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The analytic properties of Feynman amplitudes in the many-fermion problem are investigated by means
of techniques recently developed for use in field theory. A prescription is given for calculation of discontinui-
ties across branch cuts. This prescription leads to a reformulation of the theory in terms of quasi-particles;
but considerations of unitarity are no longer so simple as they are in field theories dealing @faith stable par-
ticles. These analytic methods turn out to be very useful in electron transport problems.

I. INTRODUCTION particle, even when very far away from any other
quasi-particles, decays spontaneously, creating new
quasi-particle-hole pairs. As a result, the exact eigen-
states of the Fermi Quid are quite complicated, and
cannot be labeled, even in an asymptotic sense, accord-
ing to the number of elementary excitations which they
contain. This situation will not seriously hinder our
application of analytic techniques, but will reduce their
utility for us. In Geld theory, discontinuities across
branch cuts usually turn out to be reaction rates for
physically observable processes. The analogous terms
which arise in the many-body problem will not be inter-
preted quite so easily.

The saving feature of the normal Fermi Quid is the
fact that quasi-particles are very nearly stable when
they lie close to the Fermi surface. In particular, the
decay rate vanishes as the square of the difference
between the energy of the quasi-particle and the chemi-
cal potential. 4 It follows that the quasi-particle picture
will be quite accurate in situations where the excitation
energies are small, that is, when the perturbing Gelds
are nearly static. We shall see that this particle picture
plays an important role in this paper and in the work
on dc conductivity which follows.

A NUMBER of elegant techniques have been de-
vised recently by Landau' and others' for the

purpose of analyzing the singularities which occur in
Feynman diagrams in field theory. In this paper we
shall explore the possibility of applying some of these
methods to the diagrams which arise in the many-
fermion problem. In fact, the main purpose of this
paper is to derive some mathematical results which will
be used in a theory of residual resistivity in metals.
Inasmuch as these mathematical techniques may be of
interest outside the Geld of electrical transport theory,
it seems worthwhile to present this material as a sepa-
rate paper.

The system to be considered here is an interacting
Fermi Quid at zero temperature, possibly in the presence
of some static external Geld due to a lattice, impurities,
or the like. The particle-particle interactions are in-
stantaneous, describable by two-body potentials which
are functions of the initial and Gnal momenta only. We
shall assume that the system is "normal, "a term which
these days is taken to mean that the analytic properties
of various propagation functions are the same as those
of each term in a perturbation expansion in powers of
the particle-particle interaction strength.

Two important differences between ordinary Gel

theories and the many-fermion problem severely re
strict our application of arguments based on analyticity
The first is the absence in our problem of any symmetr
principle which might play the role of Lorentz invariance
Even Galilean invariance must be ruled out if we are t
consider an electron Quid bound within a fixed solid
The resulting separation between momentum an
energy variables already is apparent in our descriptio
of the two-body forces. Because we do not want t
assume special analytic properties for the two-bod
potentials, we shall have to content ourselves wit
analytic continuations only in the energy variables.

The second major difFiculty is that there exists n
true particle description of the elementary excitation
of a Fermi Quid. The best we can do is to talk abou
quasi-particles, i.e., "clothed" electrons. ' But a quasi

II. LOCATION OF SINGULARITIES
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We consider many-body diagrams containing at
least two external lines, and we inquire about the ana-
lytic properties of the corresponding Feynman ampli-
tudes as functions of the energy variables associated
with these lines. Rules for the evaluation of such
diagrams have been given by many authors. ' We shall
Gnd it most economical to adopt Hugenholtz's graphical
notation in which no internal interaction lines are
drawn, each two-body interaction being indicated by a
four-line vertex. Energy must be conserved at these

h vertices. but we shall make no special assumptions
about momentum conservation.

One question which must be dispensed with im-
mediately has to do with the presence of self-energy
parts of the internal electron lines. As has been dis-
cussed elsewhere, ' these self-energy parts are related to
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J. S. Langer, Phys. Rev. 120, 714 (1960). In particular, see
Sec. V.
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the shift of the chemical potential due to the electron-
electron interactions. To any frnite order in perturba-
tion theory, this shift must be treated by a procedure
similar to mass renormalization in fieM theory. This
procedure can best be included in our formalism by the
device of calculating with skeleton diagrams. That is, we
eliminate all internal self-energy parts from each graph
and substitute for each remaining line the complete
single-particle propagator S. The function S may be
said to describe the propagation of a quasi-particle; thus
it seems that we are forced to talk about quasi-particles
at the very beginning of our analysis.

Of course we do not have an exact expression for the
function S, but most of its essential features are well
known. In particular, we know that it has the spectral
representation"

1 r" r4i, , i, (x)
Ss, k (I)=lim — —-dx

" ' 2xi ~„x—or —iq

r~ Bs k (x)+ ' dx, (2.1)„x—to+it)

where A and 8 are Hermitian matrices in the momen-
tum indices k and k, and p is the chemical potential.
For simplicity of notation, we shift p, to the origin and
write

with the understanding that the physical values of S
are to be found along a contour in the or plane which
starts at —~ in the third quadrant, passes through the
origin, and goes to +~ in the first quadrant. The
function 0', ($) is peaked near some value of $ depending
on the rnomenturn subscripts. The width of this peak
is a measure of the decay rate of the quasi-particle,

To start our analysis of any Feynman graph G, let
us choose pure imaginary values of all the external
energy variables. Then we can write

where the function f contains all the factors {t, the
interactions, and the momentum sums. 1. is the number
of internal lines in G. The 0, are linear combinations of
the external energies v; and the I different or's associated
with independent closed loops. The coeffrcients of the
v's and or's occurring in the 0's are all &1 or 0. Thus,
for pure imaginary v's, we may distort the contours for
the or integrations to run along the imaginary axis as
indicated in Eq. (2.3).

If we hold the $'s fixed and perform the to integrations

V. M. Galitskii and A. B. Migdal, Zhur. Eksptl' i Yeoret. Fiz.
34, 189 (1958) Ltranslation: Soviet Phys. —JETP 34(?), 96 (1958)].

PrG. 1. A vacuun1-
polarization graph which
gives rise to overlapping
branch cuts.

in (2.3), we find the usual product of energy denomina-
tors which occurs in time-independent perturbation
theory. The $'s play the role of the single-particle
energies, positive values corresponding to particles and
negative values to holes. In some region in the space of
imaginary v's, these denominators all will be non-
vanishing; but they will give rise to poles when the v's

are continued away from the imaginary axis. These
poles then turn into branch cuts after integration over
the t's.

It is well known that not all the energy denominators
associated with a particular time-ordered graph will be
retained as poles in Fg. For example, the graph drawn
in Fig. 1 would contain a denominator ($s—pi+$4 —$s

+Ps—ts—v) arising from the intermediate state indi-
cated by the dashed line. But if we sum over all time
orders that can be achieved without changing the par-
ticle or hole character of any line, i.e., retain the signs
of all the fs, then we find only the denominators
($s $7 v) ((4 $3+v), and ($s—$s—v). In (2.3), if
we choose the signs of all the $'s and then perform the
or integrations, we automatically perform this limited
sum over time orders. In general, it is not difFicult to
pick out those energy denominators in a graph which
will remain as singularities in Ii. Such an energy de-
nominator must be associated with an intermediate
state which has the property that, if all the lines occur-
ring in the state were broken, then the entire graph
would separate into just two pieces. Each of these pieces
must be connected and must contain at least one of the
external vertices. Although this prescription may seem
obvious, it may be well to outline a proof of it via
I.andau's "reduced graphs. "' In any case, we shall want
to use the reduced graph notation in later applications.

We consider now only the to integration in (2.3) for
some fixed set of $'s. If we multiply and divide the inte-
grand by the product of factors ($~+0;), we find in the
denominator a product of positive-definite quantities.
Remember that we have chosen pure imaginary v's;
and we can, for the moment, say that none of the $'s
are zero. We next use Feynman's trick for combining
these denominators, arriving at an expression of the
form

(2.4)
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D= Qn—,(&,
2—0,')~—g A,eo,2

where
+0'(n&)' ' '~ »~' ' '~ k&~' ' ')~ (2 3)

The denominator in (2.4) is a quadratic form in the 40's

and can be diagonalized by a suitable translation and
rotation in cv space. That is, co; —+co; so that

Pro. 2. A typical vertex
diagram.

we find

4,(d~+ GJ -(d~

LD„"
p= min(~)D. (2.6)

The integrations over the co; can be performed without
difliculty, leaving some power of p (at most I-——2'/) in
the denominator. The integral can have no singularity
unless p vanishes for some values of the n's. It follows
that, when we allow the v's to move away from the
imaginary axis, the first singularity will develop when

L»g 3(a)j ~=4—6'
L»g 3(b)j ~+~=4+4—b'

L g ()j, =&+&-s.
For Fig. 3(b), for example, Eqs. (2.9) are

[Fig. 3(b)], n3$3—n4$4=0;

n454+n2$2

(2.10)

(2.11)

1Tlln(~) (p =0.

Equation (2.7) is satisfied' when either

Q, =O—or n;=0

(2 7)

(2.8)

Since the n's are positive, these equations imply that
f3 and p4 must be of the same sign and that $2 must have
the opposite sign.

III. DISCONTINUITIES ACROSS BRANCH CUTS

for each i, where the 0, are to be evaluated for that
choice of the cv; which minimizes D. This last condition
leads to I.andau's second set of equations:

P "n (a) 0 =Q ' n (~),P;=0 (2.9)

for each closed loop in the diagram. The signs (&), are
determined by whether the sense of the loop is the same
as or is opposed to the direction of the ith line.
Cutkosky' has pointed out that Eqs. (2.8) and (2.9)
are both necessary and sufhcient for singularities in F.
His argument is applicable here, but only before inte-
gration over the $'s.

By definition, the reduced diagram is obtained by
deleting from the original graph all those lines for which
o,;=0 and fusing the vertices connected by these lines.
In this process we also may delete all lines which close
upon themselves, and we need not consider reduced
diagrams in which all the external vertices coalesce at
the same point. The simplest reduced diagram asso-
ciated with any graph consists of only two external
vertices simply connected by a number of electron
lines. All more complicated reduced graphs may be
further reduced to a number of the simple graphs. The
Landau equations (2.8) in such cases may be inter-
preted as telling us that several simple singularities may
occur simultaneously. The electron lines remaining in
a simple reduced graph comprise an intermediate state
whose energy denominator gives rise to a singularity in
E. This completes the proof of the rule for selection of
such intermediate states.

To illustrate these techniques, let us consider the
vertex diagram drawn in Fig. 2 and the associated re-
duced graphs shown in Fig. 3. On applying Eq. (2.8),

100

I (My, ' ', (0, », ' '
.)

dM1' ' ' dM (3.1)
~~;- (~~-fl~) (~.-0-)

(b)

l~ ~5

(c)

FIG. 3. The simple reduced graphs associated with the vertex
diagram shown in Fig. 2,

The singularities discussed above are simple poles
which generate branch cuts when the integrations over
the ('s are carried out. We turn now to the problem of
calculating the discontinuity across any one of these
branch cuts.

The first step is to isolate each pole and to compute
its residue. Let us confine our attention to a single
simple reduced graph and look for the associated singu-
larity in the complex plane of one of the external ener-
gies, say v&, all other v's being fixed. The reduced graph
consists solely of a certain number, say m, of independ-
ent two-line loops. We may choose the m co's associated
with these loops in such a way that 0&= co&, 02 is a linear
combination of only My and co2, 03 a combination of co2

and or&, etc, That is, each ~ occurs in only two lines of
the reduced graph. Finally, we may arrange that v&

occurs only in 0 . Thus we consider a multiple integral
of the form
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(d) PLANE (d) PLANE

F&G. 4. Illustration of the pinch singularity
occurring in Eq. {3.2).

ferent reduced graphs are displaced away from each
other in the complex pla~e, %e shall see in an example
to follow how this displacement may be performed in a
particularly convenient manner.

Once the above displacement has been performed. ,
we may be assured that the explicit pole in (3.3) gen-
erates a well defined branch cut when we integrate over
the $'s. According to the above derivation, the discon-
tinuity across this cut may be computed by substituting
for each of the lines in the reduced graph a factor of
either

where I contains the remaining co integrations. For the
moment, we choose all the $'s so that no two simple
singularities of the complete graph coincide in the v~

plane.
Now suppose that all the co integrations have been

performed except that over u~, i.e.,

J—'L Qo

d(vi- -Ii ((ui) vi, . ).
$1 ~1

(3 2)

The relevant singularity arises when the u& contour is
pinched between the pole at a&1

——g, and that pole I'1 in
Ii associated with the singularity at 02(oui)=$2. This
situation is illustrated in Fig. 4. I'1 moves toward $1 as
we continue v& away from the imaginary axis. The
singular part of I is obtained by distorting the contour
C as shown in Fig. 4(b) and reta, ining only the small
circle about $1. In a similar fashion, the pole I'1 is asso-
ciated with a pinch in the A&2 plane, and we need retain
only that part of the co2 contour which consists of a
small circle about the pole at 02= $2. After this process
has been repeated m times, we find for the singular part
of I

~rn(~l &

' ' ', ~+~, vi) ' ' ' )
I,= (w) (27ri)'"— —0 ((0„„',vi, ~ )

(3.3)

Here the cv are those values of the ~'s which satisfy
the Landau equations (2.8). The sign (&) is deter-
mined by the sense in which we have integrated around
each of the poles in carrying out the above procedure.
Equations (2.9) must be satisfied in order that all these
pinches may occur, i.e., that each pair of poles straddles
the imaginary axis before analytic continuations in the
v's are performed. Because v~ occurs linearly in 0 with
coefficient &I, Eq. (3.3) implies that I contains a
simple pole at the loca, tion determined by Eq. (2.8) and
with a residue &(2~i) I .

Ke now must consider the possibility that one or
more of the singularities of I (associated with other
reduced graphs) coincides with the pole found in
Eq. (3.). In general we may avoid this possibility
entirely by assigning to each $, a small imaginary part
q; which will be allowed to vanish at the very end of the
calculation. There is usually no difhculty in choosing
the g; in such a way that the poles associated with dif-

(3.4)

~ Qo

F("(v) = p(x) — +- - - dx
x v x+v

(3.5)

where x has the form $~
—$1 in our previous notation,

and a single co integration has been performed. We omit
momentum sums and potentials, and write, for a ladder
diagram containing I. of these loops,

where

Ii&~&(v)= lim g I ("(v),
&11 ' '1 &I~P

(3.6)

F'"'(v) = p(x)
dp x—16; v x 1E(+v

dx. (3.7)

-x+iC ~
2

-x+i4 ~
l

)

o
c

Fig. 5. The contour F used in Eq. (3.10).

epending upon whether Eqs. (2.9) require that t.; be
positive or negative, i.e., particle-like or hole-like. The
rest of the diagram then is computed in the usual way,
any singularities which arise being defined by the
displacements g;.

The technique of separating overlapping branch cuts
by means of the displacements g; deserves examination
in greater detail. Let us consider as an example the set
of vacuum-polarization graphs of the form drawn in

Fig. 1. The only simple reduced graph consists of just
a single loop, and all more complicated reduced graphs
merely indicate that the poles associated with various
simple graphs may occur at the same place in the v

plane. Any one of these loops contributes a factor
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Here each e is the difference between two g's. The signs
of the q's have been chosen according to the conven-
tion Lsee Kq. (2.1)j

FIG. 7. Simple reduced graphs associated with the
proper self-energy function.I.et the subscript i label the loops in the order in which

they occur in the diagram; and choose

(3 9)

Now F&~' contains 21. separate branch cuts as shown
in Fig. 5. If we apply Cauchy's integral formula using
the contour F, we find

F(L) (v')
F'~'(v) = dv'

2m' i' v —v

QQ I
p (x)dx -- II f~'; &'~ (x i0;)—

p x—ze;—v ~=&

+- II F &" (—x+i0;) . (3.10)
X—Z0,+V ~=»&i

choice of a convenient order for the g;. On inspecting
any diagram, we always can pick out the sets of singu-
larities which might occur simultaneously. For example,
in Fig. 6, v, e have marked the four possible singularities
by dotted lines which indicate the associated inter-
mediate states. We may consider the sequences (1, 2, 4)
and (1, 3, 4) separately. Singularities 2 and 3 never can
occur together because they correspond to diGerent
solutions of Kq. (2.9), i.e., different choices of particles
and holes. The important point is that, once we have
chosen a sequence of compatible singularities, there is
no ambiguity in ordering the displacements of these
singularities into the complex plane. Each sequence
may be ordered separately. Because all simple reduced
graphs contain only two external vertices, it is apparent
that these remarks apply to graphs with an arbitrary
number of external lines.

The discontinuity across the jth branch cut (for
y =Rev) 0, say) is

LF'"(v=y —i0 )j.=2xip(y) II F'"'(y—i')
'b=l A+7

2 'p(y){F"'(y+i )}' '(F"'(y—i )} ' (3.11)
e~O

In order to calculate the complete discontinuity across
the cut in F~~') when all the e's go to zero, we may sum
Kq. (3.11) over j. Finally, we should note that, if we
sum all ladder diagrams, the discontinuity may be
written in the form

LF(y))~=LE F"'(y)j.

IV. SOME SIMPLE APPLICATIONS

As a conclusion to this paper we discuss two instances
where the techniques discussed here provide some useful
information.

First we consider the electron self-energy graph. As
mentioned in the Introduction, it has been shown by
Luttinger4 that the imaginary part of the self energy
goes to zero as co2 near the Fermi surface. Ke may ob-
tain. this result via our techniques by noting that the
self energy has much the same analytic properties as
the propagator itself; i.e., it has a cut along the real
axis and its imaginary part is just the discontinuity
across this cut. All of the simple reduced graphs are of
the form shown in Fig. 7. The contribution to the dis-
continuity from reduced graphs like Fig. 7(a) is
(omitting momentum sums)

=2' lim F(y+i0)p(y)F (y —i0)

=2~ip(y) ~F(y+i:,) (, (3.12)
ImG(cv)

Jo

~00 ~Q

dt, dt, dt, M, ct(g,) e(p,) e, (g,)
0 —oo

which is the usual form of a unitarity sum.
The generalization of this technique to arbitrary

diagrams is not dificult, the only tricky point being the oP for small co.

X~0*b(h+ $2
—

$0
—~)

(4 1)

Pro. 6. A vacuum-
polarization graph. The
intermediate states as-
sociated with singulari-
ties are indicated by
dashed lines.

In (4.1), Mq and M0* are the vertex funct;ions indicated
by the small shaded circles in the 6gure. According to
the discussion at the end of the last section, M» and M2*
are to be evaluated for co just above and just below the
real axis, respectively. These vertex functions may be
complex but must be Gnite. Actually one must be rather
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LJ"(v)fg&") dvt ~dv„lI(vi+ .+v„—v)

(b)

F10. 8. Simple reduced graphs associated with the
vacuum-polarization function.

X I d$)
Jp

pp

careful before taking it for granted that all the vertex
functions appearing in Fig. 7 are well behaved. In some
cases there occur spurious divergences which resemble
the infrared catastrophe in electrodynamics; but these
divergences disappear after a suitable amount of
diagram summation.

The final expression in Eq. (4.1) obviously is in
accord with Luttinger's conclusion. All higher order
reduced graphs contribute only higher powers of co to
ImG. To see this, note that the contribution of a re-
duced graph containing n holes and m+1 particles
may be written in the form

X&)(h —$i' —vi)
f

d$„) d$
'

dp

(4.3)

If v is small, we have

[F(v)jg&") " dvg d~n &1'

X&)'(v&+ + v~ —v) v'" ' (4.4)

~oo ~0

X
0 00

dk&' &(6)&(4')

pp

lmG d~&' ' d&.+i&(»+'' +&np»)
It must be emphasized that, in applying the methods

outlined in this paper, we first must choose a particular
skeleton diagram and then may evaluate the discon-
tinuity across a branch cut by summing the contribu-
tions from the associated simple reduced graphs. To a
certain extent this procedure may be reversed to yield
expressions similar to unitarity relations. For example,
the sum of all possible reduced graphs of the form of
Fig. 8(a) may be obtained by inserting for each of the
small shaded circles the sum of all proper vertex func-
tions. This contribution to the discontinuity in Ii can
be expressed as

&0

x o.(p„„)s(g„„—„,)M, &")3f,&.)*

CJ",(v)l. & )-2 dh d~~'l~, ,(v) I

P 0 00

dn+1 +12 ' n

X~(~&+ +~.y). ~)

-oP" for small or. (4 2)

This is in exact agreement with Luttinger's result.
As a second example we consider vacuum-polarization

graphs. The analysis is exactly the same as for the self-
energy function, and we repeat it only because the
result is useful in transport theory. All simple reduced
graphs are of the form of Fig. 8. The polarization
function has a cut along the real axis in the v plane; and
we are interested in the discontinuity across this cut.
For a reduced graph with e intermediate particle-hole
pairs, this discontinuity has the form

where h. is the sum of vertex functions just mentioned,
Equation (4.5) has the form of a unitarity sum over all
intermediate states containing a single pair, except that
the delta functions expressing energy conservation have
been replaced by the spectral densities 8,. If the quasi-
particles were stable, then the 8's would in fact be
delta functions, and strict energy conservation would be
retained.

On the other hand, we cannot sum all reduced graphs
of the form Fig. 8(b) by inserting for the shaded circles
the sum of all amplitudes for double-pair production.
Such a procedure wouM lead to diagrams with internal
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self-energy parts; i.e., diagrams which are not skeleton-
like. This difhculty might be eliminated by reformulat-
ing the theory i' terms of free-particle propagators and
introducing some graph-by-graph renormalization
scheme. However, the present formulation in terms of
true propagators and skeleton graphs turns out to be
particularly convenient for use in situations where
there is present a static crystal or impurity field. In any
case, the fact that quasi-particles are not stable implies

that we cannot hope to find such simple relationships
here as those which occur in true particle-field theories.
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The many-body theory of impurity resistance which was developed in a previous paper is extended to in-
clude all corrections resulting from electron-electron interactions. The model used is a normal Fermi Quid
in the presence of a small but Qnite concentration of randomly scattered, Axed impurities. The resulting ex-
pression for the conductivity may be interpreted in terms of independent single-electron-like excitations, or
"quasi-particles. " The combined eGect of the impurities and the many-body interactions causes these
quasi-particles to carry current at their group velocity; but there is no effective charge correction.

I. INTRODUCTION

"N a recent paper' the author presented a theory of
- - impurity-resistance in normal metals using as a
model an interacting Fermi Quid and randomly placed
scattering centers. The physical picture which emerged
was that of single-electron-like excitations at the Fermi
surface scattering from screened impurities. Inter-
actions among these excitations, or "quasi-particles, "'
were assumed to be negligible. It is the purpose of the
present paper to complete the work of I by taking into
account all of the many-body effects. The resulting
expression for the resistivity will be exact to first order
in the density of impurities and to all orders in the
electron-electron interactions.

Although electron-electron collisions cannot con-
tribute directly to the resistivity, there are several
places where they play an important role in the theory.
Perhaps the most important many-body effect is the
screening of the impurities. In principle, however, this
effect is included exactly when one calculates the ampli-
tude for scattering of a single quasi-particle at an im-

purity according to the rules prescribed in I. This
amplitude, which includes even the exchange inter-
actions between the incident electron and the screening
cloud, is merely a basic ingredient of the independent

*Address during 1961—1962: University of California, San
Diego, La Jolla, California.

' J. S. Langer, Phys. Rev. 120, 714 (1960), hereafter referred
to as I.' L. D. Landau, Soviet Physics —JETP 3, 920 (1957).

quasi-particle model. In this paper we shall be in search
of more subtle effects.

One possible many-body effect has been emphasized
recently in an article by Heine and Falicov. ' These
authors point out that it may be incorrect to neglect the
interactions among the quasi-particles when calculating
their acceleration in an external electric field. For ex-
ample, the acceleration of a perfectly free electron gas
in an external field is independent of the strength of the
interactions between the electrons. If one uses an inde-
pendent quasi-particle model to describe this gas, one
destroys the Galilean invariance in a way which is quite
inappropriate to this particular situation and arrives at
an incorrect value for the acceleration. The introduction
of fixed impurities or a lattice removes the Galilean
invariance; but it is apparent that a purely kinetic
formulation of transport theory in terms of quasi-
particles requires careful examination from a funda-
mental point of view.

An even more subtle many-body effect, which ap-
parently has not been pointed out before now, involves
the current carried by a quasi-particle. In the usual
Landau picture, a quasi-particle of wave vector k
carries a current ek/m simply because momentum and
charge are conserved in electron-electron collisions.
When we make a dc measurement on an impure metal,
however, we measure the current over a time much
longer than any other time which appears in the prob-
lem. In particular, the period of the applied field must

' L. M. Falicov and V. Heine, Phil. Mag. 10, 57S (1961).


