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The 2~ and 3x resonances are re-examined from the point of view that they are vector mesons coupled to
conserved currents. The theory of unstable mesons is discussed and formulas are then derived for the emis-
sion and propagation of these mesons. The connection with electromagnetic form factors is then given, par-
ticularly for the simple case of infinite bare mass. The results are very similar to those of the dispersion
method. Experimental manifestations of universality (connected with the conserved vector current) are
discussed. Applications are then made to the decay of x and a group of related phenomena, including several
"pole" experiments. Also, the contribution of the 221- resonance to 2r-S scattering is discussed brieRy from
the vector meson point of view. Finally, we compare the vector meson approach to the alternative method
using dispersion relations applied to presumably dynamical resonances. We conclude that the dynamical
picture is an interesting special case of the vector meson theory with infinite bare mass, a case in which
the mass and coupling constant are determined and the behavior at high energies is less singular. The
methods we develop are applicable to the dynamical case.

I. INTRODUCTION treatment is particularly simple if the bare mass is
lllflilite.

We then take up the relation of such a description to
the dynamical model. We conclude that essentially all
the results can be carried over to the dynamical theory,
which can be regarded as a special case of the vector
meson theory with infinite bare mass. The special case
is characterized by a mass and coupling constant that
are determined and by less singular high energy be-
havior, which may be necessary for consistency.

The vector mesons are all unstable and some, at
least, decay very rapidly. Let us adopt the notation of
reference 5. The dominant decay mode for the p meson
(the I=1 particle) is into two pions with a lifetime of
the order of 10 "sec. The I=O meson, called oP, can
decay into tr +p with a lifetime of about 10 " sec, or,
if it is sufficiently massive, into three pions with a much
shorter lifetime. A prerequisite of any discussion of the
effects of the vector mesons, then, is an understanding
of the properties of unstable particles and how to
compute with them. We shall therefore begin with an
illustration, in terms of a simple model field theory, of
the behavior of an unstable particle. The concepts so
developed will then be extended to the vector mesons
in question, and. to calculations of their eGects.

' 'N recent years a considerable amount of effort has
~ - been expended on predicting the e6ects of a pro-
posed P-wave resonance in pion-pion scattering on
various elementary particle processes. This resonance
was first suggested' in order to explain some features of
the isotopic vector electromagnetic form factors of the
nucleon. It has also been suggested' that there may be
a resonance in the three-pion system (with I= 1, I=0);
that wouM facilitate an understanding of the isotopic
scalar form factors. Some attempts' have been made to
demonstrate the existence of the 2+ resonance on a
dynamical basis. Calculations involving the exchange of
such a resonant state tend to be rather cumbersome,
however, if the dynamical approach is used. That is
especially true of the 3x resonance, since processes like
3sr ~ E+Jt7 are genuinely complicated.

A different picture is employed by Sakurai, 4 who
treats the zx resonance as an unstable vector meson
coupled to the isotopic spin current. He has also sug-
gested the existence of an I=O vector meson (coupled
to the hypercharge current), which corresponds to the
3~ resonance. In a generalization of Sakurai's work,
Gell-Mann' predicts in addition four strange vector
mesons in two doublets each with I=-,'. A ninth vector
meson coupled to the baryon current may exist as well. 4 5

The vector meson approach simplifies greatly the ap-
proximate theoretical discussion of the resonances, as
we shall show in a number of cases. We concentrate
primarily on the description of the xw resonance as a
particle coupled universally to the isotopic spin. The

II. MODEL FIELD THEORY AS A GUIDE

In order to remove all nonessential complications, we
shall ignore spin. We are then interested in describing
the properties of an unstable scalar meson (called o),
which couples to pairs of another meson (called tr).
To make everything explicit and obvious, we shall
assume the interaction of cr and x is described by a
specific relativistic model field theory.

First, if the o. meson did not exist, the trtr (S-wave)
scattering amplitude predicted by the model field
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I'io. 1. The dynamical case: the phase shift in the
absence of a CDD pole.

It is necessary to require that 8&0.' Now the existence
of the CDD pole forces ReD(s) to have a zero at one
point at least. I.et this point be ns, ', which we define as
the physical mass of the a meson. If m, '&4p, ', then
ImD(m, ') =0 and D(m, ') =0, in which case T(s) has
a pole at m '. In this case the 0. meson is stable. The re-
normalized coupling constant g for the o-x~ coupling is
defined as the square root of the residue of T(s) at the
pole; that is,

g' ds T(s) a-m.

If m '&4p, ', on the other hand, then

theory would be

T(s) =

1+ (s—sp)
16ir'- ~ 4„~ s' (s' —sp) (s' —s)

X (m.'—4p' )
ImD(m, ') =

( ( NO,
m.'

and we have from Eq. (2.2)

sin5(mg) expLis(m. ')]=i.

(2.4)

= $/Dp(s), (2.1)

where s is the square of the center-of-mass energy and
where X is a, constant defined by T(sp) = X. sp is chosen
less than 4p,' so that X will be real. The s-wave m& phase
shift is related to T(s) by

T(s)= —16~~ -

~
sinb(s)e"&',

E s —4y'I
(2.2)

for s&4p'. If X&0 or if X is sufficiently negative, there
is a bound state (or a ghost). We are not interested in
such a possibility, so let us restrict ourselves to ) &0 and
fairly small. The phase shift for this case is sketched in
Fig. 1.There is no resonance, since for s-wave scattering
there is no centrifugal barrier, and a purely attractive
potential such as the simple model provides cannot
give rise to a resonance. In the physical case, however,
where 0 has spin one, the interesting state is the p-wave
and a resonance can occur. If one does occur under
these conditions, it is a "dynamical" resonance.

Now let us assume again the existence of the 0. meson
and see what eGect it produces. If the bare mass of the
0- meson is m p', the existence of the meson is equivalent
to adding a Castillejo-Dalitz-Dyson pole at m p to
the denominator function Dp(s) in Kq. (2.1). Thus we
now have Dp(s) ~ D(s) in (2.1) where

D(s) = 1+ (s—sp)
16'' ",„2 E s' (s' —so) (s' —s)

( sp —s

s—m~p Esp —m~p )
7 L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,

4s3 (i9se).

There is a resonance at m, '. %e may now de6ne the
renormalized coupling constant g of the unstable par-
ticle, in analogy to the stable case by

—=—Re/
g' ds (T(s)P 8=m, m

(2.5)

and hence explicitly

1 X t tt's' —4p'~ ' ds' E.

g' 16ir'~ 4 2 & s' ) (s' —m ')' (m.'—m, pP)'

If we define
X=g'/(m '—m p') (2.7)

ps —m, p'q X

D(s) =
I I=D(s),
E s—m.') X

(2.8)

then we may write the scattering amplitude in the form

X+g'/(s —m.')

D(s)
(2.9)

s—m'
t fs 4y') f — g'

D(s)=1+ —'

( —, I / &+,
167I IJ4p'E $ ) 0 S m~ )

ds
(2.10)

(s' —m, ') (s' —s)

The analogy with the stable case is thereby made
obvious. ' The form of the solution is identical; the
only difference is that in the unstable case ns '&4@' and
therefore ImD(s) has a pole at m,' which cancels the
pole in the numerator of (2.9) so that T(s) goes through
a resonance at m, '.
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t
"(s'—4zzz) '

16'' "4e~ ~ s' & (s' —m ') (s' —x)

zy Zy S mzy

m 0 m m 0 & m 0 & m 0 m m' 0

iX )x—4zz'q &

+
16zr E x )

The first of these equations is clearly satisaed with
x=m, '; the second may then also be satisfied with

gs (m z 4~z) i

m.z

An alternative description of an unstable particle
which has been suggested several times'' is that it
manifests itself through a pole of the scattering ampli-
tude on its second Riemann sheet. The real part of the
position of the pole is de6ned as the mass, the imaginary
part is the width of the particle. We can demonstrate,
within the framework of the explicit solutions oGered

by the model field theory, that this property holds and
those definitions of the mass and width agree with ours
for small width.

The existence of a pole on the second sheet of T is
the same as the existence of a zero on the second sheet
of D. D, on its second sheet, is given by

D&'~ (s) =D(s)+2i ImD(s),

for y=Ims(0. The function ReD vanishes on the real
axis at m, ; this was our definition of the physical mass
of the unstable particle. Therefore, we can write

X p" z's' —4zzz) &

(.—m.p)

16zr' ~ 4„4 s' ) (s' —m ') (s' —s)

(s—m,') R 2iX trs —4zz') '*

+
(z—m, p') (m,'—m, pz) 16zr & s

If D"'(s)=0 for s=x+zy where y is small, then we
must have approximately

X t" (s' —4zz') '
(x—m.')

16zrs & z„m ( s' ) (s' —nz ') (s' —x)

t' x—m, s ) =0,
(x—m.p') (m.'—m, pz)

8(s)

2
mao

I"ro. 2. The case of an unstable particle: the phase shift
in the presence of one CDD pole.

the second sheet occurs on m '—im, I', where m, is the
mass, defined as the position of the zero of ReD(s), and

g (m, —4zz )1
16zr E nz, ' )

is the width expressed in terms of the renormalized

coupling constant defined by Eq. (2.5). For larger
values of g', of course, the mass and width de6ned in
our way will not be precisely the same as the mass and
width defined in terms of the pole on the second sheet.
Let us now abandon the second sheet and return to
develop further properties of unstable particles.

We may observe at this point that m 0'= ~ is ob-
tained by setting A=O and allowing g' to be arbitrary
instead of given by Eq. (2.6). The dynamical case,
where the 0- particle does not exist, recurs if g' has the
value given in (2.6) with m, ps= Po, or R=O. This is
easily verified by comparing with Eq. (2.1).

As in the purely dynamical case, there is a bound
state (or ghost) if X)0 and we are not interested in
this. However, if X(0 we find the behavior of the phase
shift shown in Fig. 2. There is no bound state so the
phase shift starts at zero, rises through zr/2 at m,s,

through m at m, 0', and drops asymptotically back down

to zr from above as s~ ~. Thus, we see that 3(po)
—8(4zz') = zr for the case of a single unstable particle. 'P

Only if m.0'—m, ' is finite and small does the scattering
amplitude pass through zero near the resonance. If
m 0'= ~ the phase shift just rises asymptotically to x
from below as s —+ ~, without ever crossing m. We recall
that in the dynamical case the phase shift rises through

zr/2 at the resonance, then comes back down through

zr/2, and reaches zero at infinity.
Next we may observe that the residue at the pole in

ImD(s) is

where g' is de6ned by Eq. (2.6).
Thus for small widths, that is, small g', the pole on

(s—m, ') ImD(s)
~
(.= .)

g' t'mp' —4zz') 1

f
=m.r, (2.11)

16zr ( mpz

' M. Ruderman and C. Sommer6eld, Bull. Am. Phys. Soc.
4, 375 (1959).

s R. Oehme (to be published); M. Levy, Nuovo cimento 13,
115 (1959);R. Jacob and R. G. Sachs, Phys. Rev. 121,350 (1961).

'R. Peierls, Prooeedzngs of the 1954 Glasgow Coz ferenoe'on.
Egclear and Meson Physics (Pergamon Press, New York, 1954),
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where F is the decay rate of the 0- particle. This justiGes
the deGnition of the renormalized 0.+x coupling constant
g by Eq. (2.5).

The form factor for the dissociation of the 0- particle
into two pions is given' by

P--(s) = 1/D(s) (2.12)

In contrast to the stable situation, where F.„(m,') =1,
we have in the unstable case the result that P, (m, ')
=0. The coeKcient of the zero is

F...'(m.s) = s/—m.r (2.13)

m~ s—m~o P~~4 (s)
P, (s) =

m.o' s—m.' F. ,(0)
(2 16)

Finally, we can introduce a weakly coupled particle
(scalar photon) of zero bare and physical masses,
coupled to the pion. The form factor F (s) for this new
particle can be computed in the model Geld theory by
dispersion theory. The only possible intermediate states
are the xm state and the 0- meson state. From these
states we Gnd

Imp (s) =F *(s) sin8(s)e" t4&

—rr8(s —m.')F, (s)A, (2.14)

where A is an amplitude describing the transition of a
virtual scalar photon into a 4r meson. Since F, (m, ')
=0, the second term in (2.14), from the o-meson inter-
mediate state, in fact does not contribute. This is a
generally true statement: namely, the single virtual
unstable particle intermediate state never contributes
to the absorptive part of any process.

We can relate F (s) to F (s) by observing that

ImF, (s) =F*, (s) sin8(s)e+&', (2.15)

which, when compared with (2.14) yields the result

within the framework of the model Geld theory, many
of the statements are in fact general. We shall devote
the next section to repeating, for the actual case of
unstable vector mesons and a complete Geld theory, the
development of the basic formulas given here.

1=—Re
yp~~4 ds T~4 (s) 4 r44o4=

(3.2)

We can write" in general

T. »(s) =N(s)/D(s), (3.3)

where N is an analytic function with only a left-hand
cut and D is analytic with only a right-hand cut. Thus,
for s)4@~,

1
ImD(s) =N(s) Im

T„,"(s
(3.4)

III. INTERACTION OF AN UNSTABLE
VECTOR MESON

We shall now use the p meson and w mesons as ex-
amples, with their correct spins and charges. Let
T "(s) denote the F-wave pion-pion scattering ampli-
tude. The phase shift is expressed in terms of T "(s)
by"

s
T "(s)= —12n. sini)(s)e"&' (3.1)

(s 4+s)8

Now, associated with the existence of the vector p
meson of isotopic spin one, there is a resonance in the ~~
P-wave scattering. We define the physical mass m, ' of
the p meson as the position of this resonance. Further-
more, we define the renormalized p+x coupling constant

&porn

In deriving (2.16), use is made of the relations F, (m ')
=0, F (m o') =0," and P~ (0)= 1. If m.o' ——~, an espe-
cially simple relation obtains:

Note that in the elastic region, 4p, '(s&16p,',

1 (s—414')s &

ImD(s) = N(s).
12K S

(3.5)

-m, ' F...(s)
F„(s)=-

s—m, 'F, „(0)
(2.17)

For weak coupling of the 0- to m mesons, we see that in
the region s(0, for example, I where ImD(s)=0 so
F. (s) =1/ReD(s) j Eq. (2.17) gives the approximate
result

F (s) =—m.'/(s —m.'). (2.18)

"See Sec. IV.

Thus for weak coupling the result of calculating the
photon form factor is the same as it would have been if
one had (incorrectly) included the one o meson inter-
mediate state (which actually gives zero) in the dis-
persion calculation and dropped the two pion state.

While the results of this section are all obtained

1 (m '—414')s '*

N (m p').ImD(m, ') = (3.6)
1271 mp

"We use the notation: T matrix = (1/s)Z~, qP~(cos8)Qlq'T „'I(s),
where S nratrix=1 —(24r)4f84(pr —p;)LT tnatrixg and where Qr is
the isotopic projection operator.

"M. Baker, Ann. Phys. 4, 271 (1958).See also reference 3.
"R.Blankenbecler, Phys. Rev. 122, 983 (1961).

If there is a p meson of bare mass m, o' and physical
mass m, ', then ReD(m, s)=0 and D(s) has a pole at
m, o, by deGnition. In the physical case, the situation is
complicated by the fact that apparently mp'&16p, ', so
that mp~ lies in the inelastic region and the decay
p —+ 4m can occur. In the remainder of this section, we
shall ignore this complication" and assume mp'&16''.
Since m, is then in the elastic region, we have from
Eq. (3.5) that
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Furthermore,

1 d ReD($) 1 (E—ReD($).)pe. r d$ X($) (s=m ~) X(alp') d$
(3 7)

where d), )($) is the renormalized p-meson propagator,
and A~($) = ($—m,2) '. Now if the p particle is unstable,
only RehFi '(m, ')=0, so that 6);i($) does not have a
pole at m, '. Therefore, the ratio dpi(m, ')/6);(ns, ') =0.
From Eq. (3.15), we see that

Let us define a new function D($), which also has only a
right-hand cut, by

Imw„-'(~, )=+~,r, (3.17)

($—7spo2 i f 1
D($) =

] I I ID($) (3 g)
X(m,') 4$—esp'I ) mp' mp—02)

D($) thus has neither a pole at m, 02 nor a zero at m„'.
In fact, it is easy to see from (3.7) that

ReD(m, ') =1, (3.9)

and from (3.6) that ImD($) has a pole at m, ' with
residue

as is, of course, to be expected.
The difference between the form factors for stable

and unstable particles is thus easily seen: if the p
particle were stable, then near s= esp' we would have

S—SSp

F) -($)=—
$—es '+0($—m ')'

then F, (m„') =1.If, on the other hand, p is unstable,
we have instead

($—mp') ImD($)
~

(s=m 2)

(m p' —4p')' '*

=m.,l', (3.10)

F, .($)=
S—mp'

$ mp'+0 ($—mp') 2+i t—n pI'+i 0 (s m')—
Pl p

2

where F is the decay rate of the p meson. In terms of D,
we have

( E($) q X+y„.'/($ —m, ')7.. ($)=i i
', (3.»)

&E(m,') ) D($)

where the constant X is de6ned by

Vp '/X= mp' —m, o'. (3.12)

F, ($) = 1/D($), (3.13)

in the elastic region near mp'.
Therefore, just as in the model theory, we have

F...(m„)=0.
That the coefficient of the zero is again given by

Fp, '(m, ') = —~/ns pl',

(3.14)

(3.15)

may be seen from Eq. (3.10).
It may be of value to elaborate a bit further on Eq.

(3.14). Let us define V, ($) as the sum of all proper
vertex graphs —that is, the usual renormalized vertex
function —for the pz.z. vertex. We choose V„(m,') = 1.
The form factor is then expressed as

F.-($)= t:~»($)/~~($) jV.-($), (3 16)

An in6nite bare mass for the p meson is then equivalent
to) =0.

The entire development has been carried out in
parallel with the model 6eld theory described in Sec. II,
and the important results obtained there, such as the
methods of defining the renormalized mass and coupling
constant of the unstable particle, have therefore been
extended to real 6eld theory. We may pursue the
analogy further by observing that the form factor of
the porn- vertex, which we shall call F„($),is just

IV. ELECTROMAGNETIC FORM FACTORS
AND UNIVERSALITY

Let us now proceed to introduce electromagnetic form
factors (of pions and nucleons, for example) and see
what effects the unstable vector mesons may be ex-
pected to produce. We first discuss the pion electro-
magnetic form factor, which we shall call F ($), and
normalize so that F (0)=1.

The photon is coupled to the electromagnetic current,
which is conserved and has two parts, an isotopic vector
and an isotopic scalar part. The p meson, we shall
assume (in accord with references 4 and 5), is also
coupled to the conserved isotopic spin current. Thus
the p' meson and the isovector part of the photon are
coupled to the same unrenormalized current, and we
can write the unrenormalized Geld equations

—~~A„'(x) =he,g„,
(— '+~.o') P.'(*)=voi. .

(4 1)

Here, the carets denote unrenormalized Heisenberg
Geld operators, and the index V distinguishes the iso-
vector part of the photon Geld from the isoscalar part.

in the vicinity of s=mp', and hence

F, (nz, ') =0.

Since the ratio of 6p& to Ap vanishes at mp', not only
Fp but the form factor describing the vertex where a p
meson interacts with any other particle —e.g., a nu-
cleon—also vanishes at mp'. This means that, in the
dispersion theory, the single p particle intermediate
state never contributes to any given absorptive part.
The p meson makes itself felt only through the resonance
it produces in the x~ system, which, of course, is allowed
as one of the intermediate states in the same absorp-
tive part.
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The symbol p„', of course, denotes the neutral p-meson
field operator.

The corresponding renormalized field equations are

—n'a '()=l Z. 'y. =i.",
( &'—+ppi. ')p '(&) =V&3. 'ip+~ppi'p '=i pp

(4.2)

Now the pion electromagnetic form factor receives
contributions only from the isovector part of the photon
field, so we may write the definitions of the form factors
as follows:

zp p% 'r

Fpep(~) (gl g2)p(8p118o'22 8p126p21)
(4(oicu2) l

=(qi.i,~2~2'
—

&

I j„(o)I o). (4.4)

Here, q~, 0-~ and q~ 0-2 are the 4-momenta and charges of
two pions.

Note that

—ze
F.(s) (qi —g2) p(b. ii8.,2—5 i25., i)

(4M i' 2) '
(tl&0 & 92+2 I j:(0)I o), (4.3)

and

mass, which is a manifest absurdity. What happens in-
stead is that F (s) goes through a maximum at mp'.
This may be seen explicitly in the model theory; more
generally, from Eq. (3.15) we have

F.(m„&)=i~„r-'p,,(0), (4.9)

which is a rather large number. Furthermore, Ii is
pure imaginary at m„', rejecting the fact that in the
elastic region the phase of Ii, is the phase of the P-wave
zw scattering, which goes through 90' at m, '.

Exactly analogous arguments may evidently be
carried over from the nucleon form factors. By the
same means as were used in obtaining (4.7) and (4.8),
we get

~mp'q ~s—m, 02' F&,,p(s)
II I

(4»)
(m, ') (s—m ') F, ;(0)

where Ii~, 2~ are the standard nucleon isovector charge
and moment form factors, normalized to one at s=O,
and F~, 2& are the "charge" and "moment" form factors
ior the pEN vertex, defined by

for any staee. U g s a t, t e y to e tract
from Eqs. (4.3) and (4.4) a relation between F and

F, ; namely,
where y,~~ is the renormalized pEE coupling constant
and p,,~~ is the "anomalous moment" of the nucleon.

According to references 4 and 5, the oP meson, with
I=O, is coupled to the conserved isoscalar part of the
electromagnetic current. If this is so, we may write

(eo) (Z,p) l (s ppzpp')—
eF.(s) =

I

—
II I I Iy...P...(s). (4.6)

&~,) &z„) &.—~, ) '

&~ I j:(o)Io)= (—& '+m ')(nI pp(0) Io), (45), , (~. I ~pNNPi'(~)~. +p»~F2P(~) ~"(P'+P)
I ~.)

t sin thi f c i is as x =(P'P —
I j„(0)I

o), (4.11)

If we use the fact that F (0)= 1, we may rewrite (4.6) as

( B1p) (s Bzpo ) f P '~~(p$) )
(m, o') Es—m, ') EF, (0))

(4 7)

This may be further simplified if we assume that
m, o'=~ to —m, ' )F„..(s)y

s —mp'KFp „(0))
(4.8)

Equations (4.7) and (4.8) are identical with the results
LEqs. (2.16) and (2.17)] obtained on the basis of the
model field theory. Because of the restricted number of
intermediate states in the model, it was not necessary
to assume explicitly a relation between the bare cur-
rents of the photon and the p meson, as we did here.
In Sec. VII we discuss the extent to which the dy-
namical resonance approach (using dispersion rela-
tions) really divers from the vector meson approach in
which the photon and meson have bare currents that
are proportional.

The denominator s—mp' in (4.7) and (4.8) shows
that the result obtained in Sec. III that F, (mp')=0
is in fact necessary, for otherwise the electromagnetic
form factor would have a singularity at the p-meson

( Is(P ) t's —51„0 ) Pi 2"(s)
(4»)

(m ') (s—m ') F ."(0)

r p
=p pgp~P p~~ (0)y (4.13)

should be universal; that is, we expect relations like

v, =v»~Pip(0) (4.14)

This equality can be tested experimentally. Prom Kq.

where J ~,2~ are the nucleon isoscalar charge and moment
form factors, and the form factors for the co'ÃS vertex
Fi ." are defined in analogy to (4.11).

Now in what we have done so far, the renormalized
p-meson coupling constants to different particles —e.g. ,
pions, nucleons, etc., are all different. Yet the p meson
is coupled to a conserved current, and we know that if
it had zero mass all these constants would be identical
as a result of the Ward identity. We should next like to
exploit this observation to correlate y„and y,N~,
for example.

If m, ' were zero, the renormalized coupling constant
of p to anything would be universal. Consequently, the
constant defined by



FORM FACTORS AN D VECTOR M ESONS 959

(4.9) we see that

y, =imp mpI' 'F '(m, ') (4.15)

Precisely this analysis of the experimental data has
been made and yields"

y, =iy,NN(m, /I')(1/F ~(nz, ')), (4.16)

Hence, if F (rmp') is measured (as it may be in the re-
action e+e —+s.+m, for example), yp can be found.
Similarly, from Eq. (4.14) we expect

%p 20p,")

m„'= 9p,',

7pNN/ rp 1.2)

y„NN/y„= 0.56.

(4.23)

so if the nucleon form factors are also measured at szp'

I a somewhat harder experimental job than measuring
F (nap')) the two values of yp can be compared and the
universality observed, if it exists. We shall see below
that by extrapolation we can, at least approximately,
avoid the necessity of measuring F&v(mp') directly.

There is one further interesting point to be made in
connection with the topics under discussion in this
section. From (4.6) we find

F.-(o)=
I

—
I I I I I I (4»)( e ) ( 'yo ) (Ziq) ' (pi1p~

&col (y...) &Z,„) (nz, o'

To lowest order in e, we can replace %0Z»1 by unity.
Next note that F, .(0) =dp(0) V, .(0) while
=poVp '(0)Z» '(0)Z»&Z& ——(&0)Z»&Vp.. '(0) by the
Ward identity. Hence, we get

nz 'pi '1 )
d, (o)

Z„&
(4.18)

Thus we see that the bare mass happ' of the vector meson
is no more divergent than Zap.

We may now rewrite Eqs. (4.10) and (4.12), assuming
ss pp and m„p' are infinite, as

~Pip (VpNNi
F, (s) =-

I IFip(s),
s —nz, ' E

(4.19)

PPi&g (7(aNN i
s —m„'E y„) (4.2o)

Vp, ~
F,p "(s)=1+(s—mp, „')I - -

II 1—
P, ,. N)'

in the s(0 region. Thus (4.19) and (4.20) become

(VpNN'1 ( —Plp' ) f 'YpNN)i
Fi (s)=I II iI+I) Es—mp'J

(V~NN t ( mrna ) ( %ANN )
--, I+I 1—

I (422)
0 y„) Es—m„') & y„)

In the region measured by electron-proton scattering
experiments, s(0 and the P's are purely real. We know
that Re(1/Fip)=1 at s=mp' and Re(1/Fi")=1 at
s=m„'. So we might try to approximate

It is worth emphasizing again that Eqs. (4.21) and
(4.22) look basically just like the "pole" contributions
from a single vector meson intermediate state, even
though such a "pole" does not actually exist. The
"pole" type approximation used in (4.21) and (4.22)
is only valid far away from the position of the supposed
(po] e ) )

V. VERTICES CONNECTED WITH e' DECAY

v3yp j„"'=(eo/2) j„',

voj„"=(eo/2) j„'.
(5 1)

The ratio V3 between the p' and oP currents is a conse-
quence of unitary symmetry. ' When we express our
results in terms of renormalized constants, they are
independent of unitary symmetry.

From Eq. (5.1), by the method used in Sec. IV, it is
straightforward to relate matrix elements of the corre-

"R. Hofstadter and R, Herr@an, Phys. Re@, I,eftey's 6, 293
(1961).

The close relationship between the photon and the
p' and co' mesons may be explored more generally. We
have already seen that the p' and the isovector part of
the photon are coupled to the same unrenormalized
conserved current; the same .'s true of co' and the iso-
scalar part of the photon. As a result, one may expect
to be able to correlate other vertices involving p' or co

and photons in the same way that the p' and co form
factors were connected with electromagnetic form fac-
tors in Sec. IV. The most interesting such vertex is that
involving one neutral pion and two vector particles.
This vertex can be identified in such processes as the
decays ~'~ y+y and &8 ~ s'+y, in poles in p' and
co' photoproduction, and in poles in reactions like
7r+1V —+ p+E, or ~+1V —+ (o+W.

Associated with each of the possible m' —+ two-vector-
particle vertices we can define an effective renormalized
coupling constant, which is just the amplitude for the
decay described by the vertex. Thus, we have con-
stants f,„,f », f „7,f » associated with the four
possible vertices and the four possible decays p' —+

~'+m, p' —+ m'+y, (o'-+ m +y, and m' ~ y+y.
The basic assumption we shall use is again that the

unrenormalized current operators for the p' and oP are
the same as those for the isovector and isoscalar parts
of the photon, respectively. Thus,
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and

( eo p (Z, oq&(s —m 2)

&2v3yp) (Z3v) (s—m„')

( ep $ Zap'p ~ (s mp—p )
&~li.'I m) =

I

(2yo) L Z3, ) ( s—m, ' J

sponding renormalized currents: we 6nd

(5 2)

F, v(s) and F„v(s) by unity and obtain

e ( —m, ')
f-v.p--(s) =

I If.-
2pp Es-m ')

e ( —m'p
+

I If- (5 6)
2%3'„Es—m„')

Here, ll, m are arbitrary states, and s= —(P„—P )',
where I', are the total 4-momenta of the states.
g Now the photon will be treated to first order, so

eo ——e and Z3v ——1.Furthermore, we have y, =yoZsp~dp(0)
and p„=yoZ3„'d„(0) by the Ward identity. Lpp and p,
remember, are defined, for example, by pp =p»vFip(0)
and may be thought of as the coupling constants that
p and cu would have if their masses were zero. ] Finally,
we note (4.20), which tells us that d, (0)m, o'Z3, =m, '
and d„(0)m„o'Za„=m„'. These observations, when ap-
plied to (5.2) result in

e f —m'$

2%3'„(s—m 'l

e (f v t
e (f v'I

f.vv=
I

-I+-I
2 & y, ) 2 (v3y„&

(5.7)

Now note that in the vertex p~y the photon must
couple through the isoscalar current, while in the
vertex cony it must couple through the isovector cur-
rent. Therefore, exactly the same argument and
approximations which led to (5.7) yield

From (5.6) we can obtain a relationship between the vr'

decay rate and either the rate for coo~ vro+y or po~
vr'+y. The 6rst of these is presumably the dominant
decay mode of the co' if m„'&9p,' otherwise the oP

decays primarily into x+, w and x'. First set s=0 in
(5.6). This gives

e ( —mp'p

2+p (s m )
(5.3b)

if we assume the bare masses mpa and m„o' are infinite.
If e is taken to be the nucleon-antinucleon state, and

m the vacuum, (5.3) reproduces (4.10) and (4.12).
+Equations (5.3) may be applied, for example, to the
m'yy vertex if we choose z to be a w'y state and nz to be
the vacuum. The form factor for this vertex, as a func-
tion of the momentum of one of the photons, is F»(s)
where

(fp~~)
p&V

2%34 y„ i
e (fppcu)

2i&, i

Comparing these, we see that

fppv

V3y„

which, coupled with (5.7), gives

(5.8)

(5.10)

f-..F-. ()
(4k2s)) &

e-epv(&i). (&2)e(e2) v

con y.
v3y„

(5.11)

—(p,e, &(
—

)I& (0)I0) (54) From this we find the ratio of the rate for a&0 —+vro+y
to the m' decay rate to be

and s= —ki2. From Eq. (5.3) we have

e —
%ps pf.„F-„()= fp vFp.,(s)-

2+p S—1Sp2

e 5$~
+ f- F- (s), (55)

2&3'„s—m '

where Ii
p ~ and Ii„„~are the corresponding form factors

for p —+ vr+y and u ~ vr+y. In the same "pole"
approximation used at the end of Sec. IV for the
electromagnetic form factors, which we hope may be
valid for values of s well below m„', we may replace

I'(o)' —& vr'+y) 1 (m„' ll,
' ) ' (y„)'—

I'(vr'~y+y) 2 & m„p ) 0 e )

e2 5$p SS@)

f-»F-»(s) = f,- ~

+-
4v3+p"r(g ~ s—m s —m

(5.13)

By examining the mass-distribution of Dalitz pairs, as
suggested by Berman and Geffen, " one can measure

'6 S. Berman and D. GeGen, Nuovo cimento 28, 1192 (1960}.

Returning to (5.6) and substituting (5.8) and (5.9),
we find an expression for the amplitude for vr' ~ y+y
where one of the y's is virtual:
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the form factor in (5.13). Our crude approximation
suggests a dependence on s of the form (1+as) with
a positive and of the order of is(m, '+m„') W. e cannot
see, within the framework of a single resonance approxi-
mation, how a could turn out negative, as suggested. '~

Preliminary experiments, however, do indicate a nega-
tive value"; if they continue to do so, then we must con-
clude that the two resonances do not dominate the form
factor.

The o~v.p vertex also appears in the process y+P ~
o~s+P through a pole term due to a single v' meson.
The contribution of this pole term to the differential
cross section for the co' photoproduction is

jd~ i j mdiv ) p~iviv' kp &v p

EdQ&, . (miv' —p') 4v. FE'(F.+k)

(1—P, cos6)'
X , (5 14)

[2miv' —2EE' (1—PP'cos8) —1i']'

where k and q are the photon and oP momenta, re-
spectively, E and E' the initial and final nucleon en-
ergies, and p, p', and p» the initial and final nucleon
velocities and the M velocity.

In the same way as the constant f„'„appears in ~e'

photoproduction; the analogous constant f,o '~, which
is the amplitude for the decay p'~v'+p, may be
measured in a x' pole term in p' photoproduction. The
pole contribution to the cross section is the same as
Eq. (5.14) with f„7 replaced by f, 7 and m„replaced
by mp.

Inverting the roles of ~' and cv' in oP photoproduction,
and m' and p in p' photoproduction, we see that there
are "pole" terms produced by co' and p contributing
to m photoproduction. As we have seen in the fore-
going, of course, these are not true poles, since oP and
p' are unstable. Stated more precisely, there is a con-
tribution to m' photoproduction from two and three
pion exchanges; the existence of p and co' produces
resonances in these systems and the over-all effect, if
the resonances are narrow, is to make the contribution
look as if they were "poles" due to p' and ~' if one is
not right at the places where the "poles" should be. If
these "poles" could be isolated experimentally, the con-
stants f„ov and f, ov could again be measured.

Finally, the constant f, can be measured through
another "pole" term in the reaction v-+X~ p+E or
in the reaction v+X~io+X. In the first case, the
"pole" is due to a ~' meson; in the second case, to a p
meson.

VI. CONTRIBUTION OF THE y MESON
TO % —N SCATTERING

In this section we translate into the language of
vector mesons the work on the contribution of the 2m.

'7 How-Sen Wong, Phys. Rev. 121, 289 (1961).
"N. Samios, Phys. Rev. 121, 275 (1961).

resonance to xF scattering, as given for instance by
Bowcock et al. '9

In the BCL paper, the s-wave charge-exchange mX
scattering amplitude is written as the sum of two parts.
The first represents the contribution of the 2~ resonance.
The other comes from all other singularities, which are
treated as if they occurred at infinite mass. (How such
an approximation can be justified, we have no idea; we
are merely transcribing. )

The approximate formula for the difference of I=2
and I=

2 s-wave scattering amplitudes is then

mdiv co j 4ksg—lnl 1+ I+&~
W k' ( mp')

(6.1)

where we neglect the "magnetic" coupling of the p
meson to the nucleon since we will work at low energies.
The contribution of higher singularities is lumped into
the arbitrary constant B. Here cv is the pion energy, k
the momentum, and t/V the total energy in the c.m.
system.

Now the constant A is proportional to the product
of the pion and nucleon coupling constants to the p
meson or 2x resonance. In our language, we have

PPNN+P71 7r3=3 (6.2)

We know that p p is connected directly with the width
of the 2~ resonance by Eq. (3.10). From their point of
view, BCL obtain the same relation. Thus, 2 is pro-
portional to the width I', multiplied by y, iv&/y„, . If
we have the ratio y, aviv/7, and if we believe the ap-
proximation, then we may fit Eq. (6.1) to the data on
mS scattering and so measure Fp.

In the vector meson theory, we know that p,zz/p„
is just F, (0)/Fi&(0). [See (4.13) and (4.14).] It must
be approximately one. If we want to know it better, we
can use the rough determination of Fi&(0)=y,/y, ivy
from the nucleon form factors in Eq. (4.23) and obtain

1/Fi&(0) =1.2. (6.3)

But the determination of F, (0)=y,/y, must await
a measurement of the pion electromagnetic form factor;
for the time being, we can only try the approximation

Fp„„(0)=1, y aviv/y „.=1.2, (6.4)

and hope for the best.
From the point of view of BCL, the problem of deter-

mining y, &z/y, , is a dynamical one, but they dismiss
previous attempts at calculating it as too unreliable
and evaluate it instead from exPerimesst They look a.t
the nucleon electromagnetic form factor and use what
amounts to the same method as in the previous para-
graph. They take the number 1.2 (or rather an earlier

"Bowcock, Cottingham, and Lurid, Phys. Rev. Letters 5, 386
(j.960); referred to hereafter as BCL.
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version of it) from experiment, use a dispersion theory
approximation in which essentially F, (0)=1, and
obtain just the estimate of Eq. (6.4). A determination
of p, '/4ir from ~X scattering then yields a result of
the order of -', with their parameters or +~ with ours.

Note that without vector mesons and conserved cur-
rents, there is no principle of universality as such. Yet
it is not unreasonable in the work of 8CL, Chew, etc. ,
that p, /p, ~& should come out of the order unity,
since y,„,/y, is, for them as for us, the coefficient of the
2m resonance term in the pion electric form factor and

y,~~/y, is the corresponding coefficient in the nucleon
isovector electric form factor. For the dispersion theo-
rists, it is to be expected that the 2~ resonance will

dominate these form factors and therefore that the
numbers shouM both be of the order unity.

~pm'n'= Vpn'@~pe (7.4)

where V is the sum of all proper vertex graphs and d is
the propagator for p divided by the free propagator
(—s+m, ') '. We have the relation

(7.5)

and so near s=m„2 the form factor has the behavior

2s—mp-
1

p 2c 'Ip
~ )

s m +Ms)I p+
(7.6)

where the denominator is corrected by real terms
OL(s —m, ')'j and imaginary terms iO(s m~')—

VII. SUMMARY OF RESULTS

We have derived some detailed conclusions from
Sakurai's theory of vector mesons coupled to conserved
currents. Many of them are known from the dispersion-
theoretic treatment of presumably "dynamical" reso-
nances. I.et us list the most important ones, using the p
meson as an example. We shall take its bare mass
infinite and we shall neglect the decay mode p ~ kr.

First of all, p appears as a resonance at s=mp2 in ~m

scattering with I= 1, J= l. We have

T, "(s)= —127rs'*(s —4p') —I sinb(s) expib(s)

=N(s)/D(s), (7.1)

where l7(s) and D(s) have the following properties
neal s= mp

cV (s) =yp..'/(s mp'), ReD(—s) =1,
ImD(s) =impI'p/(s m') (7.2)—

with
(7 3)

We see that the position and width of the resonance
determine m, ' and p, ,'/kr. Away from s=m, ', X and
D are analytic functions of s with branch cuts on the
negative and positive s axes, respectively.

The "form factor" for the dissociation p
—+ 2+ is the

pl oduct

The p meson is coupled to the conserved isotopic spin
current. Thus, at zero momentum transfer, it has a
universal interaction with the isotopic spin I, As an
example of a particle carrying isotopic spin, let us take
the nucleon. We define the renormalized coupling con-
stant pppf+ at momentum transfer mp', and we consider
the form factor Ii jp for the "electrical" coupling of p
to the nucleon. Then the universality at zero momentum
transfer is expressed by the rule

y, =yp F, .(0)=y,~~Fi'(0), etc. (7.7)

Just as all form factors would be normalized to unity
for a stable meson, so they all have the form (7.6) near
mp2 for the actual case of instability:

s—m p

s mp'+—im pI' p+ .
im pl', +

s m2—
near s= m, '. (7.8)

for sniall negatives. (7.9)

Now the actual measurement of yp~~ can be dis-
cussed in connection with mE scattering. In Sec. VI,
we have presented a very rough treatment of the low-

energy s wave based on the exchange of a single p.
A much better approach is to consider high-energy xE
scattering at small momentum transfers and extrapolate
to the "pole" at t=mp'. Such a procedure would deter-
mine ppN+ pp

' unambiguously if p were stable. Since
the breadth of the p state is in fact of the order of a
hundred Mev, we must take into account the insta-
bility, which turns the "pole" into what is merely a
large lump. Since there is no longer a true pole in the
crossed p-wave channel, the other partial waves in the
crossed channel are not completely negligible even at
the extrapolated value t=mp2. If we can somehow
neglect or correct for the small contribution of the
other crossed partial waves, then the extrapolation
gives us effectively the p-wave amplitude for the anni-
hilation E+E-+~+m in the neighborhood of the
unphysical energy for which t=m, '. If Q(t) is the
I=1,J=i annihilation amplitude, we have explicitly

Of course, p also has a "magnetic" interaction with
the nucleon with a "strong magnetic" moment pp~~
and a form factor F2& normalized exactly as in Eq. (7.8).

In the region of negative s, the F's are all purely real.
The imaginary part of 1/F, which varies so rapidly
near s=mp2, is now gone; only the real part, which
equals unity at m, ' and varies rather slowly, is present.
We may therefore try to approximate each Ii in the
region of small negative s by an expansion of the real
part in a power series in s—mp'. If we keep only the
first two terms, we may use (7.7) to obtain
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d
=—R-

'YpNN rp~n df Q(f) ™p (7.10)

in analogy to Eq. (3.2).
If we measure 7, ' from mx scattering and then

pp»' from wE scattering, we must still apply the cor-
rection factors F,„(0),F,&(0) in order to check the
exact universality relation (7.7). These form factors
are, however, directly related to electromagnetic ones,
since the source currents for p and the isovector part
of the electromagnetic field are essentially the same.

In u/l problems each matrix element for a virtual
isovector p ray (to lowest order in e) can be expressed
in terms of the corresponding matrix element for a
virtual p meson by multiplying by the factor

8 —StP

2+p s—ssp
(7.11)

The simplest example is provided by the relations
between form factors Ii p, etc. , for the meson and the
electromagnetic form factors Ii „, etc. :

eF (s)=
e —m'

P

r p.~Fp ~~ (s)
2+p s—ss

nzp' Fp. (s)—
e, (7.12)s-~,2 F...(0)

—nz, ' Fg&(s)
Fj "(s)=

s—m, ' F~&(0)
(7.13)

and so forth.
Thus in e++e —+ s++s, we can measure the pion

electric form factor at the resonance:

F (mp') =impI"p 'Fp. '(0) =immi'p 'yp. /yp. (7.14)

where we have used Eqs. (7.12), (7.6), and (7.7). For
the nucleon electric form factor, if we make use of the
approximation (7.9) for F&&, we may put

'Y iver f —m'l t' 7 mr)
Fl'(s) = '

]

— )+ ]
1— I, (7'»)

ks —m, ') E y, )
for small s(0. Applying the correction factors so deter-
mined to the constants p»& and p„, we can really
check the universality.

We have discussed another application of the con-
version factor (7.11), namely the comparison of such
vertices as soyy (where one photon is isovector and the
other isoscalar) and sp'y. The latter contributes im-

portant "poles" in the photoproduction processes
7+pcs'0+p and 7+p —+ p'+p. If we assume the
m p y vertex varies slowly with the virtual mass of p',
then we can use Eq. (7.11) to connect its value with the
x' lifetime.

So far in our summary we have used the p meson as
an example. But parallel results have been found, of
course, for the ~. All told, the conserved vector current
theory provides a simple and coherent picture of all the
processes which these two resonances dominate.

The question naturally arises how much of the pic-
ture is identical with that obtained by dispersion-
theoretic methods for dynamical resonances.

Evidently the dispersion relations are common to
the two points of view. The only matters at issue are,
so to speak, the boundary conditions on the dispersion
relations, viz. : the number of subtractions, the values
of subtraction constants, and the number and char-
acter of CDD poles, if any.

From the vector meson point of view, the most im-

portant result is universality. The constants pp pppf~,
etc. , can all be measured in "pole" experiments and by
decay widths. They should all be roughly equal; much
more important, when they are corrected by the factors
F, (0), F~&(0), etc. , all of which can be determined
from electromagnetic form factors, the resulting quan-
tities pp must all be exactly equal.

The same universality statement, however, is also
true in the dynamical theory, where the vector mesons
are viewed as dynamical resonances, and where no state-
ment is made about the "current" to which those dy-
namical states are coupled. The fact that the reso-
nances, for example the p, occur in states which can be
reached by a photon, together with the fact that the
photon is universally coupled, is sufhcient to guarantee
the universality of the p coupling, when the correction
factors F(0) are applied.

As we have seen in Sec. IV, the content of the uni-

versality statement for the p meson is that

yp. Fp .(0) =yp~vF~&(0) =etc. (7.16)

Equivalent to this is the statement that the associated
electromagnetic form factors have "poles'"' with resi-
dues in the ratios

(s—nap')F (s) ~s=m, 2

etc.
(s mp')F, —(s) ~s=mpm

(7.17)

~&pm'm

)
s—m P

~PPNK

s—f5
etc. ,

where A is the amplitude of a photon to make a p meson
on its mass shell. The ratio of residues is thus just
p,«/p, » as required by Eq. (7.17).

"Actually, the form factors will not have true poles, but only
bumps, because of the instability of the p meson; this is however
not an essential complication and we have discussed it above.

Equation (7.17) is however always true. For (if we

ignore the instability of the p meson) the poles in the
electromagnetic form factors are due to an intermediate
state of one p meson. The contributions of these pole
terms are just
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D(s) =exp—
s—sp t' 6(s)

ds )
pr ~ (s —sp) (s s)

goes like a constant, rather than linearly in s, at in6nity.
In other words, the coefficient of s at infinity is just
equal to zero.

In the model theory, setting this coeflicient equal to
zero is all that is necessary in order to convert the ele-
mentary particle theory of the resonance (with infinite
bare mass) into the dynamical theory. In a complete
theory, the number of conditions that are needed to
de6ne the "dynamical case" is presumably greater, but
we can probably carry through the analogy and treat

Now, if the universality statement of the vector
meson point of view can be obtained equally well with-
out regarding the vector mesons as elementary particles,
what remains as the difference between this viewpoint
and the dynamical one? Perhaps the simplest answer
is given in terms of the model field theory of Sec. II.
With the mechanical mass of the vector meson set equal
to in6nity, the dynamical theory appears as a special
case of the vector meson theory in which a particular
relation holds involving the coupling constant of the
particle and its physical mass. For this special case, the
change in the phase shift between $=4y' and s= ~ is
zero instead of n. and consequently the function D(s),
which is given by

the dynamical theory as a special case by improving
some conditions at in6nity on the elementary particle
theory. These conditions may well be needed for con-
sistency of the dispersion relations.

To sum up, then, it would appear that everything we
have concluded on the basis of the vector meson ap-
proach can be applied to the dynamical theory; the only
practical differences will be that the masses and coupling
constant, which for the vector meson theory are arbi-
trary parameters, become in the dynamical framework
predictable constants, and that the high energy behavior
becomes less singular.

For the p meson, the more singular behavior may be
intolerable, since it is related to the unrenormalizability
of the field theory for an elementary p. For other par-
ticles, like the co meson, for which renormalizable field
theories can be constructed, both hypotheses may be
logically tenable —that of an elementary or' correspond-
ing to a CDD pole and that of a dynamical co . In such
a case, differences in high energy behavior may lead to
the possibility of experimental discrimination between
the two situations.
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