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When diffusion occurs by either a vacancy or interstitialcy mechanism, an electric Geld has two effects on
the diffusion process. First, the Geld exerts a direct force on the electrically charged ions. This effectively
changes the energy of motion for an ion jump in the direction of the Geld. Secondly, the Geld causes a net Qow

of vacancies or interstitialcies. This makes vacancies or interstitialcies approach an ion more frequently from
one direction and less frequently from the opposite direction. The drift mobility p of an ionic impurity in an
electric Geld is found from consideration of these two eftects, with p, being related to D*, the tracer diffusion
coefficient of the impurity in the absence of an electric Geld. General equations are derived giving the value
of ts/D* in any homogeneous cubic crystal. Explicit expressions are calculated for several speci6c lattices.
These equations apply best when the impurity ion has the same charge as the solvent ions in the sublattice of
interest. Both vacancy and interstitialcy mechanisms are treated. The value of ts/D* depends on both the
diffusion mechanism and the relative values of the various jump frequencies near the ilnpurity.

1. INTRODUCTION

''N ionic crystals, ions diGuse by making a series of
I- discrete jumps from one lattice site to another. The

tracer di6'usion coeKcient D* depends on the frequency
of random jumps in all possible directions. An electric
field will cause the ions to jump more frequently in one
direction than another, and the drift mobility p depends
on this excess frequency of jumps. %hen the excess fre-

quency is related to the random frequency, p will be
related to D*.

In a homogeneous crystal, both p and D~ can be
determined from a single tracer experiment. If a layer of
tracer ions on a, plane normal to an electric field Ji is
aHowed to disuse for a time 7., the center of the tracer
profile will shift a distance x= p,L~ toward one end of the
specimen. %hen E and ~ are known, a measurement of
the shift x allows one to calculate p. The diffusion coe%
cient D* can be found from the width of the tracer
profile, which in a, homogeneous crystal will be the same
with or without a field.

In the present paper, results from a previous general
treatment of diffusion in a gradient' are used to derive
general expressions for ts/D* in an electric field (electric
potential gradient). Two separate contributions to the
drift mobility are considered: (1) from the force the Geld

exerts on the charged ions and (2) from the effect a flow

' J. R. Manning, Phys. Rev. 124, 470 (1961).

of vacancies or interstitialcies has on the di6usion
process. Expressions applicable to any homogeneous
cubic crystal and to either a, vacancy or interstitialcy
mechanism are obta, ined. Explicit results for several
common lattices then are calculated from these expres-
sions. The nonrandom return of dissociating vacancies is
considered, so, for self-diffusion, the equations are exact.

Relations between p and D*have been obtained previ-
ously in several special cases. If the ions pursue a
random walk in the absence of an electric Geld, tt/D* is
given by the simple Nernst-Einstein relation, ~

ts/D*= q/AT,

where q is the charge of the diffusing ions, k is
Boltzmann's constant, and T is the absolute tempera-
ture. In general however, the ions will not follow a
random walk. Thus, a correlation factor f must be
introduced, ' and Eq. (l) must be modiGed. . McCombie
and Lidiard pointed out that, for self-diffusion, the
value of p depends on the total jump frequency v, while
the tracer diftusion coe%cient D* depends on the fre-

' See e.g. , A. B. I idiard, in Bewdbuch dt/f Ehysfk, edited by S.
k'liigge (Springer-Verlag, Berlin, 1957), Vol. 20, p. 324.' J. Bardeen and C. Herring, in Atom IrIoeements (American
Society for Metals, Cleveland, Ohio, 1951l, p. 87; also in Irnperfec
tions in Nearly Perfect Crystals (John Wiley 8z Sons, Inc. , New
York, 1952), p. 261.

4 C. W. McCombie and A. B. Lidiard, Phys. Rev. 101, 1210
(1956).
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quency sf Thus, for self-diffusion by a vacancy mech-
anism, a factor f ' must be introduced on the right-hand
side of Eq. (1). For self-difFusion by an interstitialcy
mechanism with collinear jumps, a factor 2f ' must be
introduced, the factor 2 arising because two ions par-
ticipate in each interstitialcy jump. Howard and Lidiard
studied the diffusion of an impurity in NaCl by con-
sidering the possible orientations of a vacancy-impurity
complex. ' For an impurity which is diffusing by a
vacancy mechanism in a face-centered cubic sublattice
(NaC1 lattice) and which has the same charge as the
solvent ions in this sublattice, they found'

q 2wi+ 13ki

D* kT 2m, +.7k&

where k& and m& are the jump frequencies for exchange
of the vacancy with the various solvent ions surrounding
it, the m» jumps being those in which the vacancy moves
to another site neighboring on the impurity, and the k~

jumps being those in which the vacancy moves away
from the impurity.

The present treatment includes the above equations
as special cases. However, it is considerably more
general, including impurity diffusion in any homogene-
ous cubic crystal by either a vacancy or interstitialcy
mechanism. This treatment applies best when the im-

purity has the same charge as the solvent ions in the
sublattice containing the impurity.

uncorrelated jump to site j by a factor G„. In the
Appendix, it is shown to a good approximation that,
when an electric Geld causes a Qow of vacancies in an
ionic crystal with cubic symmetry,

q,EP
G„=1+ I.cos@„,

kT

where q, is the charge of the solvent (nontracer) ions in
the sublattice of interest, and I depends on the lattice
geometry and the solvent ion jump frequencies in the
region near the tracer. If certain simplifying assump-
tions are made about the vacancy jump frequencies,
explicit values of I.can be calculated. A general expres-
sion for L is given by Eq. (A'7) in the Appendix, and
several speciGc expressions are given in Table I.

(b) Drift Mobility

The drift mobility p equals the drift velocity of an ion
in unit electric Geld. The drift velocity 8 in Geld 8 is
given by

In reference 1, it is found that for any type of gradient
the mean ion drift velocity is given by

=2D*X 'PA+B+ ,'X(8 1 f/8*)]-.

The quantity 8 is related to G„by the equation

2. DRIFT MOBILIYY FOR A VACANCY MECHANISM

(a) Effect of an Electric Field

G„=1+BcosP„.,

while, in a homogeneous crystal, 3 is given by

voj g= pop(1+2 cosf0~'),

(7)

Since ions carry an electric charge, an electric Geld

exerts a force on them. This changes the effective energy
of motion for jumps in the direction of the field. The
energy of motion for a jump is determined by the
configuration at the barrier half-way between the initial
and Gnal ion positions. Thus, when diffusion occurs by a
vacancy mechanism, the effective change in energy of
motion equals half the change in electric potential
energy resulting from the jump. The effective change
8H„. in the energy of motion for a tracer ion jump from
site o to a neighboring site j is given by

8H„=——,'q, EX cosP„, .

where g& is the charge of the tracer, P is the jump dis-
tance, and P„.is the angle between the electric field and
the line o-j connecting site o to site j.

In addition to exerting a force directly on the charged
tracer ions, the Geld may indirectly affect the diffusion
process by causing a flow of vacancies or interstitialcies.
When a vacancy flow occurs, vacancies approach an ion
more frequently from one side than another. This
changes the probability that the tracer will make an

' A. B.Lidiard, Phil. Mag. 46, 1218 {1955).
R. E. Howard and A. 3.I idiard (private communication).

2 =q,E7/2kT.

From Eqs. (4) and (7), one 6nds

B=q,EXL/kT.

(1O)

In the absence of concentration gradient efFects, the
correlation factor f does not depend on position, ' so it
follows from Eqs. (5) and (6) that

~/D*= (q /&&) &1+2Lq./q ) (12)

The factor in braces in Eq. (12) arises from the flow of
vacancies. Since this factor can differ appreciably from

where v.;t, is the basic ion jurnp frequency for a jump
from site o to site j, and v, ~ is the basic ion jump fre-
quency for a jump from site o in a direction normal to
the Geld. The basic jump frequency is a theoretical
quantity which can be calculated from the energies of
motion and formation. In a homogeneous crystal, the
energy of formation will be the same for v, » as for s, &.

However, the energies of motion will difFer by bH„.
Thus,

1+2 cosP„=exp( —8H„/kq').

With the aid of Eq. (3), one finds to first order,
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TABLE I. Values of I in terms of the vacancy and interstitialcy jump frequencies. '

Lattice

s—1
R' jy~

@~1

s—1

vo jpu, cosfp
y 1

Face-centered cubic
Diamond
Body-centered cubic
SImple cubic

4"N1+7k1
3K'1

3m1+4k1
F1+ k1

Vacancy mechanism

2u, 1+5.15k1
2K'1

2.35@,1+2.98k1
3.04m, +0.73k 1

—2zv1+3kl
'N1

—'w1+ 2k 1

k1

(—2wg+3kg)/(2wg+5. 15k,)
1
2

(—w, +2k&)/(2. 35w, +2.98k, )
k Ij(3.042 1+0.73k 1 )

NaCl (or AgCl)
Ca sublattice in CaF2,

fluorite (same as fcc)

38/1
4H)1+ k1

Interstitialcy mechanism (with collinear jumps)
2'N1 WI

3.26x1+0.74k 1 kl k&/(3. 26wg+0. 74k, )

a Values of mfa ~ are defined as follows: For diffusion by a vacancy mechanism in a face-centered cubic lattice, m & is the frequency with which a vacancy
will jump from one site neighboring on an impurity to another given site neighboring on this impurity'(nondissociative jump), and kt is the frequency with
which a vacancy will jump from a site neighboring on an impurity to a given one of the adjacent sites not neighboring on the impurity (dissociative jump).
For the other lattices, m& is the frequency with which a vacancy or interstitialcy will jump from a site which is a nearest neighbor of an impurity to one of
the group of second nearest neighbors sites, and kt is the frequency of jump from a nearest neighbor site to any one of the other possible p sites (third,
fourth, or fifth nearest neighbors of the impurity). Figures illustrating these jumps may be found in reference 9.

b The values of Il yy& listed here are those found in reference 9 for the case where a vacancy at a second nearest neighbor site from the impurity diffuses
as if it were in a pure lattice. In general, 0& F~pg& 1. In the face-centered cubic lattice, I7'~~a always equals —, for the four 2~ i jumps.

o The cos&2 are geometric quantities which depend on the crystal lattice.

2q,,Ea
G.;=- 1+ I.cosg.;,

unity, the Nernst-Einstein relation LEq. (1)j is not Appendix, it is found for this mechanism:
strictly obeyed when diffusion occurs by a vacancy
mechanism.

3. DRIFT MOBILITY FOR AN INTERSTITIALCY
MECHANISM

An equation similar to Eq. (12) can also be derived
when dift'usion occurs by an interstitialcy mechanism.
In the elementary jump for this mechanism, an inter-
stitial ion pushes a neighboring lattice ion into an
interstitial site and moves into the lattice site itself. The
motion of both ions participating in an interstitialcy
jump will transport electric charge. Thus, to obtain the
net change in electric potential energy resulting from
such a jump, the displacement of both ions must be
considered. For a collinear interstitialcy jump, where
the two participating ions both move in the same
direction,

5I0~ = —
g (g g+ gg)EG cosfoj.

Here, SI„is the effective change in energy of motion for
an interstitialcy jump which displaces a tracer ion in the
jth direction, a is the ion jump distance (the distance
between a lattice site and an adjacent interstitial site),
q& is the charge of the tracer, q, is the charge of the
solvent ion participating in the jump, and p„ is the
angle between the electric IIield and the jump direction.

When diffusion occurs by a collinear interstitialcy
mechanism, a tracer ion can jump from a lattice site to
an adjacent interstitial site j only if an interstitial ion is
present at site —j, the interstitial site on the side of the
tracer opposite from site j. A Qow of interstitialcies
changes the probability that a new interstitialcy will

approach a lattice ion from the —jth direction. This
changes the probability of occurrence of an uncorrelated
tracer jump to interstitial site j by a factor G„. In the

where I. can be found from Eq. (A7) and Table I.
In the interstitialcy mechanism, half of the jumps are

directed from a lattice site to an interstitial site and the
other half from an interstitial site to a lattice site. As a
result, only half of the jumps by any given ion are
affected by the probability of an imperfection being at
an adjacent site. For an interstitialcy mechanism, Eq.
(6) thus becomes

8=2D'a 'PA+2'8+2'~-(~ lnf/») j
Here, A is given by Eq. (9) with III„replaced by 8I„,
while I3 can be found from Eqs. (7) and (14). In a
homogeneous crystal, f is independent of x. Thus, for an
interstitialcy mechanism with collinear jumps, it follows
that

gs+gt

The factor in braces in Eq. (16) arises because of the
How of interstitialcies which results from the presence
of the electric field.

4. DISCUSSION

(a) Self-Diffusion

McCombie and Lidiard4 have shown tha, t for self-
diffusion by a vacancy mechanism,

v/D*= (V~/&&) (1/f), (»)
and for self-diffusion by an interstitialcy mechanism
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Explicit expressions for I, calculated under the as-
sumption that a vacancy which is not a nearest neighbor
of an impurity diffuses as if it were in a pure lattice, are
given in Table I in the Appendix. For a face-centered
cubic sublattice, one finds

—2zol+3kl

and

I.=
2zol+5. 15k l

tz e —2zol+11.15kl

D* kT 2zol+5. 15kl

(20)

(21)

Equation (21) is very similar to Eq. (2), which was
derived by a diferent method. The coeKcients of k~ in
Eqs. (2) and (21) differ because a correction for the non-
random return of vacancies which make k~ jumps is
included in Eq. (21) but not in Eq. (2). In general, the
coeKcient of k& in the denominator of Eq. (20) equals
7', where Ii&1. Equation (2) corresponds to the case
where Ii =1.

For the case considered in Eq. (21),

2zos+2zol+5. 15k'
1

2zol+5. 15k'
(22)

where m2 is the rate of exchange of a vacancy with a
neighboring impurity. ' Thus, (1+2L) can differ ap-
preciably from f ' This is true in .general for impurity
diffusion (in contrast to the result for self-diffusion).

7 K. Compaan and Y. Haven, Trans. Faraday Soc. 54, 1498
(1958);52, 786 (1956).

8 A. H. Schoen and R. %V. Loden, Bull. Am. Phys. Soc. 5, 280
{~wo).' J. R. Manning, Phys. Rev. 116, 819 (1959).

with collinear julTlps,

v/I)*= (q=/kT)(2/f)

These equations can be compared with Eqs. (12) and
(16). For self=diffusion, q~ equals q„. Thus, for. self-
diffusion by a, vacancy mechanism, (1+2L) should
equal f ', while, for self-diffusion by an interstitialcy
mechanism, (1+L) should equal f ' Va. lues of I. for
self-diffusion (where kl ——zo~) can be found from the
expressions in the last column of Table I. These values
and previously calculated valuesz' of f satisfy the above
relations. Since Eqs. (17) and (18) are exact equations,
this shows that for self-diffusion Eqs. (12) and (16) are
also exact.

(b) Impurity DNuslon

Monovalent Inzplrzty in Monovalent Sgblattice

For a monovalent impurity diffusing by a vacancy
mechanism in a monovalent cation sublattice, q~=+e
and tI, =+e, where e is the electronic charge. Then, Eq.
(12) becomes

p/D~ = (2e/k'l') (1+L),

and, if I. is given by Eq. (20), one obtains

p, 2c 8.10ki

D* kT 2zo, +5.15k,

(23)

One must exercise care in applying Eqs. (23) and (24).
These equations are valid if p and D are measured in
essentially homogeneous crystals (where all concen-
tration gradients are negligible) and if the impurity does
not appreciably affect the motion of a vacancy at a next
nearest neighbor site. When g&Nq,„ these conditions
frequently are not satisfied.

The analysis leading to Eq. (23) is valid only if the
nonuniform concentration of divalent ions introduced to
measure p and D~ is small compared to the total
vacancy concentration. When this condition is not
satisfied, the vacancies which are introduced along with
the divalent ions to preserve charge neutrality give rise
to an appreciable gradient of vacancies. The electric
field tends to sweep these vacancies toward one end of
the specimen, but, at least to a certain extent, they are
bound to the relatively immobile divalent ions. The
efI'ect this has on the vacancy Qow is not clear. Also, as
discussed by Lidiard, ' "the probability of association of
a vacancy and a divalent ion in a vacancy-impurity
complex is a function of the divalent ion concentration.
When there is an appreciable gradient of divalent ions,
a factor depending on the derivative of the association
probability must be introduced into Eq. (23). Both tz

and D* then will vary with position and time, so simul-
taneous values of these quantities will also be dif.Iicult to
obtain experimentally.

These difficulties do not arise if the nonuniform con-
centration of divalent ions is small compared to the
total vacancy concentration. This condition can be
satis6ed experimentally since radioactive tracer im-
purities with very high specific activity are available. A
uniform vacancy concentration much greater than that
introduced with the tracer impurities can be provided
either by thermal vacancies or by vacancies resulting
from a uniform concentration of non-tracer divalent
ions.

Even when this condition for Eq. (23) is satisfied,
Eq. (24) may not be completely valid. If the impurity
ion diGers significantly from the solvent ions, it can
strongly inhuence the motion of a vacancy at a next
nearest neighbor site. Then, the equations for I need to
be modified. In the limit where the vacancy is so tightly

'o A. B.Lidiard, Phil. Mag. 46, 815 {&955).

I)i valent Inzplrity in a Monovalent Sub lat-tice

&s another example, the digusion of a divalent in=
pu 'tyby cy ech ni

'
f -ce ter d b'.

sublattice of monovalent cations can be considered. In
this case, qq==+2e and q,, -=+e, so, from Eq. (12) one
finds
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bound to the divalent ion that every ki jurnp is im-

mediately followed by the return of the vacancy to a
site neighboring on the tracer, p/D~ goes to zero. In an
intermediate case, where a vacancy at a next n.earest
neighbor site is weakly attracted to the divalent im-

purity, the coeKcients of ki in Eqs. (20) and (24) will be
somewhat decreased. Thus, Eq. (24) probably gives only
an upper limit on y/D*.

determine the diffusion mechanism and the relative
values of the jump frequencies near an impurity. The
expressions for L, include the effect of those dissociating
vacancies which return to the impurity. Hence, for self-
diffusion, Eqs. (12) and (16) reduce exactly to the
proper expressions [Eqs. (17) and (18)].The equations
for p/D* apply best when the impurity has the same
charge as the solvent ions in the sublattice of interest.

(c) Diffusion Mechanism for Impurity Di6'usion
and Jump Frequencies Near an Impurity

The value of p/D* will be considerably larger for an
impurity diGusing by an interstitialcy mechanism than
by a vacancy mechanism. [See Kqs. (12) and (16).]
Thus, as was pointed out by McCornbie and Lidiard for
self-diffusion, ' a measurement of AM/D* could help to
determine the dNusion mechanism.

Chemla" measured the values of p, and D* for Cs
diffusing in NaCL He found (p/D*)(kT/e) =0.9 to 1.0
in the temperature range 575'C to 721'C. From Eq.
(16) and the value of I.(=—',) given in Table I, it follows
that for a monovalent cation impurity diffusing by an
interstitialcy mechanism with collinear jumps in a face-
centered cubic sublattice of monovalent cations (for
example, the Na sublattice in NaCl),

)i/D"=3e/kT.

Equation (25) predicts a value of p/D* three times as
large as the measured value. Thus, one may conclude
that Cs in NaC1 does not diffuse to any great extent by
an interstitialcy mechanism with collinear jumps. On
the other hand, a value )i/D*=e/kT is consistent with
Kq. (21), which gives the value of p/D* for diffusion by
a vacancy mechanism.

%hen the diffusion mechanism is known, relative
values of the jump frequencies, such as m» and kl, can be
estimated from the value of )I/D*. From Eq. (21) and
the experimental values of )i/D* for Cs diffusing in
NaCl, one can estimate that, if diffusion occurs by a
vacancy mechanism, wi/k&=1. 5 to 1.'7 in the tempera-
ture range 721'C to 575'C. If the value of the correla-
tion factor were known, one could also use Kq. (22) to
determine the ratios ws/ki and ws/wi.

5. SUMMARY

A general expression [Eq. (12)] was derived, giving
the value of p/D* when diffusion occurs by a vacancy
mechanism in a homogeneous cubic crystal. The value
of the quantity I.which appears in this equation can be
found from Kq. (A7) in the Appendix. Explicit expres-
sions for I, calculated under the assumption that a
vacancy which is not a nearest neighbor of an impurity
diBuses as if it were in a pure lattice, are given in
Table I. An expression for p/D* when diffusion occurs
by an interstitialcy mechanism in a homogeneous cubic
crystal is given in Eq. (16). These equations can help

"M. Chemla, Ann. phys. 1, 959 (1956).

APPENDIX —EFFECT OF AN ELECTRIC FIELD
ON 6„ IN AN IONIC CRYSTAL

(a) Vacancy Mechanism

The solvent ion jump frequency m;„ for exchange of a
vacancy on site jwith an ion on site P is changed by an
electric field so that

w, „=w;„(1+sco&;„),
where m;„, is the value of m;„ in the absence of a 6eld,
p;~ is the angle between the direction of the 6eld and the
line j-P, and e is a small quantity. To first order,

e= q,EX/2kT, — (A2)

where q, is the charge of the solvent ion, E the magni-
tude of the electric Geld, and ) the jump distance.

The effect of the electric Geld on the solvent ion jump
frequencies causes a.fl.ow of vacancies. This fIow changes
the probability that a vacancy which has not previously
exchanged with a given tracer ion will arrive at a site j
next to the tracer. As a result, the probability of an
uncorrelated tracer jump to site j is changed by a factor
6„.. If a vacancy at a next nearest neighbor site is not
strongly bound to the tracer and the equilibrium va-
cancy concentration is constant throughout the crystal,
it can be shown to a good approximation' that

z—1

G.,=1—2e Q w;„, cosy;„jg w, „,F;... (A3)

Here, s is the number of nearest neighbors, and the
summations are over s—1 sites n.eighboring on site j
with the tracer site being excluded. Also, Ii;„ is the
fraction of vacancies making m;„jumps which in the
absence of an electric Geld effectively return to the
tracer only from random directions. Values of w;~+;„,
are listed in Table I.

One may deine g„as the angle between the line j-p
and the line o-j (see Fig. 1). Then, from the law of
cosin. es for spherical triangles, one 6nds

z—1 z—1

P w;„, co&,„=P w;„, cosQ.; cosQ„
2)~l y=1

+g w;„, sing„sing~ cosf„, (A4)
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FIG. I. Diagram showing the angles f jp @oj pp and P„. The
tracer ion at site 0 is marked &(, and the direction of the electric
field l~" is shown by the arrow. Site j is a nearest neighbor of the
tracer, Site p is a nearest neighbor of site j.

z—1 z—1

W jpa Cosljk jp COSQ jPaWj pa COSIPp
p=l u=&

(AS)

Then, from Eqs. (A2) and (A3), one obtains

G»= 1+(q,EX/AT)L cos»t»„,

where
(A6)

z—I z—1

L P Wj pa Cosgp/P Wj paFj pa

The quantity I depends only on the crystal geometry
and the solvent jump frequencies m;~ in the absence of

where»Pp is the angle between plane I, which is defined

by the tracer, site j, and the direction of the electric
6el.d, and plane II, which is de6ned by the tracer, site j,
and site p. If the line 0-j is an axis of twofold rotational
symmetry, Eq. (A4) can be simplified. For every site p,
for which sing»NO there then will be another site P2
SuCll that Sin/pl Sln@p2» Wj pal —Wj pa2» and Cos»/pl
= —cos»Pp2. Thus, the second sum on the right in Eq.
(A4) equals zero. Similarly, if the line 0-j is an axis of
threefold rotational symmetry, the sites for which

sinpp/0 can be divided into groups of three (pl, p2, and

p 2) fol' wlllcll sin/pi = sln4»p 2
= slnlj& p2» wjp al =wjp a2

=W,„,2, and cos»ppi+cospp2+cosfp2 ——0; and again the
second sum on the right in Eq. (A4) equals zero. Thus,
whenever the line o-j is an axis of two- or threefold
rotational symmetry (a 'condition satisfied by all cubic
lattices),

an electric field. The entire dependence of G„. on the
direction of the electric 6eld is contained in the term
cosf».

Values of Ii;„,have been calculated for various cubic
lattices under the assumption that a vacancy which is
not a nearest neighbor of an impurity di6uses as if iI;

were in a, pure lattice. ' Values of cospp can be de-
termined from the crystal geometry. The resulting
VahleS Of Q Wjpa» g Wjpatjpa» Q Wjpa Cos»t»p» arid L fol'

various cubic lattices are listed in Table I.

G., ==- I+ (2q,Fa/k T)L cosy„. (AS)

Here, a is the ion jump distance (from a lattice site to an
adjacent interstitial site), and L is given by Eq. (A7)
with zv, „ in this case being the frequency in the absence
of an electric fieM with which an ion at interstitial site j
(adjacent to the tracer ion at lattice site o) will jump
from this site by cooperating in an interstitialcy jump
with a non-tracer neighbor at lattice site p. In the
interstitialcy mechanism, the imperfections (intersti-
tialcies) move in the same direction as do the ions, while
in the vacancy mechanism the imperfections (vacancies)
move in the opposite direction. However, a Row of ions
in the +jth direction leads in both cases to a G„ term
that increases the probability of a tracer jump in the
+jth direction.

In Table I, values of L for an interstitialcy mechan-
ism with collinear jumps are given for two common
lattices. Here again the values of F;„are those found in
reference 9. Values of E;„ for other cubic lattices can be
calculated by the method outlined in reference 9, and
values of 1. for these cases then can be obtained from
Eq. (A7).

(b) Interstitialcy Mechanism

An analysis similar to that above will allow one to
calculate G„when diffusion occurs by an interstitialcy
mechanism. In a collinear jump, where both partici-
pating ions move in the same direction, the position of
the excess electric charge moves twice as far as either of
the two ions. Thus, a factor 2 must be introduced into
Eq. (A2), and one finds


