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A new generalization of Onsager's theory of irreversible processes is presented. The main purpose is to
allow for memory effects or causal time behavior, so that the response to a thermodynamic force comes
later than the application of the force. This is accomplished by a statistical mechanical derivation of an
exact non-Markoftian kinetic equation for the probability distribution in the space of macroscopic state
variables. The memory effect in the resulting transport equations is represented by a time convolution of
the thermodynamic forces with memory functions. The latter are tine-correlation functions in the rates of
change of the phase functions corresponding to macroscopic quantities. The resulting transport equations
are not restricted to small deviations from thermal. equilibrium, Onsager's theory is shown to be the low-
frequency limit of our causal theory.

PROSPECTUS

HE subject of this article is a new generalization
of Onsager's thermodynamic theory of irre-

versible processes. ' The article has two purposes. One
is to provide a theory that. is applicable to situations
where memory effects are important. The other is to
establish criteria for the validity of Onsager's theory as
a, limiting case of a more general theory.

SIMULTANEITY AND CAUSALITY IN
IRREVERSIBLE THERMODYNAMICS

The familiar laws of irreversible thermodynamics
have the characteristic form

da, /dt=Pz, L;1FI,(nr, ns, oz ), (1)

where rz, (j=1, 2, , zz) is the deviation of the jth
state variable from its value at thermal equilibrium,
Ii~ is a thermodynamic force (defined as derivative of
entropy with respect to n&), and the L;s are transport.
coeKcients, satisfying the reciprocal relations I;I,

——I-».-
The forces are customarily assumed to be linear in the
deviations.

Ke are concerned here with the following property
of Onsager's theory: According to Eq. (1), the response
of a system to an applied force is simultaneous with
the application of the force.

As a genera1 rule, such simultaneity in a macroscopic
theory turns out to be an approximation to a causal
behavior, where the response to a force comes after
the application of the force.

In many familiar cases the approximation of simul-
taneity is as good as one needs to describe experimental
observation. Under this category we mention the
Navier-Stokes equation for Auid Row, Fick's law of
diffusion, and Fourier's law of heat conduction. All of
these are known to cover a wide range of experience.
But there are occasions when a causal description is
needed. Some examples are the decay of dielectric

*This work was supported in part by the OFlice of Scientific
Research of the U. S. Air Force.

z L. Onsager, Phys. Rev. 37, 405 (1931); 3S, 2265 (1931)
See also S. R.. deGroot, Thermodynamics of IrreversiMe Processes
I'North-Holland Publishing Company, Amsterdam, 1951).' In the absence of magnetic 6elds.

polarization, the relaxation of stretched polymers, and
ultrasonic absorption in molecular Ruids.

Causal behavior is always associated with ignoring
certain molecular va, riables. The time dependence of a,

complet. ely specified state of a, macroscopic system is
governed by equations (Hamilton's, Schrodinger's, etc.)
that show an instantaneous response. ' A complete
specihcation of the state of a macroscopic system
requires knowledge of a very large number of molecular
variables. In a macroscopic experiment one measures

only a few of these, and one proceeds to deduce trans-
port equations just as if the others did not exist. This
is where causal behavior appears.

ON THE VAI.IDITY OF ONSAGER'8 THEORY

There is another reason, more methodological than
physical, for seeking a causal generalization of Onsager's
theory. In his derivation of Eq. (1), Onsager introduced
certain hypotheses leading directly to an instantaneous
response. Many subsequent rederivations (too many to
cite individually) have been concerned mainly with

justifying this simultaneity, by giving further support
to Onsager's hypotheses, or by putting forth new and
equivalent hypotheses.

Such attempts are of doubtful value. Our principal
objection is that they do not show how it happens that
certain substances, in certain experiments, behave
causally instead of showing an instantaneous response.

A more satisfactory procedure is to derive a causal
theory in the first. place, without relying on unverified

hypotheses, and then to investigate the validity of
Onsager's theory as a limiting case. 'I'his is what we

do here.

SUMMARY OF RESULTS

Our results have the general structure of Eq. (2):
t

d (t)/«=2 d &~ (s)~( (t—), , -(t—s)) (2). "0

Some complicating features have been omitted in order

'We shall not be concerned with the extra complications of
retarded interactions via transverse electromagnetic 6elds.
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to display the essential features of the time dependence
in close analogy with Eq. (1). In the body of the
article we give the complete and correct equations. 4

Equation (2) was derived specifically to describe the
free relaxation of a system that is initially (t=0) in
thermal equilibrium, subject to constraints Axing the
numerical values ni(0), n2(0), , n„(0) of the e
specified state variables.

The memory functions E;q(s) are time-correlation
functions of the kind that have appeared already in
Onsager's work. We shall give explicit formulas for
them later. 4 For the moment, we only observe that
Onsager's transport coefficients I.,I, are related to the
memory functions in a simple way,

The upper limit r is a time of ma, croscopic size, but not
so large as the Poincare recurrence time.

It is easy to see that qualitative conditions for the
validity of Eq. (1) are as follows: (i) The thermody-
namic forces should vary slowly enough that it is safe
to replace n(t —s) by n(t) in the time integration. (ii)
The memory functions should have a short enough
relaxation time that the integrals from 0 to t can safely
be replaced by integrals from 0 to some fixed macro-
scopic time 7.. More precise conditions can be obtained
only by solving both Eq. (1) and Eq. (2), and by
deciding when the two solutions do not differ appreci-
ably.

The preceding qualitative requirements involve the
structure of the thermodynamic forces and the time
dependence of the memory functions. They thus involve
specific properties of matter, rather than general
statistical assumptions.

CONDITIONS AND ASSUMPTIONS
USED IN THIS ARTICLE

We shaH work entirely within the framework of
classical statistical mechanics. Thus we shall not be
able to say anything about the phenomena of super-
Quidity. Other than this, there seems to be no reason
to expect anything strikingly different from a quantum
mechanical treatment.

The derivation is based on several assumptions,
list, ed in this para, graph. (i) A system known to be in
thermal equilibrium subject. to specified constraints
can be described correctly by a phase space ensemble
density that is microcanonical in the constraints. (ii)
The molecular analogs of macroscopic state variables
are phase functions depending on large numbers of
molecules. (iii) These phase functions vary slowly in
time, relative to the rates of individual molecular
processes.

' See Eqs. (40), (39), (30), (31), and (2g).

Some of the more formal parts of our results are
independent of the second and third assumptions. The
first is essential to our method.

The results of the derivation are limited to the
following circumstances. (i) We consider only systems
that are known to be initially in thermal equilibrium,
subject to specified constraints. (ii) The system is not
influenced by time-dependent external forces or
boundary conditions.

This section ends with a few negative remarks. We
shall not rely on assumptions about coarse graining,
time smoothing, repeated phase randomization, or
Markoffian behavior. Also, we shall not use diagram-
matic techniques.

OUTLINE OF THE METHOD

The method followed here is a quasi-experimental one.
We go through a sequence of steps, each of which has
its counterpart in experimental activity.

The first step is to select a set of variables to describe
the macroscopic state of the system. These variables
are phase functions, Ai(x), A~(x), , A„(x), where x
denotes the position of the system in phase space, i.e.,
the set of all coordinates and momenta. We shall often
abbreviate the notation to just A (x).

The experimenter bases his choice of variables on
past experience and physical intuition. We can hardly
do otherwise here: No u priori choice is specifically
indicated by theory. We shall require, however, that
our phase functions have certain characteristic macro-
scopic properties. In particular, they should depend on
the positions and velocities of very many molecules,
and their time derivatives should be small, relative to
the time derivatives of individual molecular quantities.
We shall require also that the known integrals of motion
(that is, total energy, linear and angular momentum, '
a,nd number of molecules) be included among the 2 (x).
A useful choice of phase functions is discussed by
Green. '

The next step is to prepare a system initially (t=0)
having speci6ed numerical values of the phase functions
A(x). We shall always require that the system be in
thermal equilibrium, subject to whatever constraints
are needed to maintain the specified values of A(x).
This has the effect of pinning down, implicitly, all
properties of the system not included explicitly in A (x).
We know from experience that the future behavior of
such initial states is experimentally reproducible.

Next . we remove the constraints, and aHow the
system to relax freely. We do not impose time-depend-
ent external forces or boundary conditions.

'The role of "intrinsic" angular momentum, i.e., the angular
momentum of rotations of molecules about their centers, is
expected to be negligible except in problems of orientationa l
relaxation, for example in polar dielectrics. The angular momen-
tum associated with translational molecular motions is taken into
account by including hydrodynamic velocity fields among the
a (~).

M. S. Green, J. Chem. Phys. 20, 1281 (1952); 22, 398 (1954).
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Then we calculate the probability distribution of the
A (x) as a function of time. This is accomplished by a
formal solution of the molecular equations of motion.
The theoretical distribution of the A (x) corresponds to
the statistical distribution of observations on an
experiment repeated very many times under macro-
scopically identical conditions.

Finally, we observe that the ensemble averages of
the A(x) satisfy transport equations of the form of
Eq. (2). We find that the ensemble averages correspond
closely to experimental quantities, in that fluctuations
from the ensemble average are macroscopically negli-
gible. This corresponds to the observed reproducibility,
on repetition, of actual experiments.

MOLECULAR PICTURE OF THE EXPERIMENTS
TREATED HERE

Before embarking on a detailed mathematical theory,
it will be useful to have in mind a picture of what
happens in phase space during an experiment, and
what corresponds in phase space to the repetition of
an experiment.

The state of a system is specified in molecularly
complete detail by the position x of the system point
in phase space. In particular, x determines the numerical
values a, =A;(x) (j=1,2, , I) of the chosen phase
functions. We shall frequently denote the set aj, a&,

a„by just a.
The system point moves from its initial position zo

to the position x& at time t, determined by the molecular
equations of motion. The phase functions change from
A(xp) to A (xi). In the laboratory one measures only
the numerical values A(xi) as functions of time. One
does not know the initial phase-space position xo.

What corresponds to repeating an experiment) We
note first that the equations A (x) =a define a surface
in phase space; we call it S(u). Any point x on the
surface S(a) gives rise to the same set of numbers a.
If we 1 now only the initial values ap=A(xp) but not
the exact position xo, each repetition of the experiment
consists in starting at a diferent point x on the same
surface S(ap).

In this article we consider only experiments where
the system is initially in thermal equilibrium, subject
to constraints giving rise to speci6ed values of the
variables a. It is well known that the properties of
such a system are correctly described by an ensemble
of phase points uniformly (i.e. , microcanonically)
distributed on the surface S(a).r The assumption of
constrained thermal equilibrium in the initial state

' At this point our language should be more precise. Although
we refer to the surface S(o), we should really speak of a thin
shel] contained between the surfaces S(o) and S(a+do), where
da is very small. The microcanonical distribution is uniform
within this shell. Since we shall use a delta function formula for
the microcanonical distribution, we do not have to refer to the
shell explicitly. Nevertheless, in order to avoid possible confusion,
the shell should be kept in mind.

thus means that each repetition of an experiment
consists in starting at a diGerent point, chosen' at random,
on the same surface S(a).

Each diferent initial point xo gives rise to a diferent
A (x~). That is, each repetition of an experiment, under
identical macroscopic conditions, gives rise to a diBerent
outcome. A complete statistical description of the
outcomes of repeated experiments is contained in the
probability distribution g(a; t) in a space (the space
of n dimensions, the points of which are labeled by
ai, as, a ). Speci&cally, the probability at time t of
the event

1S

a, &A, (x) &a,+da, , (j=1, 2, , e),

g(a; t)du= g(a„as, , a„; t)datdas da„. (5)

Owing to our assumption of initial constrained
thermal equilibrium, the initial value of the a-space
distribution is

where ao denotes the set of assigned initial values.
It is evident that g(a; t) represents the probability of

transition from the initial surface S(ap) to some arbi-
trary surface S(a) in the time t. (One should remember
that "surface" means "thin shell. ")

For a better picture of g(u; t), some later results will
be anticipated here. As time passes, the initial delta
function will spread out in a space. The first moment of
the distribution,

n, (/) = a~g(a; t)da, (j=1,2, , e), (7)

satisfies transport equations like Eq. (2); it corresponds
to the statistical mean of observations on repeated
experiments. The width of the distribution, specified
for example by the second moments, remains of the
order of magnitude of fluctuations from thermal
equilibrium. As is well known, such fluctuations are
macroscopically negligible when the A(x) are many-
particle functions. Thus the distribution g(a; t) stays
macroscopically sharp. This corresponds to the repro-
ducibility of experiments.

This molecular picture of an experiment can be used
also to elucidate the role of memory. Let us look at the
surface S(n(t)) defined by the mean position of the
distribution g(a; t). If the phase-space distribution were
approximately microcanonical on this surface, then we
would be able to predict the future behavior, for t'

later than t, with no more information than the values
of n(t) We would not n. eed to know the history of the
distribution, and there would be no memory eBect.

But there is no reason, in general, to expect the
phase-space distribution to remain approximately
microcanonical. Indeed, it may tend to concentrate on
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some regions of the surface S(n(t)) and avoid other
regions. In order to reproduce the experiment, starting
at t, we have to take account of the possibility that the
distribution is not microcanonical. To do this we must
know how the distribution arose, or what its history is.

This explains why, in many instances, it is possible
to eliminate long-time memory effects by expanding
the set of phase functions A (x) to include more func-
tions. By doing so, we have a subsurface S(n'(t)). With
a good choice of new phase functions, the phase space
distribution on the new surface S(n'(i)) may be more
nearly microcanonical. That is, the new S(n'(t)) may
include only the region of the old S(n(t)) where phase
points tended to concentrat;e.

DERIVATION OF A KINETIC EQUATION
IN a SPACE

As we have already observed, a complete statistical
description of the out;comes of repeated experiments is
contained in the t.ime dependence of the probability
distribution g(a; i) in a space. We shall derive a kinetic
equation for g(a; t) in the next few sections.

The basic difhculty in finding the time dependence
of g(a; t) is that there does not exist a one-to-one
correspondence between motions in u space and in
phase space. But the molecular equations of motion,
which must form the starting point of our derivation,
are given only in phase space.

The molecular equations of motion are frequently
written in the form of Liouville s equation. As is
universally known, the probability distribution in
phase space, f(x; i), sa, t.isfies the equation

where 1. is the Liouville operator, ' defined in terms of
the Hamiltonian function H(x) and the Poisson
bracket (—,—)p, s.,

Lf=i(P,f}p.s..

The relation of the probability distribution in a
space to that in phase space is

which is the total volume of S(a). The structure
function provides a complete thermodynamic descrip-
tion of a system in thermal equilibrium subject to
constraints giving rise to the specified values A (x)=a.'

The microcanonical distribution corresponding to our
assumed initial state, g(a; 0)=8(a—ao), is

f(x; 0) = 5(A (x) —ao)/IV(ao). (12)

g(a; t) = )I dx b(A (x)—a)e—"~b(A (x)—ao)/W(ao) (14)

THE DERIVATION CONTINUED: PROJECTION
OPERATORS IN HILBERT SPACE

It is evident, from the preceding expression for g(a; t),
that we do not have to have full knowledge of the
operator exp( —itL). All we really need is the matrix
element of the operator between two microcanonical
distributions. It is just this limitation that makes the
rest of the derivation possible.

Let us consider the Hilbert space of phase-space
distribution functions f(x; t). This entire Hilbert space
contains a smaller subspace, consisting of functions
that depend on x only in the special way f= f(A (x));
that is, they are functions of the specified phase
functions A(x). We observe that the microcanonical
distribution belongs to this subspace, because of Kq.
(12). In calculating g(a; t), we are concerned only with
matrix elements of exp( —AL) taken between functions
lying in this subspace.

The subspace of functions of A (x) can be described
conveniently by means of a projection operator I',
which selects from an arbitrary function G(x) that
part, Gi(x) = PG(x), which depends on x only through
A (x). The projection operator is given explicitly by

As time passes, f(x; 0) will change to f(x; t) We
denote this symbolically by means of the Liouville
time displacement operator exp( —itL),

f(x; t) = exp( itL—)f(x; 0). (13)

The a-space distribution function at time t is therefore

g(a; r) =
~

dx b(A (x)—a)f(x; t). (10)
)

I dx' 8(A (x') —A (x))G(x')

)The reader should recall our conventions about the
abbreviated notations A(x), 8(A(x) —a), and a.$ The
probabilitv distribution in a space is clearly the total
amount of the phase-space distribution contained on
the surface S(a) specified by A (x) =a.

Ke shall also have use for the structure function
W(a) of the surface S(a),

W(a) = dx 8(A (x)—a),

'The i is customarily introduced so that I. is Hermitian in
the Hilbert space of phase functions.

G, (x) =EG(x) =

The effect of I' can be explained verbally as follows.
For a given g, we determine the numerical values
a=A(x). We calculate the amount of G(x) contained
on the corresponding surface S(a); this is the integral
in the numerator. Then we spread this amount over
the surface S(a); this is accomplished by the structure
function W(A (x))=W(a) in the denominator. In

9 See, for example, A. I. Khinchin, Mathematical Foundations
of Statistical Mechanics {Dover Publications, Inc. , Neer York,
1949), particularly Chap. VII.
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effect, P "averages" the function G(x) over the surface
S(A (x)).

That P is in fact. a projection operator can be seen
easily by verifying that it satisfies the necessary and
sufhcient condition for a projection operator, I = I'.

Equation (10), expressing g(a; t) as an integral of

f(x; t), can be written

g(a; t) =W(a)Lfi(x; t) j~&.l=.. (16)

To find g(a; t), we need the projection fi(x; t) of f(x; t)
onto the P subspace. The remaining part of f(x; t),
denoted by

Equation (18) shows a memory effect, or causal time
behavior, which is described by the time convolution.
This is a result of the conversion of the original Liouville
equation for f(x; t) into an equation for the "relevant"
part fi(x; t).

THE DERIVATION CONTINUED: AN EXACT
KINETIC EQUATION FOR g(a; t)

We now transform the fi equation into the corre-
sponding equation for g(a; t) Th. e procedure is to
evaluate fi on a surface S(a), using

f, (x; t)= f(x; t) —f,(x; t), (17) Lfi(x' t)je(.l =g(a' t)/W(a), (21)
is irrelevant to the problem under discussion.

THE DERIVATION CONTINUED: A KINETIC
EQUATION FOR ft

In a previous article' we derived an equation for the
time dependence of the projected part of a phase space
distribution function. That discussion is immediately
applicable here.

The method of derivation followed in reference 10
was to separate the distribution function into a "rele-
vant" and an "irrelevant" part by means of a projection
operator; to solve the equation for the irrelevant part,
formally, in terms of the relevant part; and to substitute
the solution back into the equation for the relevant part.

The resulting equation for fi(x; t) LEq. (11) of
reference 10j is

which is another way of writing Eq. (16).
We shall want the value, on S(a), of the projected

part of an arbitrary function G. This is just the micro-
canonical average of G on the surface S(a),

LPG(x) js(a) = I dx' b(A (x') —a)G(x') (22)
W(a) &

because of the defj.nition of I'. The microcanonical
average of G on S(a) will be denoted by (G; a).

The fi equation, evaluated on S(a), becomes

1 Bg(a; t)
=(Ifi(t) ' a)

W(a) Bt

&f (t)
i =PI fi(t) —i ds PLe tto ~&~(1 P—)Ifi(t s)— —

4p

t

"ds(I.e "" I' '(1—P)Lfi(t —s); a). (23)
0

+PLe """"f(o) (»)
V,'e have suppressed the x dependence for simplicity
of notation.

The operator exp) —it(1—P)L$ is defined either by
its series expansion or by its use in solving the equation

We still have to express fi (appearing inside the
averages) in terms of g(a; t). This is accomplished by

f i(x; t) =
)

da' 5(A (x)—a')g (a', t)/ W (a').

i aG(t)/at = (1—I')I.G(t) (19)
Now Eq. (23) is

for the initial condition G(0). The solution is written

g(a', t)
d"(L~(A( )-"); )

W(a')
(20)

1 Bg(a; t)G (t) —e 2tll—Pl IG (0)

ds da'(Le-t'&' "&~(1—P)Ltl(A(x) —a'); a)
Vp

g(a'; t s)—
X . (24)

W(a')

Further simplifications are possible because of the
Poisson bracket structure of L. The time rate of
change of a phase function A (x) is

(We must be careful to note that the 1 P in the-
exponent operates not only on the I. immediately to
its right, but on everything to its right in any expression
where it occurs. This is more easily seen when one
expands the exponential. )

The fi equation contains a contribution from the
initial value fs(0). This term vanishes in the present
application, because our initial phase space distribution,
being microcanonical, falls in the I' subspace. Thus we
have a closed kinetic equation for fi

"'R. Zwanzig, J. Chem. Phys. 33, 1338 (1960). See also, R.
Zwanzig, in Lectures in Theoretica/ I"hysics, edited by W. E.
Hrittin, B. W. Downs, and J. Downs (Interscience Publishers,
Inc. , New York, 1961},Vol. III, pp. 106-141,

dA (x)/dt= {A;H) p.s.= iLA.

Thus, when. I. operates on the delta function, for
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(In the second line we have returned to the full subscript
notation for the sake of clarity. )

Consequently, the equation for g(a; t) can be re-
written in an equivalent form which will prove to be
more useful for approximations. The details of the
transformation are given in an Appendix. The result
of the transformation is

Bg(a; t) 8
+Z (v'(a)g(a' t))

f P n

ds ' da'Q Q W(a)K, ),(—a,—a'; s)
0 0 J j=l )&=1 ga .

8 g(a', t—s)
(27)X

Ba),' W(a')

In this equation several new symbols appear. These are

v;(a) =(dA~/dt; a), (2g)

E;),(a,a'; s)'
dA, dA&

e '&' P&~(l —)') 8(A(x) —&.');c). (29)
dt

The term containing v, (a) comes from the first term
on the right of Eq. (24), by applying Eq. (26) once.
The memory term, containing E';),(a,a'; s), comes from
the second term on the right of Eq. (24), by applying
Eq. (26) twice.

The quantity v, (a) is the average rate of change of
A, on the surface S(a). The calculation of v, (a) is a
problem in statistical thermodynamics; no dynamical
questions are involved. The memory function
E;),(a,a'; s) is a ki'nd of correlation function in time
and in c space. Its calculation involves the solution of
a dynamical problem with the modified time displace-
ment operator exp( —is(1 I')Lj. —

THE DERIVATION CONCLUDED: AN APPROXIMATE
KINETIC EQUATION IN a SPACE

The preceding exact equation for g (a; t) is too
complicated to be useful for any but the most formal
applications. From it we may obtain, however, a useful
approximate equation. The approximation is based on
a characteristic property of macroscopic phase func-
tions, namely, that they are varying only slowly in time.

The decisive role of this property has already been

example, it gives

dA
Lh(A (x)—a) = i—8'(A (x)—a)

dt
n dg, cj

=i P h(A (x)—a). (26)
~=i dt Ba;

A;(s) = e"~A;(0) (32)

is the value of dA/dt at time s, calculated with the
ordinary time displacement operator. To this order,
the modified operator expL —is(1—P)L$ is not required.

The resulting approximate kinetic equation for g(a; t)
1s

Bg(a; t) 8
—+Z fv ( )g( 't)}

n Vh

= ~dsZ
0 0 j=l Q=l Qg~

8 g(a; t—s)
E;),(a; s)W(a)'

Bag W(a)

+O(A'g) (»)
The owly approximation made in arriving at the

preceding equation was the neglect of terms of the

"N, 6, Pan Kampcn, Physica. 20, 603 (1954).

noted by Green' and by Van Kampen. "%e shall not
repeat their arguments. It should be noted, however,
that the rates of change of the phase functions con-
sidered by Green are controlled by a small parameter,
the reciprocal of a wavelength characterizing the scale
of spatial inhomogeneity in the system. By restricting
the theory to a description of experiments involving
only long-wavelength phenomena, the time derivatives
of Green's phase functions can be made as small as
desired.

The decision as to whether one can treat some
specific time derivative as small must be based at
present partly on intuitive grounds and partly on the
a posteriori success of the resulting theory W.e shall
see later that there is in principle a direct theoretical
check on this, but so far it is computationally im-
practical.

Regarding dA/dt as small, we shall keep only those
terms in Eq. (27) that contain dA/dt to the first and
second powers. Since the term containing v;(a) is
evidently of the first order in dA/dt, and gives no
implicit higher order contributions, it will be kept
intact. The term containing E,i(a,a'; s) is already
explicitly of second order in dA/dt, and gives higher
order contributions implicitly because of the operator
expL —is(1—E)Lj. We want to dispose of these higher
order contributions.

The method by which this is done is systematic but
tedious. Details are given in an Appendix. The result
is that to terms of the second order (but not to higher
orders), E,),(a,a'; s) is diagonal in a space,

E,i(a a' s)= h(a a')E, ),(a; s)—+O(A'). (30)

The coeflicient E,),(a; s) is a time-c'orrelation function
in the deviations of the time derivatives from equi-
librium,

f~ (; )=(LA ()— ()jLA (o)— ()3; ), (31)

where
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third order in dA/dt S.ince we started with an exact
equation for g(a; t), and followed a systematic procedure
for removing third and higher order terms, we could
just as well keep the third order terms, and remove
those of fourth and higher order. Thus it is possible,
in principle, to see if third order terms have an appreci-
able effect. We have not done this for two reasons.
First, the numerical investigation of the second order
terms is so difFicult, in any realistic case, that there is
not much point in going further. Also, the second order
theory leads to results, as far as is known, in good
agreement with observation.

Equation (33) has very nearly the structure of a
Fokker-Planck equation in a space. The only difference,
though an essential one, is the presence of the time
convolution. If we were to replace g(a; t—s) by g(a; t),
and to extend the time integration to infinity instead
of stopping at t, we would arrive at the Fokker-Planck
equation first derived by Green by means of a Mark-
ofIian assumption. '

f
n, (t) = da a~g(a; t).

oJ

(34)

The time derivative of n; can be found from Eq. (33),

dn;(t) 8
= —~~du a 2 {»(a)g(a; t)}

Bcy

f c7

+ ~ ds daa;PP
p ~ k l Jay

8 g(a; t—s)
X Kpi(a; s)W(a) . (35)

aa, W(a)

DERIVATION OF TRANSPORT EQUATIONS
FROM THE APPROXIMATE KINETIC

EQUATION IN a SPACE

So far we have obtained a statistical description of
the outcomes of repeated experiments in the form of a
kinetic equation for g(a; t) In most . situations such a
complete statistical description is unnecessarily de-
tailed. We know, for example, that many experiments
can be repeated reproducibly, in the sense that the
results are identical to within experimental error.

This is reflected in the customary use of transport.
equations having a precise, i.e., nonstatistical, meaning.
Transport equations are descriptions of the average
behavior observed in repeated experiments. Reproduci-
bility on a macroscopic level means that fluctuations
from average behavior are macroscopically unobserved.
Our theoretical derivation of transport equations thus
falls into two parts, a calculation of the average rates
of change of the phase functions A (x), and a discussion
of fIuctuations from the average.

The ensemble averages of the phase functions at
time t are denoted by

Integrations by parts lead us to

Now we shall assume that the a-space distribution
remains macroscopically sharp. This will be discussed
further in a later paragraph. The assumption allows us
to replace ensemble averages of functions by functions
of ensemble averages, with an error that is macro-
scopically negligible, being of the order of thermal
fIuctuations. For example, we see that

« ~ (a)g(a; t)—=p (n(t)) (37)

As a result of this assumption, the transport equation is

dn, (t) 8
= v, (n(t))+ ds Q

dt ~ p i W(n(t —s)) cjn(

&&K, ,( (t—s);s)W( (t—s)) . (38)

The thermodynamic force is defined, in a conventional

way, as

Ii'p(a) =—logW(a).
BOIH

With this notation, the transport equation becomes

dt
=e,(n(t))+ ds P K,((n(t —s); s)F((n(t —s))

r'
Jp

+. K, ,(n(t s); s—) . (4O)—
Bng

At this point, the only assumptions made are (i) that
contributions of order (dA/dt)' may be neglected, and
(ii) that the distribution in u space remains macro-
scopically sharp. We have already discussed the first
of these; let us now turn to the second.

This question has been discussed, though in a more
limited context, by Van Kampen. " We shall do no
more here than refer to the essential points of his
treatment.

Van Kampen considered only the conventional
(Markoffian) Fokker-Planck equation in the linear
approximation. (By this is meant that the forces are
assumed to be linear in deviations from equilibrium,

~P N. G. Van Kampen, Physica 25, 707 (1957};25, 1294 (1959}.

dn, (t)
da v;(a)g(a; t)+ ds da

~p

1 8
K,)(a; s)W(a) g(a; t —s). (36)

W(a) c}ai
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du, (t)
ds P E;i,(s)I'i(n(f s)), —

dt ~p

where we have suppressed the dependence of E,~ on
the constants of motion. If these requirements are not
met, one must keep all of Eq. (40).

MEMORY EFFECTS AND FREQUENCY-DEPENDENT
TRANSPORT COEFFICIENTS

There are two ma, thematically equivalent ways of
looking at the effects of memory in irreversible thermo-
dynamics. One is to work entirely with functions of
time; the other is to work with functions of frequency,
by means of Fourier transforms. In this section we
shall illustrate the relation between the two approaches,
and show that memory efkcts can be accounted for by
introducing frequency-dependent transport coefficients.

We shall restrict our discussion, for the sake of
simplicity, to the approximate Eq. (41). This equation
will be compared with its Markoffian approximation,

du, (t)
ds E;i(s)Fk(n(t)).

a Jp
(42)

Let us take one-sided Fourier transforms of both

and the transport coe%cients are assumed to bc inde-
pendent of the deviations. )

In the linear case, the solution of the Fokker-Planck
equation is Gaussian in the quantities a—n(/). The
width of g(a; t) is thus determined by the second
moments. Van Kampen was able to solve for the time
dependence of the second moments exactly. He found
that the width of the Gaussian, initially equal to zero,
grows until it reaches the width given by the size of
spontaneous fluctuations from thermal equilibrium.
Such Quctuations are known to be macroscopically
negligible when the A(x) are sums, over all molecules
in the system, of functions of one or two molecules.

We have not investigated what modifications have
to be made in Van Kampen's argument in order to
apply it to our more general kinetic equation. The
calculation would be necessarily more complicated,
both because of the memory and because one would
like to account for nonlinear effects as well. Neverthe-
less, we regard Van Kampen's results as suKciently
conclusive; there is no apparent reason why the
memory, or nonlinearities, should cause the width of
the a-space distribution to be significantly larger.

In order to recover equations as simple as Onsager's,
further assumptions are required. These are (i) the
phase functions A (x) are chosen so that v;(a) vanishes,
and (ii) the memory functions E;z(a;s) depend on
only those u; tha, t are constants of the motion. Then
we obtain

equations. We introduce the notations

cv ((u) = dh e'"'n (t) (43)

dh e'"'E, (t), (44)

(43)

It should be noted that

t ds E;p(s) =E,i(0).
0

The transform of Eq. (41) is

i~a,—(ie) n, (0—) =Q E;g ((u)Fi, (co), (47)

and the transform of its Markoffian approximation is

i(en—, (co) n, (—)0=P E g(0)Fi(a)).

Evidently the entire eGect of memory is contained in
the frequency dependence of the transport coe%cients
X;q(co). Onsager's theory, based on the Markoffian
approximation, can be regarded as the low-frequency
limit of our more general results.

It seems more natural, however, to work with
functions of time, because the time dependence and not
the frequency dependence is what one studies in an
experiment of the sort we are considering.

The memory functions E,&(a; s) obey reciprocal
relations,

E,t,(a; s)=Ei,;(a; s) (49)

SOME NOTEWORTHY PROPERTIES OF THE
TRANSPORT EQUATIONS DERIVED HERE

Equation (40) has several significant and potentially
useful features, aside from its causal structure. These
are as follows.

The thermodynamic forces are defined in terms of
the structure function W(a), by Zq. (39). They are
not necessarily linear in the state variables n. Further-
more, there is nothing in the present derivation that
requires us to linearize them.

The memory functions E;&(n; s), filling the role of
transport coeKcients, are functions of the state variables
o,. In principle one can calculate, for example, the
dependence of a viscosity coefficient on density and

for Axed a, at each instant of time s. (We omit the
extra discussion that must be made when magnetic
fields are present. ) Consequently, the Fourier trans-
forms E;i, (&o) also obey reciprocal rela. tions.
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velocity gradients. This goes beyond previous theories
of transport coefficients.

The preceding nonlinearities, together with the causal
behavior, ought to be enough to describe a remarkably
diverse range of macroscopic phenomena. The author
is not aware of any situations in rheology, for example,
that evidently cannot be treated in this way. However,
considerable further study of the properties of Eq.
(40), and comparisons with experiment, are required
before any quantitative claims should be made.

SURVEY OF THE VARIOUS EQUATIONS
DERIVED HERE

In this article we have derived several equations
having diferent ranges of applicability and validity.
Here we shall survey these equations, and list, for the
last time, the various conditions and assumptions that
are involved.

The first condition concerned. the kidd of experiment
to be discussed, namely, free relaxation of a system
initially at thermal equilibrium subject to constraints.
We did not include time-dependent external forces or
boundary conditions. Along with this condition went
the assumption that such an initial state can be
described by a microcanonical ensemble.

At this point we derived a general kinetic equation
for the probability distribution in a space, Eq. (27).
This equation is exact.

Then we expanded the general kinetic equation in
powers of the time derivatives dA/Ct, and dropped
terms of the third and higher orders, leading to Eqs.
(33), (30), and (31). We assumed that dA/dt was
suKciently "small" to justify this. We observed that
this "smallness" is a characteristic property of macro-
scopic variables.

Following this, we used the kinetic equation in u

space to derive transport equations. First we obtained
Eq. (36), which remains valid even when the a-space
distribution is not sharp. LWe could have found corre-
sponding transport equations from the exact Eq. (27),
but there seemed no reason to do so.] We assumed
that the a-space distribution is sharp, so that we could
replace averages of functions by functions of averages.
This led directly to our principal results, Eqs. (40)
and (39). (Again, we could have done this with the
exact kinetic equation. )

This was followed by a discussion of the sharpness
of g(a; t). Here, an argument due to Van Kampen was
used to justify (though not to prove) our assumption
about the sha, rpness of g(a; t). The argument was
based on the many-body structure of macroscopic
phase functions.

We displayed transport equations, Eq. (41), differing
from Onsager's only in the presence of memory efFects.
In doing this we assumed that the average velocities
~t(n) vanished, and that the memory functions E;q(s)

did not depend on the variables n, except for those
that are constants of motion.

Finally, we showed how Onsager's theory could be
regarded as the low-frequency limit of our Eq. (41).

b(A (x) —a)
(Lh(A (x) a'); a—)= I dx Lb(A (x)—a'). (Al)

TF(a)

Because I is Hermitian, we may move I.in front of the
first delta function,

tdxLL*5(A (x)—a))——b(A (x)—a'), (A2)
W(a)

and by Eq. (26), we obt.ain

S

dx A;(x) 8(A (x)—a)
W(a) ~=i & Ba;

X~(A(x) —a').

On bringing the derivatives outside the integral sign,
the preceding expression becomes

1 '+ 8 f

dx A, (x)8(A (x)—a)
W(a) ~=i Ba, ~

&(b(A (x) a'), —(A4)

and the delta functions can be rearranged to yield

8
i

dx A;(x)h(A (x)—a)b(a —a'). (A5)
W(a) i=& Ba, "

According to our definition of v;(a), Eq. (28), this is

z '+ 8
L~'( )'a( )~(aa —a') j.

W(a) = aa;
(A6)

The final step is to put this into the integral over a'
in Eq. (24), and to evaluate the integral,

g(a', t)
i ~du'(L—b(A (x)—a'); u)

W(a')

L~ (a)g(a; t)3 (~7)
W(a) ~-& Ba;

Now we treat the memory term in exactly the same
way. The first I. is brought around, by its Hermitian
property, to operate on 8(A (x)—a). This leads to one

APPENDIX I

The transformation from Eq. (24) to Eq. (27) is
described here. First we consider the term leading to
i;(a).

By the definition of the ensemble average, we see that
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This leads to

(Le "&' ~&~(1 P—)Lb(A (x)—a') a)

'rt 8
W(u)(A .e

—is(1-P&I

W(a) &'=& Ba,

X (1—P)Lb(A (x)—a'); a). (AS)
The second L, gives

n

Lb(A (x)—a') = i Q A&, - b(A (x)—a'). (A9)
k=1 Qgy

When this is put into the average, we get

l9

W(u)
W(u) i & Bu; Ba&,

'

IC;&,(a,a'; s) =
W(a) ~

dx b(A —a) {b(A—a')

XA, (1 P)e "—~A
&,)

—+O(A')

=b(a —a')(A. (1 P)e —'"A&„a)+O(A') (A16)

K;g(a, a'; s)=(A;(1 P—)e "~A„b(A —a'); u)

+O(A'). (A14)

We note further, for example by expansion, that

exp (—isL) A &,b (A —a')
= b(A —a') exp( —isL)A&,+0(A'). (A15)

Thus the memory function is

(A10) To this order (but only to this order), K,&(a,u'; s) has
a diagonal singularity in a space.

As a further simplification, we observe that

(A;(1—P)e "~A&, a)=-(A;e "~A&„a)
—(A, ; a)(e "rA&„., a). (A17)

X(A,e—*'&'—"& (1—P)A&,b(A(x) —u'); u).

In performing the integral over a', we make use of

8

)
da' b(A a')g(a'—)/W(u')

BQ
8

~da' b (A —u') Lg (a')/W(a') ).
aa'

The second term on the right is

b(A —a)
~dx e "~Ay

This leads directly to Eq. (27), with E;&, as defined in J W(a)
Eq. (29).

APPENDIX II

The mathematical basis for identifying and elimi-
nating higher order terms in the derivation of Eq. (30)
is as follows.

We expand the exponential,

expL —is(1—P)Lj(1—P) = (1—P) —is(1—P)L(1—P)
+-', (is)'(1—P)L(1—P)Z(1—P)— . (A12) Ol

I dx b(A u)A&,.+O(A ')—
,

-

W(a)
(A19)

dx $e"~b(A —a) jA„. (A18)
W(a)

Again we use the expansion of the exponential to show
that this becomes

Every time a factor I.P appears, we get a term of order
dA/dt, because the projection of a function depends on
position x only through A (x), and because i LA =dA/dt.
Consequently, the expansion reduces to so that

(e "~A&„a)=(A&-„a)+O(A').

(Ag, u)=e&„(u),

(A20)

(A21)

expL —is(1—P)I.j(1—P) = (1—P) is(1 P)L- —
+-,'(is)'(1 —P)L'+ +O(A)

= (1—P) exp( —isL)+O(A). (A13)

(A;(1—P)e
—"~A&„a)=E,7,(u; s)

=((A,—v;(a)]e "~LA&,—eq(a) j; a)+O(A'), (A22)

which is the result we have been striving for.


