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Orbital Contribution to the Magnetic Form Factor of Ni++
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The effect of a residual orbital moment on the magnetic form factor of Ni++ is calculated. It is shown that
the ordinary form factor is replaced by a tensor, and formulas are given for the slow-neutron magnetic-
scattering cross sections of paramagnetic, ferromagnetic, and antiferromagnetic Ni++. It is found that the
unquenched orbital moment causes a 4% expansion of the form factor relative to the "spin-only" case, and
that the anisotropic scattering is reduced by about ten percent.

1. INTRODUCTION

' N the theory of the magnetic scattering of neutrons
~ ~ by transition metal ions, as developed by Halpern
and Johnson, ' it is assumed that the orbital angular
momentum is completely quenched by the crystalline
field, and that its associated magnetic moment does not
contribute to the scattering. An examination of the g
factors for these ions shows, however, that there may be
sizeable residual orbital moments present. For a sub-
stance with a completely quenched orbital moment we
should expect a g factor of 2.00, and the deviation of the
g factor from this value gives a measure of the orbital
contribution to the total magnetic moment of the ion.
SpecifKally, (1/g)(g —2) is the fraction of the total
magnetic moment which is due to orbital motion. For
the Ni++ ion, with a (Bd)s configuration, a number of
measurements' ' of the g factor in diGerent salts gives
g= 2.2, so that about 10%of the Ni++ magnetic moment
is due to orbital motion.

Recently Alperin4 has measured the magnetic form
factor for Ni++ in antiferromagnetic NiO. He found that
the form factor was considerably expanded compared to
that calculated for the free ion. In the interpretation of
this experiment the contribution of the orbital moment
was neglected. The present calculation was undertaken,
apart from its general interest, to see to what extent this
form factor expansion can be understood as due to the
orbital contribution. We have found, in fact, that about
4% of the 17% expansion can be accounted for in this
way.

Scattering by orbital moments has been considered
previously by Trammell, ' and in an elaboration of his
work, by Odiot and Saint-James. s They were concerned
with rare-earth ions, in which the orbital moments are
completely unquenched, and the eGects of the crystal-
line Geld are secondary. In the case of transition metal
ions, such as Ni++, where the crystalline field nearly
quenches the orbital angular momentum, the situation
is reversed. In the following section the theory is de-

' O. Halpern and M. H. Johnson, Phys. Rev. 55, 898 (1939).
2 J. Owen, Proc. Roy. Soc. (London) A237, 1.83 (1955).
3 W. Low, Phys. Rev. 109, 247 (1958).
4 H. Alperin, Phys. Rev. Letters 6, 55 (1961).
~ G. T. Trammell, Phys. Rev. 92, 1387 (1953).
~ S. Odiot and D. Saint-James, J. Phys. Chem. Solids 17, 117

(1960).

veloped for the Ni++ ion. This case is simple, because in
Ni++ the orbital degeneracy is completely lifted by the
cubic crystalline field (whereas in the Fe++ and Co++
ions the orbital degeneracy is not completely lifted, 7 and
the discussion of the neutron scattering is more compli-
cated). In Ni++ the crystalline field quenching is par-
tially lifted by the spin-orbit coupling, which causes the
admixture of a higher state into the ground state, giving
rise to an orbital moment which influences the form
factor in a way we wish to discuss.

2. THEORY

The diGerential cross section for the elastic magnetic
scattering of unpolarized neutrons into solid angle dQ' is'

=(pe'/mc')'Q p, ~Q exp(iK. n)(q'~T ~q)~', (1)
dQ' tI Q

where
~ q) and

~
q') are the initial and final states of the

crystal (assumed to have the same energy), K= k—k' is
the difference between the initial and final wave vectors,
k and k', respectively, of the neutron (~ k~ =

~

k'~ ), n is
a lattice vector, y= —1.91 is the gyromagnetic ratio of
the neutron, and p, is the probability that the state

~ q)
is occupied, usually given by the Boltzmann factor
e ~'" (P, e ~'" ) i The operator T, represents the
interaction of the neutron with the electrons of the ion
at site n, and is given by'

where s; and y; are the spin and momentum of the jth
electron, r; is the position of the electron relative to the
lattice point n, X is a unit vector in the direction of K,
and the summation is over all electrons of the ion at
lattice site n. The angular momentum operators will be
taken to be in units of A throughout the paper.

The second term in Eq. (2), which represents the
orbital contribution to the interaction, can be put in a
simpler form, first derived by Trammell. ' He showed
that by expanding e'K'&' in a power series and using the
relation y, =(im/A)PC, r;$, K being the Hamiltonian

r J. Kanamori, Progr. Theoret. Phys. (Kyoto) 17, 177 (1957).
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without spin-orbit coupling for the scattering system,
this term could be written as

where the function f(K r;) =f; is given by

(3)

FIG. 1.Energy levels of Ni++ in a
cubic field. Bethe's notation for the
representations of the cubic group
is used.

3
r4

I r

Some of the properties of this function will be discussed
later.

- If we neglect a small term arising from spin-orbit
coupling (which is of the order of the ratio of spin-orbit
coupling energy to electronic kinetic energy) the matrix
elements of the 6rst term in (3) between states of equal
energy vanish, for

&q'IZ [~, r (iK r ) '(e""—1))lq)
= (8;—E,)&q'

I P r;(iK r;)-'(e'x' '
1) I q) =0. (—5)

Trammell also gives an argument indicating that this
term can be neglected for inelastic scattering. Using (3),
the cross section becomes

do. (ye2 ) 2

I 2 P.IZ e'"'&q'l&xE(e' "sjx&
dn' & mc') ca

t'Ye') '
I EP 'Ee'"'- '(~' —&&')

Emc & aa'

x&ql 0-'I q'&&q'I 0-'I q&: (6)

where Q„=P, [e' 'xs;~+ (1xi,f+~f l;)], Q„and X are
the u components of the vectors Q„and X, and the
summation convention has been employed for Greek
letter indices.

3. DERIVATION OF THE FORM FACTOR

Figure 1 shows the spectrum of Ni++ (3d)' in a cubic
field, neglecting spin-orbit coupling. This spectrum has
been determined by optical absorption experiments for
Ni in MgO by I ow' and for NiO by Newman and
Chrenko. ' A complete theoretical calculation (including
spin-orbit coupling) has also been done for this con-
6guration by Liehr and Ballhausen. ' All of the informa-
tion about the wave functions which we need, however,
can be obtained by simple symmetry arguments.

I'he ground state neglecting spin-orbit coupling F2 is
an orbital singlet with S=1 and therefore has no orbital
moment. The spin-orbit coupling will, however, mix into
this 'I'2 state small amounts of higher states and the
cross terms of the admixture will give nonzero matrix
elements of orbital angular momentum. The calculation

R. Newman and E&. M. Chrenko, Phys. Rev. 114, 1507 (1959).
~ A. D. Liehr and C. J. Ballhausen, Ann. Phys. 6, 134 (1959).

3 r'r
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of this admixture is simplified in the case of Ni++ by a
fortunate set of circumstances.

If we restrict ourselves to the configuration (3d)8,
there is no state other than the ground state which has
the symmetry 'F&. This means that the cubic field can-
not cause any mixing into this state of spectroscopic
states with diGerent I.or S, and it remains pure 'F:

where
I

'P Mz, =2), etc., are the wave functions of the 'P
state. The same argument holds for the erst-excited
state 'I'5 which also arises purely from the 'Il state. This
is mixed with the F2 ground state by spin-orbit cou-
pling. Hence the calculations will all be done within the
'Il manifold of state vectors. In these circumstances the
spin-orbit coupling, which in general must be written
g; f',1,"s;, can be expressed as XL S, and the ground-
state wave function (including spin-orbit coupling) can
be written as

q 1
=

I
1——L S

I

—(I'P il.fr. 2) I'I" l!'.IL ——2))—
)v2

+0(x'/~'). (s)

Here 6 is the energy of the 'F5 state relative to that of
'I'2. Spin-orbit coupling can also cause an admixture of
the 'I"~('D) states, but this cannot contribute to the
orbital scattering and it makes only a small anisotropic
contribution to the spin scattering, so we neglect it in
the following discussion.

To evaluate the matrix elements in Eq. (6), we now
assume that the state vectors lq) can be written as a
product of state vectors referring to the individual ions
(Heitler-London model). Using the ground-state func-



M. BLUME

tion (8) for Ni++ we must calculate

('F,M,
I (1—(I /~) L, .s.)

xQ.-(1—(lI/a)L, .s„) I
r,M, '). (9)

In the absence of spin-orbit coupling (where the orbital
moment is quenched) these matrix elements can be split
into two parts, one referring to the space coordinates
and the other to the spin coordinates, the spatial part
being the magnetic form factor. Ke will now show that
such a separation can still be accomplished, but the form
factor now becomes a tensor. Writing Q in full in (9),
this becomes

('r,M,
I P; e'"'.s,- I

sr,M, '&

—(x/6)('FsM s I
L,es, tI P, e'"'ts,'

+p, e'"'ts L„eS„sl'FsMs')
—P,/6)('F, M II. eS e', Q, (i, f-,+f,l,')
+ ', Q, (l;"-f,+f,l; )L„eS„e['FsMs')+O(X'/6') (10).

The term (sI',M s
I s g; (lPf;+f,l, ) I

'F sM s'& vanishes
because the orbital moment is quenched in the unper-
turbed state I'FsMs&. The first term in (10), which is
the only one occurring in the absence of spin-orbit
coupling, is equal to

p, (r le'*"lr,)(SMsls, 'ISMs').

Using the algebra of vector coupling, ' the spin matrix
element can be written as

(SM s [ s, I
SM s') =(SM s

I
s,' S./S (5+1)

I
SM s)

x(sM, [s.-lsM, '), (12)

where S, is the total spin of the ion at lattice site n.
Equation (11) then becomes

Q,(rs I
e' '

I Fs)(SM s I
s; S,/5 (S+1)

I
SM s)

X(SMs[5. [SMs')= f(K)(SMsls: ISMs'), (13)

where f(K) is the usual form factor obtained in the
absence of the orbital moment. ' For electrons with
paired spins, s;.S„will have opposite signs, and the
contribution of these electrons will cancel, provided
they have the same orbital wave function (this amounts
to neglecting spin polarization effects). For the two
unpaired electrons in Ni++,

(SMsl s; S /S(5+1) ISMs)=-', , (14)

and f(K) becomes

f(K) =—(F, l

etX rr+et& rslr, )
(15)

where I'~ and r2 are the coordinates of the unpaired
electrons.

Let. us I'low collslder tile second i,el'111 111 (10). Sepa-

' E. U. Cnndon and G. H. Shortley, The Theory of Atomic
SPectra (Cambridge University Press, New Y'ork, 1935).

rating the spin and orbital terms this is

—(X/a) P;((r, I
L.ee' '~

I
r,)(SM, I

S„es,-l SM,')
+(Fsl e' "L,~[re)(SMslst 5 e[SMs'&}. (16)

(F.IL."'" 'Ir.&=«. l
(L-"" ') tlr. &*

=(F.
l

-'"' L.'Ir.&*=-«.
l

'"' L 'lr &

since L„en= L„e,—and
I
Fs&, being nondegenerate, can

be chosen to be real. Equation (16) then becomes

—(l /~) Z,(r.l'"' L.'lr. &

X(SM,
I
s;-S„e—S.es;"

I
SM s'). (17)

In the commutator on the right we follow the procedure
used in deriving (15) and replace s; by —,S„n, obtaining

—P/&)(rule' '"I elrs&(SMsll 5,5 e]ISMs')
= —(II/~)(rs I

e*"'"L.tll rs&(SM s [ie tI'5„'
I
SM s'&

= ps 'r(SM [s5.'[SrM
&s, (18)

where

ps 1'= P/a)ie—»(rsle' "Lelr ), '(19)
and e» is the unit antisymmetric tensor of third rank.

The orbital term in (10) can be transformed similarly,
and we find

—(X/6)('FsM s I
L.eS.e-,' Q, (l, f;+f,l,')

+-', p;(l,™f;+f,t,-)L.es„el r,M, ')
= y, e(SMs[Sne[SMs'), (20)

where

v.'= —(ll/~)(r I l 2 (I'f +f I' )L'lr ). (21)

Using the results of (15), (19), and (21), the matrix
element (10) becomes

(r,M,
I
(1—g/~)L. S.)g„-(1-g/~)L„S„) I

I,M, &

=F 1'(SMs[5 [Sos'&, (22)
where

Pnv= f(K)gnv+ psnv-+Fons (23)

The tensor Ii & thus replaces the form factor of the
"spin-only" ca,se. It is easy to see that P & is real if there
is a center of inversion in the crystal. This follows from
the facts that the state lrs) is real and that e'"'I and
f(K r;), although both complex, have"nonvanishing
matrix elements only for their real parts, the imaginary
parts changing sign under inversion of the coordinates.

The scattering cross section, Eq. (6), can now be
written as

x/' I (eM[s "IM'&(M'ls "IM), (24)

where
I M) and

I
M') are magnetic state vectors for the

entire crystal, assumed to be products of the state
vectors fop the individual j.one,
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4. CROSS SECTIONS FOR PARAMAGNETIC,
FERROMAGNETIC, AND ANTIFERRO-

MAGNETIC CRYSTALS

From Eq. (24) we can derive expressions for the
elastic scattering cross sections for paramagnetic, ferro-
magnetic, and antiferromagnetic crystals. "For a para-
magnetic substance in the absence of a magnetic field,
the energy is independent of the quantum number M'
and we can sum over these states by closure:

we have

Q psr(M I
5„"

I
M')(M'

I
5 "IM)

=(NS& IS."i NS~)(NS~ IS.ai NS~), (31)

where liVsg) is the spin state of the entire crystal with
component of spin in the direction g having the value
XS, S being the spin of a single ion. But

2 p,»(MI s„
I
M'&(M'I 5

MM'

(Nsg i
S„"

i Nsq) =ri"5

Substituting this in Eq. (24), we get

(32)

=Q p,»(MIS„"5 &IM). (25)
3II t'dtr )

But this is simply the thermal average of S "S I" at LdQ ) terro

temperature T:

=s
I I (~ p-K-Kp)
&mc')

XF""FP"g&g" g e'*'

+sr psr(MIS, "5 &IM)=(5„"S~s)r. (26) t
yes ~

' (2m)'N
=s'I

I p s(K—~)
(mes) Vp

(5."S s), =-',5(5+1)8 „8s". (27)

Substituting these relations in Eq. (22) we get the cross
section for paramagnetic elastic scattering:

(ye
(dtr/dQ )pa e, = sNI I 5(5+1)sg IC'(K)

i (28)
(mes)

Because different spins are uncorrelated in a para-
magnet this can be expressed as X (F "FP"ri"ri" KF "ri"—KPFP"ri"), (33)

where Vo is the volume of the unit cell and ~ is 2x times
a vector of the reciprocal lattice. For a multi-domain
crystal we must average over all possible directions p of
the magnetization. For spherical or cubic symmetry we
have

so that (33) becomes

lg'I c'(K)
I

'
=F~~Ii ~&—E~E&F"I"5» g2

X—Zb(K —.)I~(K)l', (34)
4

—2fs+2f(y aa+~ an)

KK ((p. +rpe—+q, +ps ")+0(X'/6')
2fs+2f~ aa KaKP(~ aP+~ Pa)

where C (K) is the same form factor LEq. (30)j that, was
found for paramagnetic scattering.

For a simple antiferromagnetic substance in which
there are two sublattices with spins in opposite direc-
tions, the arguments for the ferromagnet can be taken
over if we make allowances for the fact that the mag-
netic unit cell may differ from the chemical unit cell.
The cross section for a multi-domain antiferromagnet is
found to be

(29)

making use of the antisymmetry of ape p Lsee Eq. (19)j.
Taking the square root of Eq. (29), we get for C (K)
(apart from an unimportant phase factor)

C'(K) = (2/g)l:f(K)+s v. "—sK KP(~.'+~p. ')3
+O(X'/6'). (30)

where N is the number of unit cells in the crystal, and ir d& ) 2 t'Te' ) ' (2~)'N

&dQ ) terro 3 &tsc ~ Vs

The factor 2/g has been inserted to make C (0)=1, so
that C (K) is a conventionally normalized form factor.

In the case of a ferromagnetic substance the energy
E~ depends very strongly on M. If g is a unit vector in
the direction of the magnetization and if we choose g to
be the axis of quantization of the states

I
M'), the ground

state will be the state of maximum spin in the direction
of g. Restricting ourselves to temperatures well below
the Curie point, so that the magnetization is saturated,

(d ) 2 (~es ) s (2~)BNtra)

Ed& ) antiierro 3 &~c )
g2

X—2 &(K—~)
I
C'(K) I'I F-(K) I' (3~)

where Vo&'"' and S&"' are the volume and number of
magnetic unit cells, respectively, and F (K) is the
structure factor for the magnetic unit cell, given by"In this section we follow the derivations given by W. Marshall,

Harvard University, 1959 (unpublished notes). F„(K)=P;(+) exp(iK y;). (36)
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2 2
2 1
2 0
2 —1
2 —2

1 2
1 1
1 0
1 —1
1 —2

(dm[ pp(K r) [dm')PFzpz= Fzzz(E)7

2 (zr) 4(ho) Foo+ (4/7) (5m') 4(ho) Fzo+ (2/7) (zr )4 F4o

(2/7) (30~)4(kp) Yp z+ (2/7) (5~)'(k4) F4-z
(4/7) (Sm.)4(hp) Fp z+ (2/7) (15zr)4(hp) F4 p

(2/7) (35zr)4(k4) Fz z

(2/7)(70zz)4(h4) Y4 4

—(2/7)(30zr)4(hz)Fpi (2/7)(Szr)4(hp) Yzl
2(zr)4(hp)Fpp —(2/7)(Szr)4(kp)Fpo (g/7)(zr)'(k4) Ypo

(2/7) (Szr)4(hp) Fp i —(2/7) (30zr)4(h4) F4 z

(2/7) (30m)4(hp) Fz-p (4/7) (10zr)'(kp) Y4-z—(2/7) (35~)4(k4) F4,
0 2 (4/7) (Szr)4(hp) Fzz+ (2/7) (15')4(k4) Fzz
0 1 —(2/7) (Szr)4(hz) Fzz+ (2/7) (30zr)4(k4) Y41
0 0 2 (zr)4(ho) Foo —(4/7) (Ss')4(hz) Fpo+ (12/7) (x)4(h4) Fzo
0 —1 —(2/7) (Szr) 4(hp) Fp i+ (2/7) (30zr) 4(h4) Fp-i
0 —2 (4/7) (Szr)4(hp) Fz—2+ (2/7) (15zr)4(h4) Y4-2

Txsz,z I.The matrix elements (dm [ pp (K r) [
dm'l =J'R Y (r)ptA(r)

Xoz(K r)R(r)Yz ~ (r)d'r, p(K r)=4zr Zspz z 4, («)Fspz*(&)
XFzzz(f}. For zo(K r) e' ', hz, (ICr) is the spherical Bessel
function j z, (Er), while for zo(K r)= f(K r) LEq. (4)j, hz(«)=gs(Kr). The average (hz) is defined by (kz,) =J o"R (r)kz, («)r'«

R(r) Y +(r)e' 'R(r) Yp ~ (r)dor, (39)

where R(r) is the radial wave function for the d electron
and F2 is a spherical harmonic. To calculate these
integrals we follow Weiss and Freeman12 and expand
e'K' in spherical harmonics:

e' '=4zr g z jz(Kr)Yzzzz*(K)Yzsz(r),
LM

(40)

obtain

f(K)=—',(d0[ e'x' [d0)+sr(d2 [e'*'Id2)

+s(d —2 [e'"'I d —2)+l(d —2[e"x'I d2&

+ l(d2 I

e'x'I d —2) (38)

The problem is then reduced to the evaluation of the
one-electron matrix elements

«~ I

e""
I
d~'&

—1—1—1—1

2 —(2/7) (35zr) 4(kz) Y4p
1 (2/7) (30zr}4(hp)Fpz (4/7) (10zr)4(h4)F4p
0 (2/7) (Szr)4(hz) Fzi —(2/7) (30zr)4(h4) F41—1 2 (zr}4(ko)Fop —(2/7) (So')4(hp) Fzo —(8/7) (s )4(hp) Fzo—2 —(2/7) (30zr)4(hz) Fz z

—(2/7) (Szr)4(hz) F4—I

where
+i

7z(«) = sz ' e'"""Fz(z)dz
—1

—2—2—2—2—2

2 (2/7) (70zr)4(hp) F44
1 (2/7) (35zr)4(h4) Ypz
0 (4/7) (5or)4(hp) Fop+ (2//) (15zr)4(h4) Fpp—1 (2/7) (30zr)4(kz) Fpi+ (2/7) (Szz)4(h4)F41
2 2 (z')4(ho) Yoo+ (4/7) (Sz')4(hz) Fzo+ (2/7) (zr)4(k4) Fzo

are the spherical Bessel functions. This gives for (47)

(dzzz
I

e"'"'I dzrz'&

=4zr Q z (j z&Yzzzz*(Z) Ys *(r)Yzzpz(r) Yr .(r)dQ

g; is the vector from the origin to the jth ion in the
magnetic unit cell, and the plus or minus sign is to be
taken according to the direction of the spin of the ion
at g;.

Except for the difference in the form factor, these
formulas are the same as those derived by Halpern and
Johnson for the case where the orbital moment is com-
pletely quenched, and require no further discussion.
Because of this difference in the form factor, however, it
is no longer possible to interpret this quantity as the
Fourier transform of the charge density.

S. CALCULATION OF THE FORM FACTOR FOR Ni++

For the simple case of Ni++, where there are two holes
in the d shell, it is easiest to follow the straightforward
procedure of writing the state Fs) in terms of one-
electron wave functions

I
dizzzzz) dszrzzs), where

I dizzzzz)

is an eigenfunction referring to electron 1. Using tables
of Clebsch-Gordan coeKcients, "we 6nd

[F~z, =2)= (1/V2) (I d,2& Id,o&—Id,o& I ds2&),

IF~~= —2&= (1/~2) (I di0&
I
ds —2&

—
I
di —2& I ds0&) (37)

We want to calculate f(K) and q', e using the expression
(7) for [J'p).

Consider f(K) first. Substituting (7) and (37) in (15),
and remembering that e'x'" refers only to electron 1, we

=Z 2[:(2L+1) 7'z'(i )

XC~(2,~; 2,~') Y.„„,*(R), (41)

where (j z) 1'P R'(r)j z, («)r'dr, and the coefficients
C~(l,zzz; Pzl') are tabulated by Condon and Shortley. 'P

A complete table of the matrix elements (41) is given in
Table I. Using these we obtain

f(K) =(jp)+(i4&((~)'Ypo(R)
+-,'(10zr/7)-:LY44g)+ Y4 4(X)7}, (42)

the formula derived by Weiss and Freeman.
To illustrate the calculation of y, & we derive q,"

explicitly, but we simply quote the results for the other
y, t'. We want

~ "=—(}t/~)(J's
I
(~i'fi+ f ~ ')L'I ~' )

=——;(X/)A((F2I
(li'fi+ fili')L'IF2)

+(F—2
I
(ll'f1+ fili')L'[F —2)

—(F—2
I
(Jz'fi+fiJi*)L*I F2&

—(F2 I
(Ji'fr+fili*)L'IF —2&}

= —()~/~)((F21(~i*fi+fiJz*)
I
F2&

—(F—2
I
(~i'fr+fib*) IF—2&

—(F—2
I
(4'fi+ fi4')

I
F2)

+(F2I (Ez*fz+flit') IF—2&}. (43)

"R.J. Weiss and A. J. Freeman, J. Phys. Chem. Sohds 10, 147
(1959}.
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TABLE II. Elements of the tensor oo,~e as defined by Eq. (21). Only the symmetric combinations o),~e+ o)oe» are given, as these are all
A,

that is required for the form factor. The argument of the spherical harmonics is E.

g—2 3
(o,"= 4(3r)4(go)FQQ —-(532)4(go) Y23+ (or)4(g4)F4o

4 7 14

5 2-~ 2 5 2m

+— —(g4) (Y44+ F4 4)+—(30)r)4(g2) (F22+ F2-2) ———(g4) (F4.+ Y4 2)
4 '.35 7 14.5,

g—2 3
2 ""=—4(n)'&go) Foo—-(fin)'&go) FQQ+ —(n) 4&g4) F43

4 7 14

5 2m' & 2 5 2x' &

+- —(g4) (F44+ F4 4)—(30~)'(g2) (F22+ F2-2)+——
&g4) (F42+ F4-2)

4 35 7 14 35

g —2J 8
4(n)'&go) Yoo+-(5n)'&g2) FQQ+-(n)'&g4& F4o

7 7

g—2 2 5 -2. ~

w. '"+w" =- —(33 )'(4)(r —r-)——(r —r-))
4 7i 14i 5 g

g —2
vo"'+ q o'"=-

4

g —2
gZ+ (p ZÃ

2 5 7I. & 5 'x'&
——(302 )4&go) (Fo1+Y2 1)——— (g4) (F41+F4 1)+——(g4) (Y43+F4 3)

7i 28i 5. 4i 35~

2 5 -~. ~ 5 7I.

&20)r)4(go) (F2-1 F21)+ (g4) {F4-I F41)+ (g4) (F4-3 F43)
7 28 5 4 35

Substituting the expressions for
I
F2) and IF—2) and Legendre polynomials Pt(ts), we find

operating on the one-electron functions with /~', we
obtain g()(x) = 2(1—cosx)/x',

(t) '*=—(2X/A)((d2I f(K r) Id2)

+(d—2
I f(K r)

I
d —») (44)

The orbital calculation therefore leads to one-electron
matrix elements of the form

(dnzI f(K. r)
I
dry')

gs(x) = (2/x') cosx—(6/x') sinx+(4/x'),

(70 2 l ( 70 20) 16
g4(x)=

I

——
I cosx+I ——+—

I sinx+
t. x4 x2) x' x') 3x'

The first two have been given by Trammell. The
evaluation of the matrix elements (45) now proceeds
exactly as for Eq. (39) except that (jL) is replaced by

= ~' R(r)V2 *(r)f(K r)R(r)Y2 (r)d'r (45).
(gL)= R'(r)gL(r)rsdr.

To evaluate these we use a procedure analogous to that
used for Eq. (39).The function f(K r), which is delned
by Eq. (4), can be expanded in spherical harmonics, just
as e'x' was expanded in Eq. (40):

f(K r) =4~ g z'gL(Zr) YL~*(K)Y,~(r), (46)

where
~+1

g L(Kr) = ,'z L) f(Krts)PL-(tz)dts,

and z4 is the cosine of the angle between K and r. The
functions gL(Er) are similar to the spherical Bessel
functions j L(Er) which appear in the expansion of
e' '. It is the difference between gL(Kr) and j L(Kr)
which leads to diferent shapes for the orbital and spin
form factors. Using Eq. (47) and the properties of the

g=2 —8&/6; —X/d, = (g—2)/8. (50)

This result has been incorporated in Table II, where the
expressions for the components of the tensor q, l' are
given. We now need only substitute these results in
Eq. (30) for the form factor C (K). If we substitute for
the spherical harmonics their explicit forms as functions

13 W. Low, Paramagnetic Resonance (Academic Press, Inc. , New
York, 1960), p. 92.

v.*'=—(4)t/t)) I:(go)+ (4/7) (5 )'(g )I' o(&)
+(2/7)( )'(«)~ o(4j (49)

&4/5 can be expressed in terms of the g factor. For Ni++
we have"
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of an orbital moment simulates a contraction of the
wave function. That this is true in general can be seen

by comparing the behavior of jz, (x) and gz, (x) for
small x. For jz, (x) we have"

jo(x) =1——,'xo,

jz.(x) =
(2L+1)!!

where (2L+1)!!=1X3&&5&&.. &&(2L+1).Similar for-
mulas can be derived for gz(x) by using the relations"

.2
1

~ 4

sin e
I

+' 2'+'[-', (ss+L)j!
f "~z( )4=,

[-', (~—I,))!(~+L+ 1)!

Fzo. 2. (jp), (gp) and (gp) —xp(gp) for Ni++, calculated from
Watson's wave function. The orbital magnetic form factor
((gp), (gp) —-', (gp)) is greatly expanded relative to the spin form
factor (jp).

if n —L&0, e—L even,

=0 otherwise,

go(x) =1——,', x',

and Eq. (46); we 6nd
of K„k„,K„we obtain, after some straightforward
algebra,

(g—2) 15
~(K)=- (j.)+ «g.)—:(g.))+-C«K)

g 2 4
az(x) =

L+2 (2L+1)!!

(56)

where

&( (.)+ I~ ( ) ( ) I (51) Comparing (55) and (56) shows that for small K,
2 (14 7 )

(j.)= 1—:K("),
Cp(K) =K,4+K„4+K,4— (52) (go) =1——:.K'("),

is a cubic harmonic. This is to be compared with the
"spin-only" form factor f(K),

«K) =(j.)+(»/4)(~ )C (K).

The most important terms in Eqs. (51) and (53) are the
spherical parts of the form factors, i.e., the parts not
multiplied by the angular factor C4(K):

2L 1!!

I rL
L+2 (2L+1)!!

(57)

C s(K) = (2/a) [(jo)+[(g—2)/2j((go) —l(as)) J,
fs(K) =(jo) (54)

TABLE III. The functions (gp), (gp), and (g4) for Ni++, calculated
with Watson's" restricted Hartree-Pock wave function.

The functions (jz) and (gz) for L=O, 2, 4 have been
evaluated for Ni++ using Watson's" analytic Hartree-
Fock radial wave function. Since a table of (jz) has
already been published by Watson and Freeman, "we
give only the (gz) in Table III. In Fig. 2 we show the
graPhs of (jp), (go), and (go) ——',(gs) as functions of
(sin8)/X. The "orbital" curves (go) and (go) —sr(gs) lie
outside that of (jp), so that if we ignored the presence of
an unquenched orbital moment and tried to interpret
this as due to spin scattering, the form factor would
appear to be expanded. This means that the presence

sin8
(A ')

X

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(go)

1.0000
0.9599
0.8560
0.7229
0,5901
0.4729
0.3760
0.2987
0.2380
0.1909
0.1545

(gp)

0.0000
0.0157
0.0540
0.0968
0.1311
0.1528
0.1629
0.1644
0.1599
0.1518
0.1418

(g4)

0.0000
0.0000
0.0025
0.0093
0.0202
0.0329
0.0451.
0.0555
0.0636
0.0692
0.0727

'4 R. E.Watson, "Iron Series Hartree-Fock Calculations, "Solid-
State and Molecular Theory Group, Massachusetts Institute of
Technology, 1959 (unpublished)."R.E. Watson and A. J. Freeman, Acta Cryst. 14, 27 (1961).

'6 P. M. Morse and H. I"eshbach, 3fethods of Theoretical Physics
(McGraw-Hill Book Company, Inc. , New York 1953)."E.T. Whittaker and G. N. Watson, Moderps Appalysps (Cam-
bridge University Press, New York, 1927).
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where J.O

so that for small E, (gp))(jo) and (gL)((jz) for INO.

6. DISCUSSION

Figure 3 shows the spherical parts of the form factors
for Ni++, fs(E) and C s(E), taking g=2.2. The third
curve is the spherical part of the form factor as de-
termined experimentally by Alperin. His results indi-
cate that the radial 3d functions are greatly contracted
in the solid as compared to the free ion (by about 17%),
taking the latter to be given by Watson's unpolarized
calculation for Ni."This result is in disagreement with
the fact that the g-factor measurements' indicate that
) „~;d=4Xq„, ;,„,where the ) 's are the spin-orbit coupling
constants for Ni++. This indicates an expansion of the
Ni++ wave function in the solid, since X is roughly
determined by (1/rs).
t

'We have found that the orbital contribution to the
form factor does not resolve this difhculty since it
accounts for only about 4% of the 17% expansion of
the form factor (see Fig. 2).

It should be emphasized that we have used Watson's
"restricted" Hartree-Pock wave functions in this calcu-
lation. A "spin-polarized" calculation has also been
carried out for Ni++ by Watson and Freeman. "The
"spin-only" form factor for this case is also expanded
relative to the restricted solution by about 4%. If we
were to replace our (js) by this spin-polarized form
factor the result would still not be sufficiently expanded
to explain Alperin's form factor on the basis of an
expanded charge distribution in the solid but together
the two effects account for an 8% expansion of the form
factor.

One further interesting eRect of the orbital contribu-
tion concerns the anisotropic terms in the form factor.

's R. E. Watson and A. J.Freeman, Phys. Rev. 120, 1125 (1960).

~4

~2

a4

sin 8
(A I)

FIG. 3. The spherical part of the form factor for Ni++. The
spin-only form factor Lf, (E)j, spin and orbit form factor LC, (X),
g=2.2j, and Alperin's experimental form factor are shown.

Of the terms multiplying C4(E) in Eq. (51), the orbital
contribution is completely negligible compared to the
(j4) spin contribution. The orbital moment nevertheless
aGects this anisotropy strongly through the normaliza-
tion factor 2/g. The effect in Ni++ is to reduce the
anisotropy by 10%.

It is clear that the orbital scattering cannot always be
ignored in an accurate interpretation of the experiments,
but that it is not su6icient by itself to account for
Alperin's results on NiO.
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