p)=Ngexp(—p%/pe?),
with po~0.9 {71, is often used for light nuclei,* and gives

Cim(g,w) = const exp[ — (w—¢*/2M)*/ (pog/ M)*], (16)
i.e., a Gaussian function of w, peaked at o= ¢?/2M, with
a half-width of (po/VZM)g~q/T7.

If we use this impulse approximation, the condition
that the entire area under C(g,w) be accessible experi-
mentally becomes o= ¢?/2M<q, i.e., ¢<KL2M ~10 {7

The neglect of mesonic events from the closure sum
imposes a more severe restriction on the range of ¢. For
w>m, pion electroproduction can occur. If only the
electrons are observed, the non-mesonic events cannot
be distinguished from the mesonic ones, so the number
of non-mesonic events can only be estimated by ex-
trapolating under the meson tail. For C(g), only the area
under C(g,w) is needed, and for this purpose one can
probably use some large-w model such as Eq. (16),
provided that enough of the single-particle peak occurs
for w<m, to allow this model curve to be fitted to the
experimental one. Requiring, e.g., that half the single-
particle peak occur for w <m. gives @=¢*/2M <m., or
¢<2.5 {7 Since this is also about the value of ¢ at which
corrections to our nonrelativistic approximation Hamil-
tonian begin to become important, we conclude that
0<¢<2.5 {1 is the maximum range over which the
present analysis can be trusted.

IV. SUM RULE INCLUDING THE CURRENT
INTERACTION TERMS

Writing the expression W of Eq. (5) in the form

W= (1+C050)Qn0*Qn0— (k1+k2) ° (JnO*Qn0+Qn0*JnO>
4+ (1 =% cos0) Jno®- Jnot (Jno*- kl) (Jno- fzz)
_%(kl ‘ }%2) (JnO* * Jn0)+ (JnO' él) (JnD* * k2)

—-%(kl'k?)<Jn0*'Jn0), (17)

we see that J appears linearly as J- & and quadratically
either as J-J or in the product of two second-rank
tensors. We shall be interested only in this expression
summed over the final states #. Since this sum includes
an average over the orientations of the spin and mo-
mentum vectors in |#n), q is the only vector in J which
survives the sum. Consequently for the purpose of the

14 See, e.g., A. Wattenberg, Encyclopedia of Physics, edited by
S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 40, p. 452. Also,
A. G. Sitenko and V. N. Gur’ev, Soviet Phys.—JETP 12, 1228
(1901),
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7 sum we can make the replacements

J—a(q-0)/¢,

JJ-3J-J) = [aa—3(a-@)] (18)
XC(a-N(a-N—3¢(3-3)1/34,
in which case W becomes
(1+4-cosf)—1W
ZQnO*QnO_ (w/Q)[(Q JnO*)QnO‘{”Qno*(Q' Jno)]
+3[2 tan2(6/2)+11J n0*- T o
—1[2 tan®(0/2)+1—30?/¢"]

In contrast to the Q? term alone, which only depends
on ¢?, this complete expression also contains the familiar
dependence of the current terms on the scattering angle
6. This unfortunately imposes the additional experi-
mental restriction that, in order to permit the sum over
n to be evaluated by closure, it must be performed ex-
perimentally at constant ¢ end constant §—i.e., the
various parts of the electron spectrum must be reached
by varying both the initial and final electron energies %,
and k., keeping ¢ and 0 fixed, rather than by varying 6
and k, with %, and ¢ fixed.

Furthermore, Eq. (19) also shows that the current
terms contain an explicit dependence on w, the energy
transfer. This means that, unless we know the correct
averages @ and (0% to employ, exact sum rules cannot
be constructed without explicit introduction of the
Hamiltonian. However, using what we believe to be
reasonable estimates for & and (w?).y, we shall find below
that the evaluation of the sum in the shell-model ap-
proximation shows these w-dependent terms to be very
small relative to the others for ¢<2 = at §=90°. Conse-
quently we believe that there is a substantial region in -
which such a “closure approximation” can be used
reliably.

Dividing the cross section derived from W by the
cross section (7), we define a function analogous to the
C(q) of Eq. (9) in terms of an integral over the electron
spectrum at constant ¢ and

dU‘U B

© d’o [ 1 Q)]
do——o~ Z— | =Z|F(Q]2,  (20)
0 (Z\Q(ikg (iﬂ} ) q

T(q,0)=

with doo/dQ= f(q.2)|2(e2/4k2) cos?(0/2)/sin*(6/2), as
before. Within the ¢ range considered here, the elastic
contribution is Z*| F(q)|% so T(g,0) is just the integral
over the inelastic spectrum. Note that it is normalized,
somewhat arbitrarily, per proton. Using closure and
replacing w, «? by their averages, ZT(q,0)+ 22| F|*
is simply the ground-state expectation value of
(14cos) W (g,&,{wHav,0), with Qo and Jno replaced by
the operators Q and J given in Eq. (4). Substituting
these expressions from Eq. (4), T(¢,8) can be manipu-
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lated into the ferm'

22| F(@)|*+ZT(¢,0)

1039

—/<1~—~>+——{ (Zupy+Np,? )[2 tan? (0/2)+1—S.z_] Z(142K) }—F%Z@[Z tan? (@)av
M ¢ w
< Z#Z A ’“{Cﬂkﬂmg—[q?m o.—(q-0;)(q- m)][z tan“’(@/ZH—l—L]
7k (I
ij?zk"l_qz/‘}

s bzit
+——e;(ex—2ur) tejes !
4aM2 M2

Here p.;=p;-q and p,; is the component of p; ina
direction normal to q. This expression is considerably
more complicated than the analogous Eq. (19) of Drell
and Schwartz,% in which many terms, not all of them
small, were neglected ; the Darwin-Foldy terms in par-
ticular are found to make a substantial contribution.
The terms for which the expectation value has been
explicitly evaluated are the “diagonal” or j=k terms;
we note that, if we take o= ¢?/2M, as for a free nucleon,
and neglect the (p?) terms (= zero for a free nucleon) and
the (wav/q? terms (of order M~ for a free nucleon),
these diagonal terms give

Z+
(¢?/4AM*){2(Zuy*+ Np.?) tan*(6/2)+ (N+Z)K*—

exactly as they should for the sum of free proton and
neutron cross sections, through order ¢®/M216 [See

Eq. (A9).]

V. EVALUATION OF THE SUM FOR SPECIFIC
NUCLEAR MODELS

273},

The function C(g) of Eq. (9) is defined in terms of the
ground-state proton-proton correlation function and so
is directly related to the spatial correlations in the wave
function. Similarly 7'(g,8), which is the function ac-
cessible experimentally, is dependent upon the spatial,
spin, and momentum correlations in the ground state.
Our purpose in the present section is to determine how
sensitive T'(¢,0) (i.e., its ¢ dependence) is to the differ-
ences between various nuclear models for the ground
state.

We begin with the shell model, for which the obvious
choice of nucleus is O, where there is no ambiguity
about the coupling scheme. It has the additional ad-
vantage that it is one of the p-shell nuclei, for which the
harmonic oscillator shell model is known to fit the

15 The only place the effects of the Gartenhaus-Schwartz trans-
formation survive are in the terms containing momentum opera-
tors. Since these are found for the shell-model function used here
to be small, we have dropped these A~ corrections altogether.

16 The final term, —2Z(¢g?/4M?), does not appear in the free-
nucleon cross section, Eq. (A9). It does appear in the square of the
free-proton matrix element, and is cancelled by a term from the
phase-space factor. As explained in reference 13), doing the sum at
constant ¢ instead of constant 6 produces a different phase-space
factor, and the cancellation no longer occurs.

2 tan2(9/2) +17+

(@av [szpsk—
(2143

q‘z M?

]HO> (21)
elastic scattering form factor well?; for the parameter «
in the Gaussian factor exp (—37%?) of the oscillator wave
function, the elastic data (corrected for the finite proton
size) give @=0.6 {1, In order to evaluate Eq. (21) we
must also have values for @ and (w?)ay. Since these terms
contribute significantly only for ¢ large enough so that
the discrete part of the spectrum has vanished, we use
o=q%/2M and (@*)sv=1.5%, which are the values given
by the quasi-elastic scattering spectrum Eq. (16).

The evaluation of Eq. (21) for the Slater-determinant
function corresponding to doubly-filled s and p shells,
with oscillator functions, then gives

T(g,0) =1+ (¢*/4M){ — 2+ (up’+un’)

X[2 tan2(6/2)+1—3¢%/8M*]— (1+2K)}

+ (302/4M?)[ 2 tan2(8/2)+ 1]+ 3¢%/32M*

+8(1—1x)e (1 —e*/1%)

— (14 3)e = (@/8M)e (b (a7

X[ 2 tan?(6/2)+1—3¢%/8M*](1+%a?)

+[14—8x+1a2— K (4+a2)]

+[1+ (1/2) J[2 tan*(6/2)+1]—3¢°/8M*}, (22)
with x=¢%/2a?; the terms have been written in the same
order as in Eq. (22).

It is interesting to compare this shell-model result,
which contains the effect of the Pauli principle, with the
corresponding result for a “classical perfect gas” model
of the nucleus. In this model the off-diagonal (j#k)
current terms all vanish, and for the Q'Q terms [see
Eq. (12)] we use

Py(r1,15) = P1(11) Pi(12), (23)

P, and P; being the two-particle and one-particle
probability densities, respectively.

Using the same harmonic oscillator wave functions,
the off-diagonal terms of 7'(¢,8) for O'¢ are

8(1—12)2(1—e/10) = — (1—La)2e==(14Tg2/AM?); (24)

the diagonal terms are of course the same as in Eq. (22).

The difference between the inelastic scattering given
by these two models is shown in Fig. 2, where the ¢
dependence of Egs. (22) and (24) is shown for the case
0=90°. Tgsx (total shell-model scattering) is the
7'(¢,90°) function of Eq. (22); for comparison we have
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F1c. 2. Calculations of the constant ¢ and 6 inelastic scattering
sum rule for various models of O, at §=90°. T¢ is the total
scattering (i.e., both Coulomb and current) given by the classical
perfect gas model (shell model without antisymmetrization), and
Cc is its Coulomb part. Tsa and Cgsar are the same functions for
the harmonic oscillator shell model, and Cggs is the Coulomb
scattering computed from the two-nucleon correlation function of
Eden, Emery, and Sampanthar, which includes the effect of a
hard core of radius 0.4 f~1. Lack of sufficient information on the
ground-state wave function prevents a detailed calculation of the
hard-core effect on T, but it is estimated not to exceed Cgy— CgEs.
The Coulomb scattering curves approach 1 asymptotically, while
the T curves approach TQE (qua51 elastic), which is given by the
“diagonal”’ terms of Eq. (21

also plotted Cgsa, the Coulomb scattering part of this
function, which shows clearly that the current inter-
actions play a significant role over this g range. T'¢ is the
total scattering for the classical perfect gas model, C¢
is its Coulomb part, and the curve labeled Tgr (total
quasi-elastic scattering) is given by the diagonal terms
of Eq. (22). T(q,6) converges to this curve at large g,
where the correlation effects disappear.

The fact that 7" s <7 ¢ shows the inhibiting influence
of the Pauli principle on the inelastic scattering.
T¢—T sy has a broad maximum peaked at about
¢=0.9 1, where it is about a 309, effect. In this sense
we can say that the “Pauli correlations” have a sub-
stantial influence on the inelastic scattering.!”

This calculation also shows that, even though the
“current” contributions (including the Foldy-Darwin
term) to the diagonal or quasi-elastic terms are large,
the off-diagonal “current” terms are less than 109} of
the off-diagonal Coulomb terms over this range of ¢. In
other words the correlation effects for these models are
predominantly spatial correlation effects and are mainly
in the Coulomb scattering for ¢<<2 f~1. In terms of the
figures, we have T qg— T su=21—C sar. In addition it is
found that the contributions of the @ and (w?),y terms,
which increase with increasing ¢, are together only about
69, of T'(¢,90°) at g=2 f~ for these models.

One of the most interesting correlation effects to look
for is that due to the supposed hard-core part of the

17 This agrees with the result found by Drummond,? for large
nuclei, but distinctly contradicts the estimate of Fowler and
Watson,® that the Pauli correlation effect should be negligible for
A=16.
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F16. 3. The two-nucleon correlation function calculated for O®
on the basis of the Gammel-Thaler force (hard-core radius 0.4 f) by
Eden, Emery, and Sampanthar. The corresponding shell-model
curve is included for comparison; the rapid convergence of the two
curves is what Gomez, Walecka, and Weisskopf refer to as a short
healing distance.

nucleon-nucleon interaction. Its effect on the Coulomb
scattering can be estimated with some confidence on the
basis of the work of Eden, Emery, and Sampanthar!®
(EES), who have calculated for O the two-particle
correlation function

Po(r)= / Py(R+1r, R—1r)dR, (25)

using a Brueckner-type approximation and a Gammel-
Thaler force with hard-core radius 0.4 f. Their result is
reproduced in Fig. 3, where it is compared with the
corresponding function for the oscillator shell model.
The rapid convergence of these functions to each other
is what Gomez et al.”® refer to as a short “healing
distance.”

The Coulomb contribution to the sum rule C(g) is
determined by the Fourier transform of Py (r), according
to Eq. (12). The result for the EES correlation function,
Crrs(q), is readily calculable, and is included in Fig. 2.
Remarkably enough, it does not deviate from C s (g)
by more than 5%, at any value of ¢, from which we
conclude that the effect of hard cores (of this size) on the
Coulomb scattering is extremely small.?® One way of
understanding this is to note that

/[Cszu(q) Cers(9) Jd*= 2m)*(Z—1)Psu(0),

J. Eden, J. Emery, and S. Sampanthar, Proc. Roy. Soc.
(London) A253, 186 (1959).

8L, C. Gomez J. D. Walecka, and V. F. Weisskopf, Ann. Phys.
3, 241 (1958).

20 This contradicts Fowler and Watson, reference 6, who seem
to find a large effect attributable to hard cores. We believe this to
be due in part to their neglect of the Pauli correlation effect, so
that they in effect attributed the entire difference C¢c—Cggs to
hard-core correlations. Since C¢—Cgrs=~Cc—Csu=~Tc—Tsu
from Fig. 2, this means that most of what they called hard-core
effect was probably due to Pauli correlations.

18 RV‘“
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i.e., the momentum space volume integral of the differ-
ence is a fixed number, independent of the core radius.
Decreasing the core radius 7, has the effect of spreading
this function AC(q) over a larger range of ¢, thus de-
creasing its magnitude. At 7,=0.4 f, ACmax <0.05, but
since it is readily seen to depend on 7. (actually on the
ratio of the core volume to the volume per particle), it
would become significant if r, were much larger.

Since the off-diagonal magnetic terms of Eq. (21) also
depend on the Fourier transform of a Ps-like function,
we estimate that they, too, will be nearly unaffected by
hard-core correlations. The p;-px terms, which depend
on the derivative of the wave function, are less easy to
estimate. The diagonal derivative term of Eq. (21),

T pe= ((p*)/3M*)[ 2 tan*(6/2)+1],

can be estimated from what is known experimentally
about the one-nucleon momentum distribution in light
nuclei.* This information gives (p?)/M?=~0.054; since
{(p®/M?=9a2/4M*=0.036 for the shell-model function
of Eq. (22), AT,:=0.018[2 tan2(6/2)+17]/3 gives the
deviation of this term from the shell-model prediction.
The hard-core effect on the p;-p; terms can be evalu-
ated only on the basis of a specific model. One such is
given by a Jastrow-type ground-state wave function,
Yo=1L>k f(r;1) @sm, With ¢ s the shell-model function
used above; f2(r) is approximately the ratio Pgrs(r)/
Psu(r) of the functions of Fig. 3, and so rises from zero
at7r=0.4f to 1 at =<1 {. Within the binary collision or
“independent pair” approximation, one finds

ol pr-pelo) = —(f' (r12) osar| f (712) 0 501)
+<<PSM|D1‘P2! sos,v),

in terms of which the off-diagonal p«-p; contribution to
Eq. (21) at ¢=0 is given by

Tyr.p5= (Z—1) (o] pr- p2|¥0)/3M?)[ 2 tan*(6/2)+1].

Evaluating this with the above choice of f(r), we
summarize in Table I the diagonal as well as off-diagonal
contributions of the derivative terms to 7" at §=90° and
g=0, for the shell model and for this hard-core model.
Cancellations appear to make the total contribution to
T for this hard-core model very nearly equal to that of
the shell model. Whether or not this cancellation is to be
taken seriously, it seems clear that the net effect of hard
cores on the derivative terms of T is certainly less than,
say, 0.05 at ¢=0 and §=90°.

Since it can also be inferred from the binary collision
approximation that this effect does not depend strongly
on ¢, our conclusion is that the net effect of hard-core
correlations on 7 is of the same order of magnitude as
the difference (Crrs—Csuy) indicated in Fig. 2, and
consequently is probably too small to be observable.

Finally it should be noted that the long-range pair
correlations associated with collective motion to be
expected in deformed nuclei have been neglected in the
models considered here. It would seem quite possible for
their effect on the sum rule to be substantial at small ¢
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TABLE I. The estimated contribution of the derivative (or cur-
rent interaction) terms to 7" for two models. The diagonal, off-
diagonal, and total contributions are listed. The relation of T to
the differential cross section is given in Eq. (20).

Tp? T Total
Shell model +0.036 —0.012 +0.024
Hard-core model +0.054 —0.037 +0.017

(say, ¢<0.5 £71), but it should decrease at larger ¢’s, and
in any case ought to be at a minimum in doubly-magic
nuclei.

VI. CONCLUSION

Via the constant-g and -6 sum rule, inelastic electron
scattering provides one of the most direct means of
access to two-nucleon correlation functions. For small ¢
and moderatef (e.g., ¢<1{at§=90°), where Coulomb
scattering predominates, the sum can be done at con-
stant ¢ and £, and is sensitive mainly to proton-proton
correlations. At larger ¢ and 6 the current interactions
predominate; the sum must then be done at constant ¢
and 6, and depends on pp, nn, and np correlations.

Although one cannot hope to extract the correlation
functions directly from the experimental data, specific
nuclear models can be tested by the use of Eq. (21). For
the specific case of O'¢ it is found that Pauli correla-
tions depress the summed scattering appreciably for
0.5 f1<¢<1.5 £71. However, the effect of a hard-core
force of radius 7,<0.4 {1 appears to alter it by only a
few percent for all g.

APPENDIX A

Derivation of the Interaction Hamiltonian for
Nonrelativistic Nucleons

. The fact that spatial correlations of the nucleons play
an important role in the problem at hand suggests that
a coordinate space treatment of the scattering will be
more advantageous than the usual momentum space
diagram technique. For Born approximation scattering
this is called the Mgller-potential approach,? and re-
quires that we first find the nonrelativistic interaction of
the nucleon with an arbitrary external field. This seems
to be most readily accomplished, to a given order in
inverse powers of the nucleon mass, by means of the
Foldy-Wouthuysen transformation scheme.?

We start from the generalized Dirac equation for a
spin- particle in a given electromagnetic field, including
coupling terms only to first order in the field,?

maﬂ+M>¢—i{<§=oenDnAm

+i(§ w070,4,)0,,)9=0. (A1)

2 C. Mgller, Z. Physik 70, 786 (1931).
22 L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).
2 L. L. Foldy, Phys. Rev. 87, 688 (1952).
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The notation being used is x,= (x,3) for 4-vec-
tors, 9,=09/0x,, [1=0,0,, v.=(—1be,B), and o,
= (—1/2)(vuy»—+Yu)- The field 4,(x,) is to be evalu-
ated at the same argument as ¢. €, and u. are the
unspecified constants which determine the interaction;
€0 and ug are of course the charge and anomalous mag-
netic moment of the particle, its total magnetic moment
being {(e/2M)4po} o, with o,=0s3, etc. We shall also
define K by wo=(e/2M)K. Define the differential
operators

eF1(D=2 el 1", woFo((D)=2 ual 1™

In momentum variables ¢ they are the familiar electro-
magnetic form factors F1(g,?) and F1(g,?) of the nucleon,
normalized to Fi(0)=F,(0)=1 for the proton and
F1(0)=0, F»(0)=1 for the neutron. Equation (A2) then
becomes

(‘Yﬂau—}—M)\P"‘ 16[ (F1A “)’y‘,
+ (GK/2M) (F20,4 )0 =0.

(A2)

(A3)

Following Foldy,”® we apply the Foldy-Wouthuysen
transformation? to Eq. (A3) to obtain the correspond-
ing two-component, positive-energy equation for the
nucleon. We retain only terms through order M2 and
in their selection we consider X to be independent of M,
L.e., uo to be of order M. We further neglect all terms
of order higher than 1 in the electromagnetic potentials.
The result is

2

P e
~Tte(Fro)¥——[p- (F1A)+ (F:A) -p]¥
2M 2M

4
— e (FH
2M[ (FH) ¥

€
7" F;;E - F';E )
Fop O X (EE) = (FE) Xp])

e oV
———div(FE)¥=i—, (A4)
82 ot
with the following notation,
o=—idy, A= (4,,4545),
E=—gradp—09dA/d:, H=curlA, (AS)
F3=F1+2KF2, F4:F1+KF2.

¥ is the two-component nucleon wave function and ¢
is the Pauli spin operator.? The electromagnetic po-
tentials and fields in (A4) must be taken at the same
arguments as V.

To apply this Hamiltonian to the calculation of
electron-nucleus scattering, we use the semiclassical
Mgller-potential method,** according to which the A

2 For comparison of our formulas with those of Foldy,® we
mention that in Eq. (6) of Foldy’s paper a factor of  is missing in
front of each u,. The equations of Foldy and Wouthuysen,* con-
tain a large number of misprints.

AND I..
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and A4 of Eq. (AS) are the fields generated by the

“transition current” (7.)s1 of the passing electron. In

noncovariant notation this current is
p21(1,0) = eustu,ei(0-1-0 0,

(A6)

jor(r,8) = enst anyei€a T,

the #’s being free-electron (or muon) spinors, and q and
w the momentum and energy transfers defined in Eq.
(2) of the main text.

In the Lorentz gauge being employed, [ ]4,= —4rj,,
so the fields generated by the current (A6) are
drenstu;
o(r)= ¢laren,
q2.__w2
(A7)
drenstan,
A(r)= gi(ar—ot),
q?_wZ

Substituting them into Eq. (A4) we obtain our desired
result, the Born-approximation electron-nucleon inter-
action Hamiltonian in the nucleon space, correct
through order M2,

y 47'-62 . I;‘l . .
H'=—( us|Freitnms——(p-qe’ winteituiup- )
g2 2M
(F1+KF,)
— 10 (X @)e! s
M
g2 _ (Fi+2KFy)
———(F1+2KFy)e w1 g
8M? SM?

u1>, (A8)

in which F; and F, are to be taken as the series (A2)
with [] replaced by ¢,2= ¢*—w

The simplest application of this Hamiltonian is to the
calculation of the scattering of electrons on free “Foldy-
Wouthuysen” particles. The cross section obtained, cor-
rect through order ¢*/M?, can be written in the form?

do/dQ= o' {F 2+ (¢/4M?)
X[2(F1+KFy)? tan2(6/2)+ K2F 2]},

e \? cos2(0/2) 2k, =
0,=<__> _[1+—— gm(a/z)} . (A10)
2k/ sini(8/2) M

(A9)
with

(6 is the electron’s scattering angle.)

For comparison, if the Mdller-potentials Eq. (A7) are
substituted into the equation for a relativistic nucleon
Eq. (A3), and the analogous Born-approximation cross

2 Kinematic relations useful in obtaining the result in this form
are: q2=2Mw q- (k1+kz)——w(1+cos()), and (q-£1)(q-k2)=¢? cosd
—q. cos“(O/Z) Also, since w=¢2/2M, we have set g2/ M?=g*/M?
in the Darwin-Foldy term.
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section computed, one obtains the generalized Rosen-
bluth expression?¢

do/dv= o' {F 2+ (q,2/4M?)
X[2(F14KFy)? tan2(6/2)+K2F2]}.  (Al1)

To obtain the approximation appropriate to a non-
relativistic nucleon, we note that, for a given 6, the
nucleon’s recoil velocity v= g/M, appears explicitly only
in ¢.2/M?, which to second order in v is ¢*/ M?, since
w=¢?/2M . Hence (A11) and (A9) agree through second
order, as they should. In contrast, we note that, e.g., the
diagonal terms of Eq. (19) of reference 5, which should
in the same way agree through second order with Eq.

26 M. N. Rosenbluth, Phys. Rev. 79, 619 (1950).
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(A11), fail to do so because the Darwin-Foldy term was
neglected in the interaction.?”
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The question is raised for non-Abelian vector gauge fields whether gauge invariance necessarily implies
a massless physical particle. As a preliminary to studying this problem, the action principle is used to
discover the independent dynamical variables of such gauge fields and construct their commutation relations.

INTRODUCTION

T is well known that gauge invariance intimately
ties the electromagnetic field 4,(x), F.(x) to the
set of all fields x(x) that bear electrical charge. This
internal property is described by a finite imaginary
Hermitian matrix ¢ with integer eigenvalues. A gauge
transformation involves an arbitrary numerical function
A(x). It is a linear homogeneous transformation for the
charged fields x(x), but an inhomogeneous one for the
gauge field 4,(x),

x(2) = e Ox(x), Au(x) > Au(3)FON(),
Fou @) = Py ().

Such transformations form an Abelian group, in which
the gauge function,

A(x) =AD (x) 2D (x),

describes the superposition of two individual transfor-
mations. The integer spectrum of charge is related to
the compact structure of this group, which has the
topology of the circle. Gauge invariance implies that
local conservation of charge is not just a consequence
of the equations of motion of the charge bearing fields

* Supported in part by the Air Force Office of Scientific Research
(Air Research and Development Command).

1 Visiting professor, Stanford University, Stanford, California,
summer, 1961.

but appears as an identity characteristic of the gauge
field differential equations.

In this familiar situation the gauge field does not
carry the internal property to which it is coupled. A
different example is furnished by the gravitational field,
for this couples with energy and momentum, to which
all physical systems must contribute. In other respects,
however, the requirement of general coordinate invari-
ance is quite analogous to that of gauge invariance.
There is an intermediate possibility in which the gauge
field is coupled to, and also carries, internal rather than
space-time properties. Then the gauge field retains the
space-time transformation properties of the electro-
magnetic field. This is indicated by the tensor notation
bua, Guva, Where the index a=1---n refers to the
internal space. For the gravitational field the latter is
also a coordinate index, which requires fields of more
complicated space-time transformation properties.

The gauge transformations of a field x(x) that
supports a number of internal properties, as represented
by finite linearly independent matrices Ty, a=1-- -,
can generally be stated explicitly only for infinitesimal
transformations,

x(x) — [1+ é Tbha () T ().

If these are to generate a transformation group, two



